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Chapter 1
Introduction
The Motorola DSP56300 family of digital signal processors uses a programmable, 24
fixed-point core. This core is a high-performance, single-clock-cycle-per-instruction
engine that provides almost twice the performance of Motorola's popular DSP56000
family core, while retaining code compatibility. A variety of standard peripherals can
added around the DSP56300 family core (seeFigure 1-1), such as serial ports, parallel
ports, timers, different memory configurations (RAM and/or ROM), special-purpose
coprocessors, and General Purpose Input/Output (GPIO) ports. Each peripheral inte
to the DSP56300 core through a standard peripheral bus, allowing easy connection
standard or custom peripherals.

The combination of powerful instruction set, multiple internal buses, DMA channels,
on-chip program and data memories, external buses, standard peripherals, and pow
management of the DSP56300 family make it an excellent solution for wireless or

Figure 1-1. DSP56300 Family-Based DSP Chip
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Core Overview

U are

to
wireline DSP applications from individual subscriber to infrastructure, as well as
multimedia and high-end audio applications, including videoconferencing.

1.1 Core Overview
■ One Million Instructions Per Second (MIPS) per MHz of operating speed

■ Object code compatible with the DSP56000 core

■ Highly parallel instruction set

■ Data Arithmetic Logic Unit (Data ALU)

■ Address Generation Unit (AGU)

■ Program Control Unit (PCU)

■ On-chip Instruction Cache Controller

■ External Memory Interface (Port A)

■ Phase Lock Loop (PLL)

■ Hardware debugging support (JTAG TAP, OnCETM module, and Address Trace
Mode)

■ Six-Channel Direct Memory Access (DMA) Controller

■ Reduced power dissipation

— Very low power CMOS design

— Wait and Stop low-power standby modes

— Fully-static logic

1.1.1 Data Arithmetic Logic Unit (Data ALU)

The Data Arithmetic Logic Unit (Data ALU) performs all the arithmetic and logical
operations on data operands in the DSP56300 core. The components of the Data AL
as follows:

■ Fully pipelined 24× 24-bit parallel Multiplier-Accumulator (MAC) unit

■ Bit Field Unit, comprising a 56-bit parallel barrel shifter (fast shift and
normalization; bit stream generation and parsing)

■ Conditional ALU instructions

■ 24-bit or 16-bit arithmetic support under software control

■ Four 24-bit input general purpose registers: X1, X0, Y1, and Y0

■ Six Data ALU registers (A2, A1, A0, B2, B1, and B0) that are concatenated in
two general purpose 56-bit accumulators and accumulator shifters (A and B)
1-2 DSP56300 Family Manual Motorola
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■ Two data bus shifter/limiter circuits

The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y D
Bus (YDB) as 24- or 48-bit operands. The source operands for the Data ALU, which
be 24, 48, or 56 bits, always originate from the Data ALU registers. The results of all D
ALU operations are stored in an accumulator. All Data ALU operations are performe
two clock cycles in pipeline fashion so that a new instruction can be initiated in ever
clock, yielding an effective execution rate of one instruction per clock cycle.

The Multiplier-Accumulator (MAC) unit comprises the main arithmetic processing unit
the DSP56300 core and performs all of the calculations on data operands. For arith
instructions, the unit accepts as many as three input operands and outputs one 56-bit
of the following form:

Extension:Most Significant Product:Least
Significant Product (EXT:MSP:LSP)

The multiplier executes 24-bit× 24-bit, parallel fractional multiplies between
twos-complement signed, unsigned, or mixed operands. The 48-bit product is
right-justified and added to the 56-bit contents of either the A or B accumulator. A 56
result can be stored as a 24-bit operand by truncating or rounding the LSP. The LSP
be either truncated or rounded into the MSP.

1.1.2 Address Generation Unit (AGU)

The Address Generation Unit (AGU) performs the effective address calculations for
addressing data operands in memory and contains the integer arithmetic and register
to generate the addresses. The AGU operates in parallel with the other core resourc
so minimizes address-generation overhead of instruction sequences. It implements 
types of address arithmetic:

■ Linear

■ Modulo

■ Multiple wrap-around modulo

■ Reverse-carry

These arithmetic types easily allow creation of data structures in memory for FIFOs
(queues), delay lines, circular buffers, stacks, and bit-reversed FFT buffers. Data is
manipulated by updating address registers (pointers) rather than moving large block
data. The contents of the address modifier register, Mn, define the type of arithmetic
performed for addressing mode calculations. For modulo arithmetic, the contents of
also specify the modulus. All address register indirect modes can be used with any ad
Motorola Introduction 1-3
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modifier. Each address register, Rn, has an associated modifier register, Mn. The
following address modifier types are available:

■ Linear addressing—Useful for general-purpose addressing

■ Modulo addressing—Useful for creating circular buffers for FIFOs

■ Multiple wrap-around modulo addressing—Useful for decimation, interpolation
and waveform generation since the multiple wrap-around capability can be use
argument reduction

■ Reverse-carry (bit-reverse) addressing—Useful for 2k-point FFT addressing

The AGU is divided into halves, each with its own Address Arithmetic Logic Unit
(Address ALU), one to generate 24-bit addresses every cycle for the X space and o
the Y space. Each Address ALU can update one address register from its respectiv
address register file during one instruction cycle. Each Address ALU has four sets o
register triplets; each triplet is composed of an address register, an offset register, a
modifier register. The contents of the associated modifier register specify the type o
arithmetic to use in the address register update calculation. The modifier value is dec
in the Address ALU.

Each Address ALU contains a 24-bit full adder, which is an offset adder. A second f
adder—which is a modulo adder—adds the summed result of the first full adder to a
modulo value that is stored in its respective modifier register. A third full adder, which
reverse-carry adder, is also provided. The offset adder and the reverse-carry adder o
in parallel and share common inputs. The only difference between them is that the c
propagates in opposite directions. The modifier value determines which of the three
summed results of the full adders is output. For details on the AGU, seeChapter 4‚
Address Generation Unit.

1.2 Program Control Unit (PCU)

The Program Control Unit (PCU) performs instruction fetch, instruction decoding,
hardware DO loop control, and exception processing. The PCU implements a seven-
pipeline and controls the different processing states of the DSP56300 core. The PC
consists of three hardware blocks:

■ Program Decode Controller (PDC): Decodes the 24-bit instruction loaded into th
instruction latch and generates all necessary pipeline control signals

■ Program Address Generator (PAG): Contains the hardware for program address
generation, system stack, and loop control
1-4 DSP56300 Family Manual Motorola
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■ Program Interrupt Controller (PIC): Arbitrates among all interrupt requests
(internal interrupts and the five external requestsIRQA, IRQB, IRQC, IRQD, andNMI),
and generates the appropriate interrupt vector address

PCU features include:

■ Position independent code (PIC) support

■ Addressing modes optimized for DSP applications (including immediate offse

■ On-chip instruction cache controller

■ On-chip memory-expandable hardware stack

■ Nested hardware DO loops

■ Fast auto-return interrupts

■ Program Address Trace mode support

1.3 On-chip Instruction Cache Controller

The instruction cache functions as a buffer memory between external memory and t
DSP core processor. When code executes, the code locations requested by the set
instructions are copied into the instruction cache for direct access by the core proces
the same code is used frequently in a set of program instructions, storage of these
instructions in the cache yields an increase in throughput, because the time required
access them through the external bus is eliminated. The DSP56300 instruction set
provides specific cache instructions that permit you to lock sectors of the cache and
flush the cache contents under software control. The instruction cache can control e
1K of instruction cache memory, with the following features:

■ Software controlled Cache Enable (CE) bit in the Extended Mode Register (E
in the Status Register (SR)

■ Instruction Cache size of 1024 or 24-bit words

■ 8-way, fully associative instruction cache with sectored placement policy

■ 1- to 4-word transfer granularity

■ Least recently used (LRU) sector replacement algorithm

■ Transparent operation (i.e., no user management is required)

■ Individual sector locking/unlocking

■ Global cache flush controlled by software

■ Cache controller status observable via the JTAG/OnCE port
Motorola Introduction 1-5
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1.4 Port A External Memory Interface

Port A is an external memory interface for memory expansion or memory-mapped I/O
programmable nature supports a low part-count connection to fast or slow SRAMs,
DRAMs, I/O devices, and multiple bus master systems. The Port A data bus is 24 b
wide with a separate address bus that is 24 bits wide in some DSP56300 processor
less than 24 bits in others. External memory is divided into three possible 16 M× 24-bit
spaces: X data, Y data, and program memory. Each or all spaces can be accessed 
given external memory under software control. See the memory map inChapter 11‚
Operating Modes and Memory Spaces for memory space that is not accessible over Po
A. An internal wait state generator can be programmed to statically insert up to 31 w
states for access to slower memory or I/O devices. A Transfer Acknowledge (TA) signal
allows an external device to dynamically control the number of wait states inserted i
bus access operation. Bus arbitration signals allow an external device to use the bus
internal operations continue using internal memory. See the memory map in the
device-specific user’s manual for memory space that is not accessible.

The Address Attribute (AA) lines operate as memory-mapped chip selects or as add
lines to external devices, depending upon the mode selected. Some DSP56300 chip
eighteen address lines. For these DSPs, if all four AA lines are used as address line
total addressable external memory per space (X data, Y data, and program) is 4 M×
24-bit. If all four AA lines are used, the memory must always be selected because n
lines are available for chip select. As a result, an external read or write outside the 4
range could still go to the external memory (depending on the settings of the AA
registers).

