
© March 2009 Altera Corporation

QII53012-9.0.0
16. In-System Updating of Memory and
Constants
Introduction
The In-System Memory Content Editor allows you to view and update memories and 
constants using the JTAG port connection. This chapter explains how to use the 
Quartus II In-System Memory Content Editor as part of your FPGA design and 
verification flow.

FPGA designs are growing larger in density and are becoming more complex. 
Designers and verification engineers require more access to the design that is 
programmed in the device to quickly identify, test, and resolve issues. The in-system 
updating of memory and constants capability of the Quartus® II software provides 
read and write access to in-system FPGA memories and constants through the Joint 
Test Action Group (JTAG) interface, making it easier to test changes to memory 
contents in the FPGA while the FPGA is functioning in the end system.

This chapter contains the following sections:

■ “Device Megafunction Support” on page 16–2

■ “Using In-System Updating of Memory and Constants with Your Design” on 
page 16–2

■ “Creating In-System Modifiable Memories and Constants” on page 16–3

■ “Running the In-System Memory Content Editor” on page 16–3

Overview
The ability to read and update memories and constants in a programmed device 
provides more insight into and control over your design. The Quartus II In-System 
Memory Content Editor gives you access to device memories and constants. When 
used in conjunction with the SignalTap® II Embedded Logic Analyzer, this feature 
provides the visibility required to debug your design in the hardware lab.

f For more information about the SignalTap II Embedded Logic Analyzer, refer to the 
Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of 
the Quartus II Handbook.

The ability to read data from memories and constants allows you to quickly identify 
the source of problems. In addition, the write capabilities allow you to bypass 
functional issues by writing expected data. For example, if a parity bit in your 
memory is incorrect, you can use the In-System Content Editor to write the correct 
parity bit values into your RAM, allowing your system to continue functioning. You 
can also intentionally write incorrect parity bit values into your RAM to check your 
design’s error handling functionality.

f The Quartus II software offers a portfolio of on-chip debugging tools. For an overview 
and comparison of all tools available in the Quartus II software on-chip debugging 
tool suite, refer to Section V. In-System Debugging in volume 3 of the Quartus II 
Handbook.
Quartus II Handbook Version 9.0 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf


16–2 Chapter 16: In-System Updating of Memory and Constants
Device Megafunction Support
Device Megafunction Support
The following tables list the devices and types of memories and constants that are 
currently supported by the Quartus II software. Table 16–1 lists the types of memory 
supported by the MegaWizard™ Plug-In Manager and the In-System Memory Content 
Editor.

Table 16–2 lists support for in-system updating of memory and constants for the 
Stratix® series, Arria® GX, Cyclone® series, APEX™ II, and APEX 20K device families.

Using In-System Updating of Memory and Constants with Your Design
Using the In-System Updating of Memory and Constants feature requires the 
following steps:

1. Identify the memories and constants that you want to access.

2. Edit the memories and constants to be run-time modifiable.

3. Perform a full compilation.

4. Program your device.

5. Launch the In-System Memory Content Editor.

Table 16–1. MegaWizard Plug-In Manager Support

Installed Plug-Ins Category Megafunction Name

Gates LPM_CONSTANT

Memory Compiler RAM: 1-PORT, ROM: 1-PORT

Storage ALTSYNCRAM, LPM_RAM_DQ, LPM_ROM

Table 16–2. Supported Megafunctions

Megafunction

Arria GX / Stratix Series

Cyclone 
Series APEX II APEX 20K

M512 
Blocks

M4K 
Blocks

MegaRAM 
Blocks

LPM_CONSTANT Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

Read/
Write

LPM_ROM Write Read/
Write

N/A Read/
Write

Read/
Write

Write

LPM_RAM_DQ N/A Read/
Write

Read/
Write

Read/
Write

Read/
Write

N/A (1)

ALTSYNCRAM (ROM) Write Read/
Write

N/A Read/
Write

N/A N/A

ALTSYNCRAM (Single-Port RAM Mode) N/A Read/
Write

Read/
Write

Read/
Write

N/A N/A

Note to Table 16–2:

(1) Only write-only mode is applicable for this single-port RAM. In read-only mode, use LPM_ROM instead of LPM_RAM_DQ.
Quartus II Handbook Version 9.0 Volume 3: Verification © March 2009 Altera Corporation



Chapter 16: In-System Updating of Memory and Constants 16–3
Creating In-System Modifiable Memories and Constants
Creating In-System Modifiable Memories and Constants
When you specify that a memory or constant is run-time modifiable, the Quartus II 
software changes the default implementation. A single-port RAM is converted to 
dual-port RAM, and a constant is implemented in registers instead of look-up tables 
(LUTs). These changes enable run-time modification without changing the 
functionality of your design. For a list of run-time modifiable megafunctions, refer to 
Table 16–1.

To enable your memory or constant to be modifiable, perform the following steps:

1. On the Tools menu, click MegaWizard Plug-In Manager.

2. If you are creating a new megafunction, select Create a new custom megafunction 
variation. If you have an existing megafunction, select Edit an existing custom 
megafunction variation.

3. Make the necessary changes to the megafunction based on the characteristics 
required by your design, turn on Allow In-System Memory Content Editor to 
capture and update content independently of the system clock, and type a value 
in the Instance ID text box. These parameters can be found on the last page of the 
wizard for megafunctions that support in-system updating.

1 The Instance ID is a four-character string used to distinguish the 
megafunction from other in-system memories and constants.

4. Click Finish.

5. On the Processing menu, click Start Compilation. 

If you instantiate a memory or constant megafunction directly using ports and 
parameters in VHDL or Verilog HDL, add or modify the lpm_hint parameter as 
follows:

In VHDL code, add the following:

lpm_hint => "ENABLE_RUNTIME_MOD = YES, 
INSTANCE_NAME = <instantiation name>";

In Verilog HDL code, add the following:

defparam <megafunction instance name>.lpm_hint =
"ENABLE_RUNTIME_MOD = YES, 
INSTANCE_NAME = <instantiation name>";

Running the In-System Memory Content Editor
The In-System Memory Content Editor is separated into the Instance Manager, JTAG 
Chain Configuration, and the Hex Editor (Figure 16–1).
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 3: Verification



16–4 Chapter 16: In-System Updating of Memory and Constants
Running the In-System Memory Content Editor
The Instance Manager displays all available run-time modifiable memories and 
constants in your FPGA device. The JTAG Chain Configuration section allows you to 
program your FPGA and select the Altera® device in the chain to update.

Using the In-System Memory Content Editor does not require that you open a project. 
The In-System Memory Content Editor retrieves all instances of run-time configurable 
memories and constants by scanning the JTAG chain and sending a query to the 
specific device selected in the JTAG Chain Configuration section.

Each In-System Memory Content Editor can access the in-system memories and 
constants in a single device. If you have more than one device containing in-system 
configurable memories or constants in a JTAG chain, you can launch multiple 
In-System Memory Content Editors within the Quartus II software to access the 
memories and constants in each of the devices.

Instance Manager
Scan the JTAG chain to update the Instance Manager with a list of all run-time 
modifiable memories and constants in the design. The Instance Manager displays the 
Index, Instance, Status, Width, Depth, Type, and Mode of each element in the list.

You can read and write to in-system memory using the Instance Manager, as shown 
in Figure 16–2.

Figure 16–1. In-System Memory Content Editor

Figure 16–2. Instance Manager Controls

Read Data from In-System Memory
Continuously Read Data from In-System Memory

Stop In-System Memory Analysis
Write Data to In-System Memory
Quartus II Handbook Version 9.0 Volume 3: Verification © March 2009 Altera Corporation



Chapter 16: In-System Updating of Memory and Constants 16–5
Running the In-System Memory Content Editor
The following buttons are provided in the Instance Manager:

■ Read data from In-System Memory—Reads the data from the device 
independently of the system clock and displays it in the Hex Editor

■ Continuously Read Data from In-System Memory—Continuously reads the data 
asynchronously from the device and displays it in the Hex Editor

■ Stop In-System Memory Analysis—Stops the current read or write operation

■ Write Data to In-System Memory—Asynchronously writes data present in the 
Hex Editor to the device

1 In addition to the buttons available in the Instance Manager, you can also read and 
write data by selecting the command from the Processing menu, or the right button 
pop-up menu in the Instance Manager or Hex Editor.

The status of each instance is also displayed beside each entry in the Instance 
Manager. The status indicates if the instance is Not running, Offloading data, or 
Updating data. The health monitor provides useful information about the status of 
the editor.

The Quartus II software assigns a different index number to each in-system memory 
and constant to distinguish between multiple instances of the same memory or 
constant function. View the In-System Memory Content Editor Settings section of 
the compilation report to match an index with the corresponding instance ID 
(Figure 16–3).