1.5 Phase Lock Loop (PLL) and Clock Generator

The clock generator in the DSP56300 core is composed of two main blocks:

■ Phase Lock Loop (PLL): Clock-input division, frequency multiplication, and skew
elimination

■ Clock Generator (CLKGEN): Low-power division and clock pulse generation an
change of low-power Divide Factor (DF) without loss of lock

The PLL allows the processor to operate at a high internal clock frequency using a l
frequency clock input, a feature that offers two immediate benefits:

■ A lower frequency clock input reduces the overall electromagnetic interferenc
generated by a system.

■ The ability to oscillate at different frequencies reduces costs by eliminating th
need to add additional oscillators to a system.
1-6 DSP56300 Family Manual Motorola
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1.6 Hardware Debugging Support

The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) 
on theIEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.
Problems associated with testing high-density circuit boards have led to developme
this standard under the sponsorship of the Test Technology Committee of IEEE and
Joint Test Action Group (JTAG). The DSP56300 core implementation supports
circuit-board test strategies based on this standard. The test logic includes a TAP
consisting of four dedicated signal pins, a 16-state controller, and three test data reg
A Boundary Scan Register (BSR) links all device signal pins into a single shift regist
The test logic is implemented utilizing static logic design and is completely independ
of the device system logic.

An On-chip Emulation (OnCE) port supports hardware and software development o
DSP56300 core processor. It allows nonintrusive interaction with the core and its
peripherals so that developers can examine registers, memory, or on-chip peripherals
facilitates hardware and software development on the DSP56300 core processor. O
module functions are provided through the JTAG TAP pins. More information on the
JTAG/OnCE port is provided inChapter 7‚  Debugging Support.

A third debugging feature is the Address Trace mode, which reflects internal Progra
RAM accesses at the external port. This mode is invoked by setting the Address Tra
Enable (ATE), which is bit 15 in the Operating Mode Register (OMR)1. Once active, both
internal and external program memory accesses are valid at the rising edge ofCLKOUT.
TheBR signal distinguishes internal from external accesses.

1.7 Direct Memory Access (DMA)

The Direct Memory Access (DMA) block permits data transfers without the interaction
the core program. It supports any combination of internal memory, internal periphera
and external memory as source and destination during accesses. The DMA block h
following features:

■ Six DMA channels supporting internal and external accesses

■ One-, two-, and three-dimensional transfers (including circular buffering)

■ End-of-block-transfer interrupts

■ Triggering from interrupt lines and all peripherals

1. For details on the Operating Mode Register (OMR), seeSection 5.4.1.1, "Operating Mode Register."
Motorola Introduction 1-7
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1.8 Introduction to Digital Signal Processing

Digital signal processing is the arithmetic processing of real-time signals that are sam
at regular intervals and digitized. Examples of digital signal processing include the
following:

■ Filtering

■ Convolution (mixing two signals)

■ Correlation (comparing two signals)

■ Rectification, amplification, and/or transformation

Historically, all of these functions require analog circuits. Only recently has
semiconductor technology provided the processing power necessary to perform thes
other functions digitally using Digital Signal Processors (DSPs).Figure 1-2 shows an
example of analog signal processing. The circuit in the illustration filters a signal from
sensor using an operational amplifier and controls an actuator with the result. Since
ideal filter is impossible to design, the engineer must design the filter for acceptable
response considering variations in temperature, component aging, power supply vari
and component accuracy. The resulting circuit typically has low noise immunity, requ
adjustments, and is difficult to modify.

Figure 1-2. Analog Signal Processing
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The equivalent circuit using a DSP is shown inFigure 1-3. This application requires an
Analog-to-Digital (A/D) converter and Digital-to-Analog (D/A) converter in addition to
the DSP. Even with these additional parts, the component count can be lower using a
due to the high integration available with current components. Processing in this circ
begins by band-limiting the input signal with an anti-alias filter, eliminating out-of-ba
signals that can be aliased back into the pass band due to the sampling process. The
is then sampled, digitized with an A/D converter and sent to the DSP. The filter
implemented by the DSP is strictly a matter of software. The DSP can directly employ
filter that can also be implemented using analog techniques. Also, adaptive filters are
to implement using DSP but very difficult to implement using analog techniques.

Figure 1-3. Digital Signal Processing
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The DSP output is processed by a D/A converter and is low-pass filtered to remove
effects of digitizing. The advantages of using the DSP include:

■ Fewer components

■ Stable, deterministic performance

■ No filter adjustments

■ Wide range of applications

■ Filters with much closer tolerances

■ High noise immunity

■ Easily implemented adaptive filters

■ Built-in self-test capability

■ Better power supply rejection

The DSP56300 family is not a custom IC designed for a particular application; it is
designed as a general-purpose DSP architecture to efficiently execute commonly us
DSP benchmarks and controller code in minimal time.

Figure 1-4 shows the following key attributes of a DSP:

■ Multiply/Accumulate (MAC) operation

■ Fetching up to two operands per instruction cycle for the MAC

■ Program control to provide versatile operation

■ Input/output to move data in and out of the DSP

The MAC operation is the fundamental operation used in DSP. The DSP56300 fam
processors has a modified dual Harvard architecture optimized for MAC operations.
Figure 1-4 shows how the DSP56300 family architecture matches the shape of the M
operation. The two operands, C( ) and X( ), are directed to a multiply operation, and
result is summed. This process is built into the chip using two separate memories (X
Y) to feed a single-cycle MAC unit. The entire process must occur under program con
to direct the correct operands to the multiplier and save the accumulator as needed
the two memories and the MAC unit are independent, the DSP can perform two mo
multiply and an accumulate, in a single operation. As a result, many DSP benchmar
execute very efficiently for a single-multiplier architecture.
1-10 DSP56300 Family Manual Motorola
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1.9 Summary of Features

The high throughput of the DSP56300 family of processors makes them well-suited
wireless and wireline communication, high-speed control, efficient signal processing
numeric processing, and computer and audio applications. The main features that
contribute to this high throughput include the following:

■ Speed: The DSP56300 family supports most high-performance DSP applicatio

■ Precision: The data paths are 24 bits wide, providing 144 dB of dynamic range
intermediate results held in the 56-bit accumulators can range over 336 dB.

■ Parallelism: Each on-chip execution unit, memory, and peripheral operates
independently and in parallel with the other units through a sophisticated bus
system. The Data ALU, AGU, and program controller operate in parallel so that
following can execute in a single instruction:

— An instruction pre-fetch

— A 24-bit × 24-bit multiplication

— A 54-bit addition

— Two data moves

— Two address-pointer updates using either linear or modulo arithmetic

Figure 1-4. Mapping DSP Algorithms into Hardware
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■ Flexibility: While many other DSPs need external communications circuitry to
interface with peripheral circuits (such as A/D converters, D/A converters, or h
processors), the DSP56300 family provides on-chip serial and parallel interfa
that can support various configurations of memory and peripheral modules. T
peripherals are interfaced to the DSP56300 family core through a peripheral
interface bus that provides a common interface to many different peripherals.

■ Sophisticated Debugging: Motorola’s On-Chip Emulation (OnCE) technology
allows simple, inexpensive, and speed independent access to the internal reg
for debugging. With the OnCE module, you can determine easily the exact statu
the registers and memory locations and what instructions were last executed.

■ Phase Locked Loop (PLL)-Based Clocking: The PLL allows the chip to use almos
any available external system clock for full-speed operation, while also supply
an output clock synchronized to a synthesized internal core clock. It improves
synchronous timing of the external memory port, eliminating the timing skew
common on other processors.

■ Invisible Pipeline: The seven-stage instruction pipeline is essentially invisible to
the programmer, allowing straightforward program development in either assem
language or high-level languages such as C or C++.

■ Instruction Set: The instruction mnemonics are similar to those used for
microcontroller units, making the transition from programming microprocessor
programming the chip as easy as possible. New microcontroller instructions,
addressing modes, and bit field instructions allow for significant decreases in
program code size. The orthogonal syntax controls the parallel execution units.
hardware DO loop instruction and the repeat (REP) instruction make writing
straight-line code obsolete.

■ Low Power: Designed in CMOS, the DSP56300 family consumes very little pow
Two additional low-power modes, Stop and Wait, further reduce power
requirements. Wait is a low-power mode in which the DSP56300 family core i
shut down, but the peripherals and interrupt controller continue to operate so 
an interrupt can bring the chip out of Wait mode. In Stop mode, even more of
circuitry is shut down for the lowest power consumption. Several different way
exist to bring the chip out of Stop mode: hardwareRESET, IRQA, andDE.

1.10 Manual Organization

This manual describes the DSP56300 family Central Processing Unit in detail. Use 
manual in conjunction with the appropriate DSP56300 family member user’s manua
which describes the memory, operating modes, and peripheral modules. The appro
DSP56300 family technical data sheet describes timing, pinout, and packaging.
1-12 DSP56300 Family Manual Motorola
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This manual presents practical information to help the user accomplish the following

■ Understand the operation and instruction set of the DSP56300 family

■ Write code for DSP algorithms

■ Write code for general control tasks

■ Write code for communication routines

■ Write code for data manipulation algorithms

Table 1-1 describes the contents of each chapter and each appendix.

Table 1-1 DSP Family Manual Chapters

Chapter/
Appendix

Title and Description

2 Core Architecture Overview —The DSP56300 family core architecture consists of an External
Memory Interface (Port A), Data Arithmetic Logic Unit (Data ALU), Address Generation Unit
(AGU), Program Control Unit (PCU), Direct Memory Access (DMA) controller, Phase Lock Loop
(PLL) circuit, and a JTAG/On-Chip Emulation (OnCE) port. Chapter 2 describes each subsystem
and the buses interconnecting the major components in the DSP56300 family central processing
module. Chapter 2 also describes five of the six processing states (Normal, Exception, Reset,
Wait, and Stop). The sixth processing state (Debug) is covered more completely in Chapter 7‚
Debugging Support .

3 Data Arithmetic Logic Unit —Data ALU architecture, its programming model, an introduction to
fractional and integer arithmetic, and a discussion of other topics such as unsigned and
multi-precision arithmetic on the DSP56300 family.

4 Address Generation Unit —AGU architecture, its programming model, addressing modes, and
address modifiers.

5 Program Control Unit —Program controller architecture, its programming model, and hardware
looping. Note, however, that the different processing states of the DSP56300 family core,
including interrupt processing, are described in Chapter 2‚   Core Architecture Overview .

6 PLL and Clock Generator —Details the PLL, its programming model, and its general operation.

7 Debugging Support —Combined JTAG/OnCE port and its functions. These two are integrally
related, sharing the same pins for I/O.

8 Instruction Cache —Operation of the Instruction Cache controller and memory space.

9 External Memory Interface (Port A) —The External Memory Interface, its programming model,
and guidelines for interfacing SRAM and DRAM.

10 Direct Memory Access Controller —The six-channel DMA controller, its programming model,
and interactions with the core and peripherals.

11 Operating Modes and Memory Spaces —Operating modes and memory spaces in the
DSP56300 family.

A Guide to the Instruction Set  — The DSP56300 family instruction format as well as partial
encodings for use in instruction encoding
Motorola Introduction 1-13
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Note: The latest electronic version of this document as well as other DSP
documentation (including user’s manuals, product briefs, technical data sh
and errata) can be found on the Motorola DSP World Wide Web site. See 
back cover of this publication for the Motorola DSP World Wide Web site
address.

B Instruction Set  — Each DSP56300 family instruction, its use, and its effect on the processor.

C Instruction Timing — Various aspects of execution timing analysis for each instruction,
sequences that may cause timing delays or stalls, and programming restrictions.

D Benchmark Programs —DSP56300 family benchmark example programs and results.

E From CDR Process to HiP Process  — General differences between DSP56300 family
derivatives that use Motorola’s Communication Design Rules (CDR) process technology and
derivatives that use Motorola’s High-Performance (HiP) process technology; software and
hardware design implications.

Table 1-1 DSP Family Manual Chapters (Continued)

Chapter/
Appendix

Title and Description
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Chapter 2
Core Architecture Overview
This chapter describes the DSP56300 family core, a powerful DSP engine that can
execute an instruction on every clock cycle, yielding almost twice the performance o
Motorola DSP56000 core while retaining object code compatibility.

The DSP56300 core is composed of:

■ External Memory Expansion Port (Port A)—SeeChapter 9

■ Data Arithmetic Logic Unit (Data ALU)—SeeChapter 3

■ Address Generation Unit (AGU)—SeeChapter 4

■ Instruction Cache Controller—SeeChapter 8

■ Program Control Unit (PCU)—SeeChapter 5

■ Direct Memory Access (DMA) Controller—SeeChapter 10

■ PLL Clock Generator—SeeChapter 6

■ JTAG Test Access Port and On-Chip Emulation (OnCE) module—SeeChapter 7

To minimize the total system cost for customer applications, the DSP56300 core ex
memory interface, Port A, is powerful and versatile, providing a glueless interface to
DRAMs (in some DSPs), SRAMs, and other memories via an on-chip DRAM contro
(in some DSPs) as well as chip select logic. To assist with data movement over Port A
internally, the concurrent six-channel DMA augments the data throughput that
characterizes DSP applications.

The core is designed for low power consumption in Normal and Wait and Stop mode
Normal mode, only the blocks demanded for processing are active. Wait and Stop m
take the power savings a step further by closing down large portions of the core dur
periods of system inactivity. The integrated on-chip peripherals and memory (includ
instruction cache) also reduce power consumption by reducing the external bus acc
As for the core execution units, only the memory modules being accessed consume p
so on-chip memory expansion does not increase power significantly. Limiting the exte
bus accesses saves on system power. Finally, the PLL can scale power consumption
with lower clock frequencies under user software control.
Motorola Core Architecture Overview 2-1
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Low-power features of the DSP56300 family core include the following:

■ Very low-power CMOS design

■ Low-power Wait standby mode

■ Ultra-low power Stop mode

■ Power management units for further power reduction

■ Fully static logic, with operation frequency down to DC

Sixteen-bit Compatibility mode enables full compatibility to object code written for th
DSP56000 family of DSPs. Sixteen-bit Compatibility mode, which invokes 16-bit
addressing capability, differs from the Sixteen-bit Arithmetic mode, which invokes 16
arithmetic operations. These modes are configured by two separate bits (SA and SC
the Status Register (SR), which are described inChapter 5, Program Control Unit.

2.1 Core Buses

The following 24-bit buses provide data exchange between the main core blocks:

Figure 2-1 is a block diagram of the DSP56303, a member of the DSP56300 family.
diagram illustrates the core blocks of the DSP56300 family and shows representativ
peripherals for a DSP56300 family chip implementation.

Global Data Bus GBD Between Program Control Unit and other core structu

Peripheral I/O Expansion Bus PIO_EB To peripherals

Program Memory Expansion Bus PM_EB To Program ROM

Program Data Bus PDB Carries program data throughout the core

Program Address Bus PAB Carries program memory addresses throughout the 

X Memory Expansion Bus XM_EB To X memory

X Memory Data Bus XDB Carries X data throughout the core

X Memory Address Bus XAB Carries X memory addresses throughout the core

Y Memory Expansion Bus YM_EB To Y Memory

Y Memory Data Bus YDB Carries Y data throughout the core

Y Memory Address Bus YAB Carries Y memory addresses throughout the core

DMA Data Bus DDB Transfers data with DMA channels

DMA Address Bus DAB Transfers address information with DMA channels
2-2 DSP56300 Family Manual Motorola
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Note: The registers in the core are discussed in detail in the chapters on the indiv
functional blocks.

2.2 Core Processing

As for all DSPs, the operation of the DSP56300 core is a combination of software a
hardware interactions. This processing environment consists of the following compon

■ Instruction Set: The instruction set provides the programming language for
processing the algorithms required by specific applications. Appendix A contai
general overview of the instruction set and a description of the function and u
each instruction. Appendix B lists instruction execution timing and restrictions

Figure 2-1. DSP56303 Block Diagram
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■ Core Modules: These circuits transfer and modify data. They are generally
configured through internal registers and activated or disabled by a combinatio
hardware signals (interrupts, request signals, etc.) and software. Chapters 3-1
this document describe the structure and function of the various core modules

■ Processing States:Core processing states modify the operation of the core
processor and the core modules that operate independently and in parallel to
core. These states include:

— Normal: The typical operating mode in which code loads into the core
processor and executes.

— Exception: An event interrupts the normal execution flow. The processor ha
normal processing and, depending on the event, may store the current oper
environment, load a special handler program to respond to the exception,
execute the handler program, and then return to normal execution flow. Typ
exception causes can be software processing events or hardware service
requests, such as peripheral or external device interrupts.

— Reset: All execution halts and the processor and its registers in all peripher
are restored to a predetermined value that allows reloading of the executin
code and reinitiation of the execution flow. Typically, if an operation has
caused an unrecoverable error (that is, the handler cannot compensate fo
exception event that halted normal processing), invoking the Reset mode, e
by software or by asserting the physicalRESET signal, restores operational
functioning.

— Wait: Typically invoked by the WAIT instruction; the application requires onl
minimal processing. To save power, most operations stop until an event o
that requires the processing to restart. Clock signals remain functional, so 
quick restart is possible.

— Stop: Typically invoked by using the STOP instruction; the application does n
require immediate processing and a slow restart is acceptable (only if the PL
disabled). All clock functions and operations halt, except for the ability to
respond to an initiating event (that is,RESET, DE, or IRQA).

— Debug: Application developers can operate the system under the control o
JTAG Test Access Port and Boundary Scan function or the OnCE module
this mode, an application can run a single instruction at a time, or sets of
instructions at a time, until some defined event occurs, typically called a
breakpoint.
2-4 DSP56300 Family Manual Motorola
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2.3 Processing States

The following paragraphs describe the DSP56300 core processing states.

2.3.1 Normal Processing State

The Normal processing state is associated with instruction execution. DSP56300 co
instructions execute in a seven-stage pipeline, typically at a rate of one instruction e
clock cycle. However, the following instructions require additional time to execute:

■ All double-word instructions

■ Instructions with an addressing mode that requires more than one cycle for th
address calculation

■ Instructions causing a change of flow

Instruction pipelining allows overlapping of instruction execution so that a pipeline s
of a given instruction occurs concurrently with pipeline stages of other instructions. O
one word is fetched per cycle, so for double-word instructions, the second word of a
instruction is fetched before the next instruction is fetched.Table 2-1describes the seven
stages of the DSP56300 core pipeline. n1 and n2 inTable 2-1 refer to first and second
instructions, respectively. The third instruction, n3, which contains an instruction
extension word, n3e, takes two clock cycles to execute. The extension word is eithe
absolute address or immediate data. Although it takes seven clock cycles for the pip
to fill and the first instruction to execute, a further instruction usually completes on e
clock cycle.