Figure 16–3. Compilation Report In-System Memory Content Editor Settings Section
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 3: Verification



16–6 Chapter 16: In-System Updating of Memory and Constants
Running the In-System Memory Content Editor
Editing Data Displayed in the Hex Editor
You can edit the data read from your in-system memories and constants displayed in 
the Hex Editor by typing values directly into the editor or by importing memory files.

To modify the data displayed in the Hex Editor, click a location in the editor and type 
or paste in the new data. The new data appears in blue, indicating modified data that 
has not been written into the FPGA. On the Edit menu, choose Value, and click Fill 
with 0's, Fill with 1's, Fill with Random Values, or Custom Fills to update a block of 
data by selecting a block of data.

Importing and Exporting Memory Files
The In-System Memory Content editor allows you specify a file to import and export 
data values to and from memories that have the In-System Updating feature enabled. 
Importing from a data files enables you to quickly load an entire memory image. 
Exporting to a data file enables you to save the contents of the memory for future use 
and analysis.

To import a file to memory using the In-System Memory Content Editor, select the 
memory or constant that you want to target from the instance manager. From the Edit 
menu, click Import Data from File, and specify the data file that you want to load to 
the targeted memory or constant. You can only import a memory file that is in either a 
Hexadecimal (Intel-Format) file (.hex) or memory initialization file (.mif) format.

Similarly, to export the contents of memory to a file using the In-System Memory 
Content Editor, select the memory or constant that you want to target from the 
instance manager. From the Edit menu, click Export Data from File, and specify the 
file name to which you want to save the data. You can export data to a .hex, .mif, 
Verilog Value Change Dump file (.vcd), or RAM Initialization file (.rif) format.

Viewing Memories and Constants in the Hex Editor
For each instance of an in-system memory or constant, the Hex Editor displays data in 
hexadecimal representation and ASCII characters (if the word size is a multiple of 8 
bits). The arrangement of the hexadecimal numbers depends on the dimensions of the 
memory. For example, if the word width is 16 bits, the Hex Editor displays data in 
columns of words that contain columns of bytes (Figure 16–4).
Quartus II Handbook Version 9.0 Volume 3: Verification © March 2009 Altera Corporation



Chapter 16: In-System Updating of Memory and Constants 16–7
Running the In-System Memory Content Editor
Unprintable ASCII characters are represented by a period (.). The color of the data 
changes as you perform reads and writes. Data displayed in black indicates the data 
in the Hex Editor was the same as the data read from the device. If the data in the Hex 
Editor changes color to red, the data previously shown in the Hex Editor was 
different from the data read from the device.

As you analyze the data, you can use the cursor and the status bar to quickly identify 
the exact location in memory. The status bar is located at the bottom of the In-System 
Memory Content Editor and displays the selected instance name, word position, and 
bit offset (Figure 16–5).

The bit offset is the bit position of the cursor within the word. In the following 
example, a word is set to be 8-bits wide.

With the cursor in the position shown in Figure 16–6, the word location is 0x0000 and 
the bit position is 0x0007.

With the cursor in the position shown in Figure 16–7, the word location remains 
0x0000 but the bit position is 0x0003.

Figure 16–4. Editing 16-Bit Memory Words Using the Hex Editor

Figure 16–5. Status Bar in the In-System Memory Content Editor

Figure 16–6. Hex Editor Cursor Positioned at Bit 0×0007
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 3: Verification



16–8 Chapter 16: In-System Updating of Memory and Constants
Running the In-System Memory Content Editor
Scripting Support
The In-System Memory Content Editor supports reading and writing of memory 
contents via a Tcl script or Tcl commands entered at a command prompt. For detailed 
information about scripting command options, refer to the Quartus II command-line 
and Tcl API Help browser.

To run the Help browser, type the following command at the command prompt:

quartus_sh --qhelp r

The Quartus II Scripting Reference Manual includes the same information.

f For more information about Tcl scripting, refer to the Tcl Scripting chapter in volume 2 
of the Quartus II Handbook. For more information about command-line scripting, refer 
to the Command-Line Scripting chapter in volume 2 of the Quartus II Handbook.

The commonly used commands for the In-System Memory Content Editor are as 
follows:

■ Reading from memory:

read_content_from_memory 
[-content_in_hex] 
-instance_index <instance index> 
-start_address <starting address> 
-word_count <word count> 

■ Writing to memory:

write_content_to_memory

■ Save memory contents to file:

save_content_from_memory_to_file

■ Update memory contents from File:

update_content_to_memory_from_file

f For descriptions about the command options and scripting examples, refer to the Tcl 
API Help Browser and the Quartus II Scripting Reference Manual.