Each instruction requires a minimum of seven clock cycles to fetch, decode, and ex
This results in a delay of seven clock cycles from power-up to fill the pipeline. A new
instruction may begin immediately following the previous instruction. Two-word
instructions require a minimum of eight clock cycles to execute (seven cycles for the
instruction word to move through the pipe and execute and one more cycle for the se
word to execute). For a complete description of the execution timing of the various
instructions, seeAppendix A, Instruction Timing and Restrictions.

Table 2-1 Instruction Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11

Fetch 1 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9 n10

Fetch 2 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9

Decode n1 n2 n3 n3e n4 n5 n6 n7 n8
Motorola Core Architecture Overview 2-5



Processing States

pts to
heme
g in

t to
pt
he

and
t

either
LR).
ion.
 jump
2.3.2 Exception Processing State (Interrupt Processing)

The Exception Processing state is associated with interrupts that are generated by
conditions inside the DSP or by external sources. There are many sources for interru
the DSP56300 core, some generating more than one interrupt. An interrupt vector sc
with 128 vectors of defined priority provides fast interrupt service. Interrupt processin
the DSP56300 core proceeds as follows:

1. A hardware interrupt is synchronized with the DSP56300 core clock, and the
interrupt pending flag for that particular hardware interrupt is set. An interrupt
source can have only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select the interrup
be processed. The arbiter automatically ignores any interrupts with an Interru
Priority Level (IPL) lower than the interrupt mask level in the SR and selects t
remaining interrupt with the highest IPL.

3. The interrupt controller freezes the program counter (PC) and fetches two
instructions at the two interrupt vector addresses associated with the selected
interrupt.

4. The interrupt controller inserts the two instructions into the instruction stream 
releases the PC, which is used for the next instruction fetch. The next interrup
arbitration then begins.

When a fast interrupt executes, the state of the machine is not saved on the stack if n
of the two instructions is a Jump To Subroutine (JSR) instruction (for example , a JSC
A long interrupt executes if one of the interrupt instructions fetched is a JSR instruct
The PC is immediately released, the SR and the PC are saved in the stack, and the
instruction controls from where the next instruction is fetched.

Note: Any Jump to Subroutine (JSR) instructionmakes the interrupt long (for
example, JScc, BSSET, etc.).

Address Gen 1 n1 n2 n3 n3e n4 n5 n6 n7

Address Gen 2 n1 n2 n3 n3e n4 n5 n6

Execute 1 n1 n2 n3 n3e n4 n5

Execute 2 n1 n2 n3 n3e n4

Table 2-1 Instruction Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11
2-6 DSP56300 Family Manual Motorola
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One of the main uses of interrupts is to transfer data between DSP memory or regis
and a peripheral device. When such an interrupt occurs, a limited context switch wit
minimum overhead is often desirable. This limited context switch is accomplished b
fast interrupt. The long interrupt is used when a more complex task must be accompl
to service the interrupt.

Exceptions may originate from any of the 128 vector addresses listed inTable 2-2.
Exceptions may originate from one of two groups: core and peripherals.Table 2-2 lists
only the sources originating from the core. For sources originating from peripherals,
the device-specific user’s manual.Table 2-2 shows the corresponding interrupt starting
address for each interrupt source. These addresses reside in the 256 locations of p
memory to which the Vector Base Address Register VBA in the PCU points. When a
interrupt is serviced, the instruction at the interrupt starting address is fetched first.
Because the program flow is directed to a different starting address for each interrup
interrupt structure of the DSP56300 core is said to be vectored. A vectored interrupt
structure has low overhead execution. If certain interrupts will definitely not be used, t
vector locations can be used for program or data storage.

Table 2-2 Interrupt Sources

Interrupt
Starting Address

Interrupt
Priority
Level
(IPL)

Interrupt Source

VBA:$00 3 Hardware RESET

VBA:$02 3 Stack Error

VBA:$04 3 Illegal Instruction

VBA:$06 3 Debug Request Interrupt

VBA:$08 3 Trap

VBA:$0A 3 Non-Maskable Interrupt (NMI)

VBA:$0C 3 Reserved for Future Level—3 Interrupt Source

VBA:$0E 3 Reserved for Future Level—3 Interrupt Source

VBA:$10 0–2 IRQA

VBA:$12 0–2 IRQB

VBA:$14 0–2 IRQC

VBA:$16 0–2 IRQD

VBA:$18 0–2 DMA Channel 0

VBA:$1A 0–2 DMA Channel 1

VBA:$1C 0–2 DMA Channel 2

VBA:$1E 0–2 DMA Channel 3

VBA:$20 0–2 DMA Channel 4
Motorola Core Architecture Overview 2-7
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The 128 interrupts are prioritized into four levels. Level 3, the highest priority level, is
maskable. Levels 0 – 2 are maskable. The interrupts within each level are prioritized

2.3.2.1 Hardware Interrupt Source

Two types of hardware interrupts to the DSP56300 core exist: internal and external.
internal interrupts come from on-chip sources:

■ Stack Error

■ Illegal Instruction

■ Debug Request

■ Trap

■ DMAs

■ Peripherals

Each internal interrupt source is serviced if it is not masked. When serviced, the inte
request is cleared. Each maskable, internal interrupt source has independent enabl
control. The external hardware interrupts are:NMI, IRQA, IRQB, IRQC, andIRQD. TheNMI

interrupt is an edge-triggered, Non-Maskable Interrupt (NMI) for use in software
development, watch-dog, power fail detect, etc. TheIRQA, IRQB, IRQC andIRQD interrupts
can be programmed to be level-sensitive or edge-triggered. Since the level-sensitive
interrupts are not automatically cleared when they are serviced, they must be cleare
other means before the end of the interrupt routine because multiple interrupts mus
prevented. Usually, external hardware detects the interrupt acknowledge of the core
interrupt and removes the interrupt request source.

The edge-triggered interrupts are latched as pending on the high-to-low transition o
interrupt input and are automatically cleared when the interrupt is serviced.IRQA, IRQB,

VBA:$22 0–2 DMA Channel 5

VBA:$24 0–2 Peripheral interrupt request 1

VBA:$26 0–2 Peripheral interrupt request 2

: :

VBA:$FE 0–2 Peripheral interrupt request 110

Table 2-2 Interrupt Sources (Continued)

Interrupt
Starting Address

Interrupt
Priority
Level
(IPL)

Interrupt Source
2-8 DSP56300 Family Manual Motorola
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IRQC andIRQD can be programmed to one of three priority levels: 0, 1, or 2, all of whi
are maskable. Additionally, these interrupts have independent enable control.

When theIRQA, IRQB, IRQC andIRQD interrupts are disabled in the interrupt priority
register, the pending request is ignored, regardless of whether the interrupt input wa
defined as level-sensitive or edge-triggered. Additionally, as long as an interrupt (ed
level sensitive) is disabled, its detection latch remains in the Reset state. If the
level-sensitive interrupt is disabled while the interrupt is pending, the pending interru
cancelled. However, if the interrupt has been fetched, it is not cancelled.

Note: On all external, level-sensitive interrupt sources, the interrupt should be
serviced (that is, the interrupt source cleared) by the instructions at the inter
vector for a fast interrupt, or by a long interrupt routine.

2.3.2.2 Software Interrupt Sources

There are two software interrupt sources:

■ Illegal Instruction Interrupt (III):The III is a Non-Maskable Interrupt (IPL 3) that
is serviced immediately after the illegal instruction executes or attempts to exe
(any undefined operation code).

■ TRAP: A Non-Maskable Interrupt (IPL 3) that is serviced immediately after the
TRAP or TRAPcc instruction executes (condition true).

2.3.2.3 Interrupt Priority Structure

Four interrupt priority levels (IPLs) exist. IPLs are numbered from 0 (the lowest leve
3 (the highest level). IPLs 0, 1, and 2 are maskable. Level 3 is non-maskable. The I
interrupts are:

■ Hardware Reset

■ Illegal Instruction Interrupt (III)

■ Stack Error

■ TRAP

■ NMI

■ Debug

The interrupt mask bits (I1, I0) in the SR reflect the current processor priority level a
indicate the IPL needed for an interrupt source to interrupt the processor (seeTable 2-3).
Interrupts are inhibited for all priority levels less than the current processor priority le
However, level 3 interrupts are not maskable and therefore can always interrupt the
processor.
Motorola Core Architecture Overview 2-9
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The DSP56300 core has two interrupt priority registers: IPRC that is dedicated for
DSP56300 core interrupt sources and IPRP that is dedicated for the peripheral inter
sources specific to the chip. These control registers are mapped on the internal X I/
memory space. The Interrupt Priority Level (IPL) for each interrupt source is softwar
programmable. Each on-chip or external peripheral device can be programmed to o
the three maskable priority levels (IPL 0, 1, or 2). IPLs are set by writing to the interr
priority registers shown inFigure 2-1 andFigure 2-2. These two read/write registers
specify the IPL for each of the interrupting devices. In addition, the IPRC register
specifies the trigger mode of each external interrupt source and enables or disables
individual external interrupts. These registers are cleared on hardware reset or by th
RESET instruction.Table 2-4 defines the IPL bits.Table 2-5 defines the External
Interrupt Trigger mode bit.

Table 2-3 Status Register Interrupt Mask Bits

I1 I0 Interrupts Permitted Interrupts Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2

For details on the Status Register, see Chapter 5 , Program Control
Unit.

23 22 21 20 19 18 17 16 15 14 13 12

D5L1 D5L0 D4L1 D4L0 D3L1 D3L0 D2L1 D2L0 D1L1 D1L0 D0L1 D0L0

DxL1:
0

DMA 0/1/2/3/4/5 IPL

11 10 9 8 7 6 5 4 3 2 1 0

IDL2 IDL1 IDL0 ICL2 ICL1 ICL0 IBL2 IBL1 IBL0 IAL2 IAL1 IAL0

IxL2 (See Table 2-5 ) IRQ A/B/C/D mode

IxL1:0 (See Table 2-4 ) IRQ A/B/C/D IPL

Figure 2-1. Interrupt Priority Register C (IPRC)
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If more than one exception is pending when an instruction executes, the interrupt wit
highest priority level is serviced first. When multiple interrupt requests with the same
are pending, a second fixed-priority structure within that IPL determines which interru
serviced.Table 2-6 shows the interrupt priority for all interrupts.

23 22 21 20 19 18 17 16 15 14 13 12

PerCL
1

PerCL
0

PerBL
1

PerBL
0

PerAL
1

PerAL
0

Per9L
1

Per9L
0

Per8L
1

Per8L
0

Per7L
1

Per7L
0

11 10 9 8 7 6 5 4 3 2 1 0

Per6L
1

Per6L
0

Per5L
1

Per5L
0

Per4L
1

Per4L
0

Per3L
1

Per3L
0

Per2L
1

Per2L
0

Per1L
1

Per1L
0

Figure 2-2. Interrupt Priority Register P (IPRP)

Table 2-4 Interrupt Priority Level Bits

IxL1 IxL0 Enabled IPL

0 0 No —

0 1 Yes 0

1 0 Yes 1

1 1 Yes 2

Table 2-5 External Interrupt Trigger Mode Bit

IxL2 Trigger Mode

0 Level

1 Negative Edge

Table 2-6 Exception Priorities Within an IPL

Priority Exception

Level 3 (Nonmaskable)

Highest Stack Error

Illegal Instruction

Debug Request Interrupt
Motorola Core Architecture Overview 2-11
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2.3.2.4 Instructions Preceding the Interrupt Instruction Fetch

The following conditions apply to instructions preceding an interrupt instruction fetch

■ Every instruction requiring more than one cycle to execute is aborted when it 
fetched in the cycle preceding the fetch of the first interrupt instruction word.

■ Aborted instructions are fetched again when program control returns from the
interrupt routine. The PC is adjusted appropriately before the end of the deco
cycle of the aborted instruction.

Trap

Non-Maskable Interrupt (NMI)

Lowest Non-Maskable Peripheral Interrupt

Levels 0, 1, 2 (Maskable)

Highest IRQA (External Interrupt)

IRQB (External Interrupt)

IRQC (External Interrupt)

IRQD (External Interrupt)

DMA Channel 0 Interrupt

DMA Channel 1 Interrupt

DMA Channel 2 Interrupt

DMA Channel 3 Interrupt

DMA Channel 4 Interrupt

DMA Channel 5 Interrupt

Lowest Peripheral interrupt sources*

*See device-specific user’s manual
NOTE: The higher-priority interrupt is at the lower vector address.

Table 2-6 Exception Priorities Within an IPL (Continued)

Priority Exception
2-12 DSP56300 Family Manual Motorola
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■ If the first interrupt word fetch occurs in the cycle following the fetch of a
one-word-one-cycle instruction, that instruction completes normally before the
start of the interrupt routine.

■ During an interrupt instruction fetch, two instruction words are fetched — the 
from the interrupt starting address and the second from the next address.

2.3.2.5 Interrupt Types

Two types of interrupt routines can be used: fast and long. The fast routine consists o
two automatically inserted interrupt instruction words. These words can be any
unrestricted, single two-word instruction or any two unrestricted one-word instruction
except RTI or RTS. Fast interrupt routines are not interruptible.

Note: Status is not preserved during a fast interrupt routine; therefore, instructions
modify status should not be used at the interrupt starting address or next
address.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is
formed. The following actions occur during execution of the JSR instruction when it
occurs in the interrupt starting address or in the next address:

1. The PC (containing the return address) and the SR are stacked.

2. The Loop flag is cleared.

3. The Scaling mode bits (S[1 – 0]) in the Status Register (SR) are cleared.

4. The Sixteen-bit Arithmetic (SA) mode bit is cleared.

5. The IPL is raised to disallow further interrupts of the same or lower levels. Se
Table 2-6.

Only the long interrupt routine should be terminated by an RTI. Long interrupt routin
are interruptible by higher-priority interrupts.

Note: Do not use RTI for fast interrupts.

2.3.2.6 Interrupt Arbitration

External interrupts are internally synchronized with the processor clock before their
interrupt-pending flags are set. Each external interrupt and internal interrupt has its 
flag. After each instruction executes, all interrupts are arbitrated (that is, all hardwar
interrupts that have been latched into their respective interrupt-pending flags and al
internal interrupts). During arbitration, each interrupt’s IPL is compared with the interr
mask in the SR, and the interrupt is either allowed or disallowed. The remaining interr
are prioritized according to the priority shown inTable 2-6, and the highest priority
Motorola Core Architecture Overview 2-13
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interrupt is chosen. The interrupt vector is then calculated so that the program interr
controller can fetch the first interrupt instruction. The interrupt-pending flag for the
chosen interrupt is not cleared until the second interrupt vector of the chosen interru
fetched. A new interrupt from the same source is not accepted for the next interrupt
arbitration until the interrupt-pending flag is cleared..

2.3.2.7 Interrupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address, which point
the first instruction word of a two-word interrupt routine. This address is used for the n
instruction fetch, instead of the contents of the PC, and again for the subsequent ad
after that. While the interrupt instructions are being fetched, the PC is not updated. A
the two interrupt words have been fetched, the PC is used for any subsequent instru
fetches.

2.3.2.8 Interrupt Instruction Execution

Interrupt instruction execution is considered “fast” if neither of the instructions of the
interrupt service routine cause a change of flow. A JSR within a fast interrupt routine
forms a long interrupt, which is terminated with an RTI instruction to restore the PC 
SR from the stack and return to normal program execution. Reset is a special excep
that normally contains only a JMP instruction at the exception start address. Almost
instruction can be used in a fast interrupt routine. A fast interrupt routine may contai
either two single-word instructions or one double-word instruction.Table 2-7 shows the
effect of a fast interrupt routine on the instruction pipeline. The fast interrupt execute
only two instructions (ii1 and ii2) and then automatically resumes execution of the m
program.Table 2-8shows the effect of a long interrupt routine on the instruction pipelin
A short JSR (ii1) is used to call the long interrupt routine which includes the four
instructions sr1, sr2, sr3 and an rti. Instructions ii2, n3, sr5 and sr6 are neither decode
executed.

Table 2-7 Fast Interrupt Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12

Fetch 1 n1 n2 ii1 ii2 n3 n4

Fetch 2 n1 n2 ii1 ii2 n3 n4

Decode n1 n2 ii1 ii2 n3 n4

Address Gen 1 n1 n2 ii1 ii2 n3 n4

Address Gen 2 n1 n2 ii1 ii2 n3 n4
2-14 DSP56300 Family Manual Motorola
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Execution of a fast interrupt routine always conforms to the following rules:

1. The processor status is not saved.

2. The fast interrupt routine can modify the status of the normal instruction strea
(for example, use the DO instruction, but such instructions should not be used
order to assure proper operation).

3. The PC, which contains the address of the next instruction to be executed in no
processing, remains unchanged during a fast interrupt routine.

4. The fast interrupt returns without an RTI.

5. Normal instruction fetching resumes using the PC following the completion of
fast interrupt routine.

6. A fast interrupt is not interruptible.

7. A JSR instruction within the fast interrupt routine forms a long interrupt routine

Execute 1 n1 n2 ii1 ii2 n3 n4

Execute 2 n1 n2 ii1 ii2 n3 n4

n = normal instruction word
ii = interrupt instruction word

Table 2-8 Long Interrupt Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fetch 1 n1 n2 ii1 ii2 n3 sr1 sr2 sr3 sr4 sr5 sr6 n3 n4 n5 n6 n7

Fetch 2 n1 n2 jsr ii2 n3 sr1 sr2 sr3 rti sr5 sr6 n3 n4 n5 n6

Decode n1 n2 jsr — — sr1 sr2 sr3 rti — — n3 n4 n5

Addr. Gen 1 n1 n2 jsr — — sr1 sr2 sr3 rti — — n3 n4

Addr. Gen 2 n1 n2 jsr — — sr1 sr2 sr3 rti — — n3

Execute 1 n1 n2 jsr — — sr1 sr2 sr3 rti — —

Execute 2 n1 n2 jsr — — sr1 sr2 sr3 rti —

n = normal instruction word
ii = interrupt instruction word
sr = service routine word

Table 2-7 Fast Interrupt Pipeline

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12
Motorola Core Architecture Overview 2-15
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Execution of a long interrupt routine always adheres to the following rules:

1. A JSR to the starting address of the interrupt service routine is located at one o
two interrupt vector addresses.

2. During execution of the JSR instruction, the PC and SR are stacked. The inte
mask bits of the SR are updated to mask interrupts of the same or lower prior
The Loop flag and Scaling mode bits in the Status Register are cleared.

3. The interrupt service routine can be interrupted (that is, nested interrupts are
supported), but can only be interrupted by a higher priority interrupt.

4. The long interrupt routine, which can be any length, should be terminated by 
RTI, which restores the PC and SR from the stack.

Either of the two instructions of the fast interrupt can be the JSR instruction that forms
long interrupt.