Programming the Device Using the In-System Memory Content Editor
If you make changes to your design, you can program the device from within the 
In-System Memory Content Editor. To program the device, follow these steps:

1. On the Tools menu, click In-System Memory Content Editor. 

2. In the JTAG Chain Configuration panel of the In-System Memory Content Editor, 
select the SRAM object file (.sof) that includes the modifiable memories and 
constants.

Figure 16–7. Hex Editor Cursor Positioned at Bit 0×0003
Quartus II Handbook Version 9.0 Volume 3: Verification © March 2009 Altera Corporation

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/manual/TclScriptRefMnl.pdf


Chapter 16: In-System Updating of Memory and Constants 16–9
Conclusion
3. Click Scan Chain.

4. In the Device list, select the device you want to program.

5. Click Program Device.

Example: Using the In-System Memory Content Editor with the SignalTap II Embedded 
Logic Analyzer

The following scenario describes how you can use the In-System Updating of 
Memory and Constants feature with the SignalTap II Embedded Logic Analyzer to 
efficiently debug your design in-system. Although both the In-System Content Editor 
and the SignalTap II Embedded Logic Analyzer use the JTAG communication 
interface, you are able to use them simultaneously.

After completing your FPGA design, you find that the characteristics of your FIR filter 
design are not as expected.

1. To locate the source of the problem, change all your FIR filter coefficients to be 
in-system modifiable and instantiate the SignalTap II Embedded Logic Analyzer.

2. Using the SignalTap II Embedded Logic Analyzer to tap and trigger on internal 
design nodes, you find the FIR filter to be functioning outside of the expected 
cut-off frequency.

3. Using the In-System Memory Content Editor, you check the correctness of the 
FIR filter coefficients. Upon reading each coefficient, you discover that one of the 
coefficients is incorrect.

4. Because your coefficients are in-system modifiable, you update the coefficients 
with the correct data using the In-System Memory Content Editor.

In this scenario, you are able to quickly locate the source of the problem using both 
the In-System Memory Content Editor and the SignalTap II Embedded Logic 
Analyzer. You are also able to verify the functionality of your device by changing the 
coefficient values before modifying the design source files.

An extension to this example would be to modify the coefficients with the In-System 
Memory Content Editor to vary the characteristics of the FIR filter (for example, filter 
attenuation, transition bandwidth, cut-off frequency, and windowing function).

Conclusion
The In-System Updating of Memory and Constants feature provides access into a 
device for efficient debug in a hardware lab. You can use In-System Updating of 
Memory and Constants with the SignalTap II Embedded Logic Analyzer to maximize 
the visibility into an Altera FPGA. By increasing visibility and access to internal logic 
of the device, you can identify and resolve problems with your design more easily.

Referenced Documents
This chapter references the following documents:

■ Command-Line Scripting chapter in volume 2 of the Quartus II Handbook

■ Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in 
volume 3 of the Quartus II Handbook
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 3: Verification

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf


16–10 Chapter 16: In-System Updating of Memory and Constants
Document Revision History
■ Quartus II Scripting Reference Manual 

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document Revision History
Table 16–3 shows the revision history of this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook 
Archive.

Table 16–3. Document Revision History

Date and Version Changes Made Summary of Changes

March 2009
v9.0.0

No change to content. Updated for the Quartus II 
software version 9.0 release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to content. Updated for the Quartus II 
software version 8.1 release.

May 2008
v8.0.0

■ Added reference to Section V. In-System Debugging in 
volume 3 of the Quartus II Handbook on page 16-1.

■ Removed references to the Mercury device, as it is now 
considered to be a “Mature” device

■ Added links to referenced documents throughout document

■ Minor editorial updates

Updated for the Quartus II 
software version 8.0 release.
Quartus II Handbook Version 9.0 Volume 3: Verification © March 2009 Altera Corporation

http://www.altera.com/literature/manual/TclScriptRefMnl.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

	16. In-System Updating of Memory and Constants
	Introduction
	Overview
	Device Megafunction Support
	Using In-System Updating of Memory and Constants with Your Design
	Creating In-System Modifiable Memories and Constants
	Running the In-System Memory Content Editor
	Instance Manager
	Editing Data Displayed in the Hex Editor
	Importing and Exporting Memory Files
	Viewing Memories and Constants in the Hex Editor
	Scripting Support
	Programming the Device Using the In-System Memory Content Editor
	Example: Using the In-System Memory Content Editor with the SignalTap II Embedded Logic Analyzer

	Conclusion
	Referenced Documents
	Document Revision History