Note: A REP instruction is treated as a single two-word instruction, regardless of h
many times it repeats the second instruction of the pair. Instruction fetches
suspended and will be reactivated only after the LC is decremented to one
During the execution of the repeated instruction, no interrupts are serviced
When LC finally decrements to one, the fetches are reinitiated, and pendin
interrupts are serviced.

If a non-interruptible code sequence is desired, change the IPL bits to the desired m
level. Due to pipelining, you will need four instructions before you can guarantee that
code is not interrupted by a maskable interrupt.

2.3.3 Reset Processing State

The DSP device enters reset processing state when the externalRESET pin is asserted (a
hardware reset). In the Reset state:

1. Internal peripheral devices are reset.

2. The modifier registers (M0–M7) are set to $FFFFFF.

3. The interrupt priority registers are cleared.

4. The Bus Control Register (BCR), the Address Attribute Registers (AAR3–AAR
and the DRAM Control Register (DCR) are set to their initial values as describe
Chapter 9, External Memory Interface (Port A). The initial value causes a
maximum number of wait states to be added to every external memory acces

5. The Stack Pointer (SP) and the Stack Counter (SC) are cleared.

6. The following bits of the SR are cleared:
2-16 DSP56300 Family Manual Motorola
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— Rounding mode (RM) bit (Bit 21)

— Arithmetic Saturation mode (SM) bit (Bit 20)

— Cache Enable (CE) bit (Bit 19)

— Sixteen-bit Arithmetic (SA) mode bit (Bit 17)

— DO Forever (FV) flag bit (Bit 16)

— DO Loop Flag (LF) bit (Bit 15)

— Double Precision Multiply (DM) mode bit (Bit 14)

— Sixteen-bit Compatibility (SC) mode bit (Bit 13)

— Scaling (S[1 – 0]) bits (Bit 11 and Bit 10)

— Condition Code bits (SR[7 – 0])

7. The following bits of the SR are set:

— Core Priority (CP[1 – 0]) bits (Bit 23 and Bit 22)

— Interrupt (I[1 – 0]) mask bits (Bit 9 and Bit 8)

8. The Instruction Cache Controller is initialized as described inChapter 8,
Instruction Cache.

9. The Cache Enable (CE) bit in SR and the Burst mode bit in OMR are cleared

10.The PLL Control register is initialized as described inChapter 6, PLL and Clock
Generator.

11.The Vector Base Address Register (VBA) is cleared.

The DSP56300 core remains in the Reset state untilRESET is deasserted. Upon leaving the
Reset state, the Chip Operating mode bits of the OMR are loaded from the external
select pins (MODA, MODB, MODC, MODD), and program execution begins at the
program memory address as described inChapter 11, Operating Modes and Memory
Spaces.

2.3.4 Wait Processing State

The Wait processing state is a low-power consumption state that occurs when the W
instruction executes. In the Wait state, the internal clock is disabled from all internal
circuitry except the internal peripherals. All internal processing halts until an unmask
interrupt occurs, the DSP is reset, orDE is asserted. If the exit from Wait state is caused b
assertingDE, the processor enters the Debug mode.
Motorola Core Architecture Overview 2-17
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2.3.5 Stop Processing State

The Stop processing state is the lowest power consumption mode that occurs when
STOP instruction executes. In Stop mode, the clock oscillator activity depends on th
PSTP bit in the PLL control register. If this bit is cleared, the clock oscillator is turned o
If the bit is set, the VCO remains active and the global clock to the entire chip is disab
All activity in the processor halts until one of the following actions occurs:

1. A low level is applied to theIRQA pin (IRQA asserted).

2. A low level is applied to theRESET pin (RESET asserted).

3. A low level is applied to theDE pin.

Any of these actions enables the oscillator and, after a clock stabilization delay, cloc
the processor and peripherals are re-enabled. When the clocks to the processor an
peripherals are re-enabled:

1. If the exit from Stop state was caused by a low level on theRESET pin, then the
processor enters the Reset processing state.

2. If the exit from Stop state was caused by a low level on theIRQA pin, then the
processor services the highest-priority pending interrupt. If no interrupt is pen
(i. e. IRQA was negated before interrupts were arbitrated), or if no interrupt is
enabled, the processor resumes execution at the instruction following the STO
instruction that caused the entry into the Stop state.

3. If the exit from Stop state was caused by a low level on theDE pin, then the
processor enters the Debug mode.

For minimum power consumption during the Stop state at the cost of longer recover
time, clear the PSTP bit of the PLL Control Register. To enable rapid recovery when
exiting the Stop state, at the cost of higher power consumption, set PSTP. PSTP is cl
by hardware reset.

2.3.6 Debug State

Debug state is invoked and used with the JTAG/OnCE port. SeeChapter 7, Debugging
Support for a description of the Debug state.
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Chapter 3
Data Arithmetic Logic Unit

3.1 Introduction

This section describes the architecture and the operation of the Data Arithmetic Log
Unit (Data ALU), the block where all the arithmetic and logical operations on data
operands are performed.

3.2 Data ALU Architecture

The Data ALU contains the following components:

■ Four 24-bit input registers

■ A fully pipelined Multiplier-Accumulator (MAC)

■ Two 48-bit accumulator registers

■ Two 8-bit accumulator extension registers

■ A Bit Field Unit (BFU) with a 56-bit barrel shifter

■ An accumulator shifter

■ Two data bus shifter/limiter circuits

Figure 3-1 is a block diagram of the Data ALU.
Motorola DSP56300 Family Manual 3-1
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The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y D
Bus (YDB) as 24- or 48-bit operands. The source operands for the Data ALU, which
be 24, 48, or 56 bits, always originate from Data ALU registers. The results of all Da
ALU operations are stored in an accumulator. The Data ALU runs in 16-bit Arithmet
mode when the SA bit in the Status Register (SR) is set. For details on the SR, see
Chapter 5, "Program Control Unit,".

Figure 3-1. Data ALU Block Diagram
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All the Data ALU operations are performed in two clock cycles in pipeline fashion so t
a new instruction can be initiated in every clock, yielding an effective execution rate
one instruction per clock cycle.

3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0)

X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treat
four independent 24-bit registers or as two 48-bit registers called X and Y, formed b
concatenation of X1:X0 and Y1:Y0, respectively. X1 is the most significant word in X
and Y1 is the most significant word in Y. The registers serve as input buffers between
X Data Bus (XDB) or Y Data Bus (YDB) and the MAC unit or barrel shifter. They are
used as Data ALU source operands, allowing new operands to be loaded for the ne
instruction while the current contents are used by the current instruction. The register
also be read back out to the appropriate data bus.

3.2.2 Multiplier-Accumulator (MAC) Unit

The Multiplier-Accumulator (MAC) unit is the main arithmetic processing unit of the
DSP56300 core. It accepts up to three input operands and outputs one 56-bit result
following form:

Extension:Most Significant Product:Least
Significant Product (EXT:MSP:LSP)

The operation of the MAC unit occurs independently and in parallel with XDB and Y
activity, and its registers facilitate buffering for both Data ALU inputs and outputs.
Latches on the MAC unit input permit writing new data to an input register while the D
ALU processes the current data. The input to the multiplier can come only from the 
Y registers. The multiplier executes 24-bit x 24-bit, parallel fractional multiplies, betwe
twos-complement signed, unsigned, or mixed operands. The 48-bit product is
right-justified into 56 bits and added to the 56-bit contents of either the A or B
accumulator.

The 56-bit sum is stored back in the same accumulator. The multiply/accumulate
operation is fully pipelined and takes two clock cycles to complete. In the first clock 
multiply is performed and the product is stored in the pipeline register. In the second c
the accumulator is added or subtracted. If a multiply without accumulation (MPY) is
specified in the instruction, the MAC clears the accumulator and then adds the conte
the product. When a 56-bit result is to be stored as a 24-bit operand, the LSP can simp
truncated, or it can be rounded into the MSP. Rounding is performed if specified in t
DSP instruction, for example, in the signed multiply-accumulate and round (MACR)
instruction; the rounding is either convergent rounding (round-to-nearest-even) or
Motorola Data Arithmetic Logic Unit 3-3
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twos-complement rounding. The type of rounding is specified by the rounding bit in 
Status Register (SR). The bit in the accumulator that is rounded is specified by the sc
mode bits in the SR.

The arithmetic unit’s result going into the accumulator can be saturated so that it fits
48 bits (MSP and LSP). This process is commonly referred to as arithmetic saturation
activated by the Arithmetic Saturation Mode (SM) bit in the SR. The purpose of this m
is to provide for algorithms that do not recognize or cannot take advantage of the
extension accumulator (EXT). For details, refer toSection 3.3.3,"Arithmetic Saturation
Mode," on page 3-11.

3.2.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)

The six Data ALU registers (A2, A1, A0, B2, B1, and B0) form two general-purpose,
56-bit accumulators, A and B. Each of these two accumulators consists of three
concatenated registers (A2:A1:A0 and B2:B1:B0, respectively). The 24-bit MSP is st
in A1 or B1; the 24-bit LSP is stored in A0 or B0. The 8-bit EXT is stored in A2 or B2.
an ALU operation results in overflow into A2 (or B2), reading the A (or B) accumulat
over the XDB or YDB substitutes a limiting constant in place of the value in the
accumulator. The content of A or B is not affected if limiting occurs; only the value
transferred over the XDB or YDB is limited. This process is commonly referred to as
transfer saturation and should not be confused with the Arithmetic Saturation mode.

The overflow protection is performed after the contents of the accumulator are shifte
according to the Scaling mode. Shifting and limiting is performed only when the enti
56-bit A or B register is specified as the source for a parallel data move over the XD
YDB. When A2, A1, A0, B2, B1, or B0 is the source for a parallel data move, shifting a
limiting are not performed. When the 8-bit wide accumulator extension register (A2 
B2) is the source for a parallel data move, it is sign-extended to produce the full 24-
wide word. The accumulator registers (A or B) serve as buffer registers between the
arithmetic unit and the XDB and/or YDB. These registers are used as both Data ALU
source and destination operands.

Automatic sign extension of the 56-bit accumulators is provided when the A or B regi
is written with a smaller operand. Sign extension can occur when writing A or B from
XDB and/or YDB or with the results of certain Data ALU operations such as the tran
conditionally (Tcc) or transfer Data ALU register (TFR) instructions. If a word operand
to be written to an accumulator register (A or B), the Most Significant Product
(MSP)—A1 or B1—of the accumulator is written with the word operand, the Least
Significant Product (LSP)—A0 or B0—is zero-filled, and the Extended (EXT) portion
—A2 or B2—is sign-extended from MSP. Long-word operands are written into the
low-order portion, MSP:LSP, of the Accumulator Register, and the EXT portion is
3-4 DSP56300 Family Manual Motorola
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sign-extended from MSP. No sign extension is performed if an individual 24-bit registe
written (A1, A0, B1, or B0). Test logic in each accumulator register supports operatio
the data shifter/limiter circuits. This test logic detects overflows out of the data shifte
that the limiter can substitute one of several constants to minimize errors due to the
overflow.

3.2.4 Accumulator Shifter

The accumulator shifter is an asynchronous parallel shifter with a 56-bit input and a 5
output that is implemented immediately before the MAC unit accumulator input. The
source accumulator shifting operations are as follows:

■ No shift (unmodified)

■ 24-bit right shift (arithmetic) for DMAC

■ 16-bit right shift (arithmetic) for DMAC in Sixteen-bit Arithmetic mode

■ Force to zero

3.2.5 Bit Field Unit (BFU)

The Bit Field Unit (BFU) contains a 56-bit parallel bidirectional shifter with a 56-bit inp
and a 56-bit output, mask generation unit and logic unit. The bit field unit is used in 
following operations:

■ Multibit left shift (arithmetic or logical) for ASL, LSL

■ Multibit right shift (arithmetic or logical) for ASR, LSR

■ 1-Bit rotate (right or left) for ROR, ROL

■ Bit field merge, insert and extract for MERGE, INSERT, EXTRACT and
EXTRACTU

■ Count leading bits for CLB

■ Fast normalization for NORMF

■ Logical operations for AND, OR, EOR, and NOT

3.2.6 Data Shifter/Limiter

The data shifter/limiter circuits provide special post-processing on data read from th
ALU accumulator registers A and B out to the XDB or YDB. Each of the two independ
shifter/limiter circuits (one for XDB and one for the YDB) consists of a shifter followe
by a limiting circuit.
Motorola Data Arithmetic Logic Unit 3-5
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3.2.6.1 Scaling

The data shifters in the shifters/limiters unit can perform the following data shift
operations:

■ Scale up—shift data one bit to the left

■ Scale down—shift data one bit to the right

■ No scaling—pass the data unshifted

Each data shifter has a 24-bit output with overflow indication. These shifters permit
dynamic scaling of fixed-point data without modifying the program code. For examp
this permits block floating-point algorithms such as Fast Fourier Transforms (FFTs) t
implemented in a regular fashion. The data shifters are controlled by the Scaling Mo
bits (S0 and S1, bits 11 and 10) in the SR.

3.2.6.2 Limiting

In the DSP56300 core, the Data ALU accumulators A and B have eight extension b
Limiting occurs when the extension bits are in use and either A or B is the source be
read over XDB or YDB. The limiters in the DSP56300 core place a shifted and limite
value on XDB or YDB without changing the contents of the A or B registers. Having t
limiters allows two-word operands to be limited independently in the same instructio
cycle. The two data limiters can also be combined to form one 48-bit data limiter for
long-word operands.

If the contents of the selected source accumulator are represented without overflow
destination operand size (that is, signed integer portion of the accumulator is not in 
the data limiter is disabled, and the operand is not modified. If the contents of the sele
source accumulator are not represented without overflow in the destination operand
the data limiter substitutes a limited data value having maximum magnitude (saturat
and having the same sign as the source accumulator contents:

■ $7FFFFF for 24-bit positive numbers

■ $7FFFFF FFFFFF for 48-bit positive numbers

■ $800000 for 24-bit negative numbers

■ $800000 000000 for 48-bit negative numbers

This process is called transfer saturation. The value in the accumulator register is n
shifted or limited and can be reused within the Data ALU. When limiting does occur,
flag is set and latched in the SR.
3-6 DSP56300 Family Manual Motorola
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3.3 Data ALU Arithmetic and Rounding

The following paragraphs describe the Data ALU data representation, rounding mod
and arithmetic methods.

3.3.1 Data Representation

The DSP56300 core uses a fractional data representation for all Data ALU operatio
Figure 2 shows the bit weighting of words, long words, and accumulator operands for
representation. The decimal points are all aligned and are left-justified. For words an
long words, the most negative number that can be represented is –1.0 whose intern
representation is $800000 and $800000000000, respectively. The most positive wo
$7FFFFF or 1 – 2–23, and the most positive long word is $7FFFFFFFFFFF or 1 – 2–47.
These limitations apply to all data stored in memory and to data stored in the Data A
input buffer registers. The extension registers associated with the accumulators allo
word growth so that the most positive number is approximately 256, and the most
negative number is –256. To maintain alignment of the binary point when a word ope
is written to accumulator A or B, the operand is written to the most significant
accumulator register (A1 or B1), and its most significant byte is automatically
sign-extended through the accumulator extension register (A2 or B2). The least signif
accumulator register (A0 or B0) is automatically cleared. When a long-word operand
written to an accumulator, the least significant word of the operand is written to the l
significant accumulator register (seeFigure 3-2).

Figure 3-2. Bit Weighting and Alignment of Operands

2–472–2420–28

2–472–24

–20 2–23

–20

Sign Extension Operand Zero

Data ALU

Word Operand

X1,  X0
Y1,  Y0
A1,  A0
B1,  B0

Long - Word Operand

X1:X0  =  X
Y1:Y0  =  Y

A1:A0  =  A10
B1:B0  =  B10

Accumulator A or B

*

A2, B2 A1, B1 A0, B0
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The number representation for integers is between ± 2 (N – 1); whereas, the fractional
representation is limited to numbers between ± 1. To convert from an integer to a
fractional number, the integer must be multiplied by a scaling factor so the result is alw
between ± 1. The representation of integer and fractional numbers is the same if the
numbers are added or subtracted, but it is different if the numbers are multiplied or
divided. An example of two numbers multiplied together is given inFigure 3.

The key difference is in the alignment of the 2N – 1 bit product. In fractional
multiplication, the 2N – 1 significant product bits are left-aligned, and a zero is filled 
the Least Significant Bit (LSB), to maintain fractional representation. In integer
multiplication, the 2N – 1 significant product bits are right-aligned, and the sign bit sho
be duplicated to maintain integer representation.

Note: Be aware when multiplying integer numbers that since the DSP56300 core
incorporates a fractional array multiplier, it always aligns the 2N – 1 significant
product bits to the left.

3.3.2 Rounding Modes

The DSP56300 core Data ALU rounds the accumulator register to single precision i
requested in the instruction. The upper portion of the accumulator is rounded accordi
the contents of the lower portion of the accumulator. The boundary between the low
portion and the upper portion is determined by the scaling mode bits S0 and S1 in th
Status Register (SR). Two types of rounding are implemented: convergent rounding
twos-complement rounding. The type of rounding is selected by the Rounding Mode
(RM) bit in the EMR portion of the SR.

3.3.2.1 Convergent Rounding

Convergent rounding (also called round-to-nearest even number) is the default roun
mode. The traditional rounding method rounds up any value greater than one-half a

Figure 3-3. Integer/Fractional Multiplication

S S

Signed Multiplier

S

2N – 1 Product

Sign Extension

2N Bits

S S

Signed Multiplier

0

2N – 1 Product

Zero Fill

2N Bits

Integer Fractional

Signed Multiplication N × N → 2N − 1 Bits

S MSP LSP • S• MSP LSP
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rounds down any value less than one-half. The question arises as to which way one
should be rounded. If it is always rounded one way, the results are eventually biase
that direction. Convergent rounding solves the problem by rounding down if the numb
even (LSB = 0) and rounding up if the number is odd (LSB = 1).Figure 3-4 shows the
four cases for rounding a number in the A1 (or B1) register. If scaling is set in the SR
rounding position is updated to reflect the alignment of the result when it is put on the
bus. However, the contents of the register are not scaled.

Figure 3-4. Convergent Rounding (No Scaling)

Case I: If A0 < $800000 (1/2), then Round Down (Add Nothing)

Before Rounding After Rounding

Case II: If A0 > $800000 (1/2), then Round Up (Add 1 to A1)

Case III: If A0 = $800000 (1/2), and the LSB of A1 = 0, then Round Down (Add Nothing)

Case IV: If A0 = $800000 (1/2), and the LSB = 1, then Round Up (Add 1 to A1)

*A0 is always clear; performed during RND, MPYR, MACR.

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 X X X . . . . X X X
55 48 47 24 23 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 1 1 0 X X . . . . X X X
55 48 47 24 23 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 0 0 0 . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 0 0 0 . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 1 0 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*
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3.3.2.2 Twos Complement Rounding

When twos complement rounding is selected by setting the Rounding Mode (RM) b
the SR, all values greater than or equal to one-half are rounded up, and all values les
one-half are rounded down. Therefore, a small positive bias is introduced.Figure 3-5
shows the four cases for rounding a number in the A1 (or B1) register. If scaling is s
the SR, the rounding position is updated to reflect the alignment of the result when it is
on the data bus. However, the contents of the register are not scaled.

Figure 3-5. Twos Complement Rounding (No Scaling)

Case I: If A0 < $800000 (1/2), then Round Down (Add Nothing)

Before Rounding After Rounding

Case II: If A0 > $800000 (1/2), then Round Up (Add 1 to A1)

Case III: If A0 = $800000 (1/2), and the LSB of A1 = 0, then Round Up (Add 1 to A1)

Case IV: If A0 = $800000 (1/2), and the LSB of A1 = 1, then Round Up (Add 1 to A1)

*A0 is always clear; performed during RND, MPYR, MACR.

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 X X X . . . . X X X
55 48 47 24 23 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 1 1 0 X X . . . . X X X
55 48 47 24 23 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 0 0 0 . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 0 0 0 . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 1 0 0 0 0 . . . . . . . . . 0 0 0
55 48 47 24 23 0

A2 A1 A0*
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3.3.3 Arithmetic Saturation Mode

Setting the Arithmetic Saturation Mode (SM) bit in the SR limits the arithmetic unit’s
result to 48 bits (MSP and LSP). The highest dynamic range of the machine is then lim
to 48 bits. The purpose of the SM bit is to provide a saturation mode for algorithms tha
not recognize or cannot take advantage of the extension accumulator. The arithmet
saturation logic operates by checking 3 bits of the 56-bit result after rounding: two b
the extension byte (EXT[7] and EXT[0]) and one bit on the MSP (MSP[23]). The res
obtained in the accumulator when SM = 1 is shown inTable 3-1.

The two saturation constants $007FFFFFFFFFFF and $FF800000000000 are not af
by the Scaling mode. Similarly, rounding of the saturation constant during execution
MPYR, MACR, and RND instructions is independent of the scaling mode:
$007FFFFFFFFFFF is rounded to $007FFFFF000000, and $FF800000000000 is rou
to $FF800000000000.

In Arithmetic Saturation mode, the Overflow bit (V bit) in the SR is set if the Data AL
result is not representable in the 48-bit accumulator (i.e., an arithmetic saturation ha
occurred). This also implies that the Limiting bit (L bit) in the SR is set when an
arithmetic saturation occurs.

Note: The Arithmetic Saturation mode isalways disabled during execution of the
following instructions: TFR, Tcc, DMACsu, DMACuu, MACsu, MACuu,
MPYsu, MPYuu, CMPU, and all BFU operations. If the result of these
instructions should be saturated, a MOVE A,A (or B,B) instruction must be
added after the original instruction if no scaling is set. However, the “V” bit
the SR is never set by the arithmetic saturation of the accumulator during
execution of a MOVE A,A (or B,B) instruction. Only the “L” bit is set.

Table 3-1 Actions of the Arithmetic Saturation Mode (SM = 1)

EXT[7] EXT[0] MSP[23] Result in Accumulator

0 0 0 Unchanged

0 0 1 $00 7FFFFF FFFFFF

0 1 0 $00 7FFFFF FFFFFF

0 1 1 $00 7FFFFF FFFFFF

1 0 0 $FF 800000 000000

1 0 1 $FF 800000 000000

1 1 0 $FF 800000 000000

1 1 1 Unchanged
Motorola Data Arithmetic Logic Unit 3-11
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3.3.4 Multiprecision Arithmetic Support

A set of Data ALU operations facilitate multiprecision multiplications. When these
instructions are used, the multiplier accepts some combinations of signed
twos-complement format and unsigned format.Table 3-2 shows these instructions.

Figure 3-6 shows how the DMAC instruction is implemented inside the Data ALU.

Figure 3-7 illustrates the use of these instructions for a double-precision multiplicatio
The signed× signed operation multiplies or multiply-accumulates the two upper signe
portions of two signed double-precision numbers. The unsigned× signed operation
multiplies or multiply-accumulates the upper signed portion of one double-precision
number with the lower unsigned portion of the other double-precision number. The
unsigned× unsigned operation multiplies or multiply-accumulates the lower unsigned
portion of one double-precision number with the lower unsigned portion of the other
double-precision number.

Table 3-2 Acceptable Signed and Unsigned Twos-Complement Multiplication

Instruction Description

MPY/MAC su Multiplication and multiply-accumulate with signed times unsigned operands

MPY/MAC uu Multiplication and multiply-accumulate with unsigned times unsigned operands

DMACss Multiplication with signed times signed operands and 24-bit arithmetic right shift of the
accumulator before accumulation

DMACsu Multiplication with signed times unsigned operands and 24-bit arithmetic right shift of
the accumulator before accumulation

DMACuu Multiplication with unsigned times unsigned operands and 24-bit arithmetic right shift of
the accumulator before accumulation

Figure 3-6. DMAC Implementation

Multiply

+

Accumulate

Accumulator Shifter

>> 24
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Figure 3-7. Double-Precision Multiplication Using DMAC

3.3.4.1 Double-Precision Multiply Mode

To support existing DSP56000 code, double-precision multiply operations can also 
performed within a dedicated “Double-Precision Multiply” mode using a double-precis
algorithm with four multiply operations. Select the Double-Precision Multiply mode b
setting Bit 14 (DM) of the SR. The mode is disabled by clearing the same DM bit.

The double-precision multiply algorithm is shown inFigure 3-8. The ORI instruction sets
the DM mode bit, but due to the instruction execution pipeline the Data ALU enters 
Double-precision Multiply mode after only one cycle. The ANDI instruction clears the
DM mode bit in the MR, but due to the instruction execution pipeline the Data ALU
leaves the mode after one cycle. To allow for the pipeline delay, do not follow the AN
instruction immediately with a restricted Data ALU instruction.

In Double-Precision Multiply mode, the behavior of the four specific operations listed
the double-precision algorithm is modified. Therefore, in Double-Precision Multiply
mode, do not use these operations with the specified register combinations for any
purpose other than the double-precision multiply algorithm. Also, in this mode, do not
any other Data ALU operations (or the four listed operations with other register
combinations).

48 bits

96 bits

B0B1A0A1A2

X0X1

Y1 Y0

XLXH

YH YL

×

=

S Ext

+

+

+

XL × YL

XH × YL

YH × XL

XH × YH

Signed × Unsigned

Signed × Signed

Unsigned × Unsigned
x0,y0,a
a0,b0

x1,y0,a

y1,x0,a
a0,b1

x1,y1,a

mpyuu
move

dmacsu

macsu
move

dmacss
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Note: Since the double-precision multiply algorithm uses the Y0 register for all
stages, do not change Y0 when running the double-precision multiply
algorithm. If the Data ALU is required by an interrupt service routine, save
contents of Y0 with the contents of the other Data ALU registers before
processing the interrupt routine, and restore them before leaving the interr
routine.

3.3.5 Block Floating-Point FFT Support

The Block Floating Point FFT operation requires the early detection of data growth
between FFT butterfly passes. If data growth is detected, suitable down-scaling mus
applied to ensure that no overflow occurs during the next butterfly calculation pass. 
total scaling applied is the block exponent of the FFT output. The Block Floating Po
FFT algorithm is described in the Motorola application note APR4/D, Implementation of
Fast Fourier Transforms on Motorola’s DSP56000/DSP56001 and DSP96002 Digita
Signal Processors.

Data growth detection is implemented as a status bit in the SR. The FFT scaling bit 
Bit 7 of the SR, is set when a result moves from accumulator A or B to the XDB or Y
Bus (during an accumulator to memory or accumulator to register move) and remain
until explicitly cleared (i.e., the “S” bit is a “sticky” bit).

Figure 3-8. Double-Precision Algorithm

Y:X:

R5MSP2

LSP2

MSP1

LSP1

R1

DP2

DP0

DP3

DP1
R0R0

DP3_DP2_DP1_DP0 = MSP1_LSP1 x MSP2_LSP2

ori #$40,mr ;enter mode
move x:(r1)+,x0 y:(r5)+,y0 ;load operands
mpy y0,x0,a x:(r1)+,x1 y:(r5)+,y1 ;LSP*LSP->a
mac x1,y0,a a0,y:(r0) ;shifted(a)+

; MSP*LSP->a
mac x0,y1,a ;a+LSP*MSP->a
mac y1,x1,a a0,x:(r0)+ ;shifted(a)+

; MSP*MSP->a
move a,l:(r0)+
andi #$bf,mr ;exit mode
; non-restricted Data ALU operation ;pipeline delay
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3.4 Data ALU Programming Model

The Data ALU features 24-bit input/output data registers that can be concatenated t
accommodate 48-bit data and two 56-bit accumulators, which are segmented into th
24-bit pieces that can be transferred over the buses.Figure 3-9 illustrates how the
registers in the programming model are grouped.

Figure 3-9. Data ALU Core Programming Model

3.5 Sixteen-Bit Arithmetic Mode

Setting the SA bit in the SR enables the Sixteen-bit Arithmetic mode of operation. In
mode, the 16-bit data is right-aligned in the 24-bit memory word, that is, in the 16 LSB
the 24-bit word. You can use 16-bit wide data memories by either leaving the eight M
unconnected or by tying these bits to GND.

In the Sixteen-bit Arithmetic mode of operation, the source operands can be 16-bit, 32
or 40-bit. The numerical results have a 40-bit accuracy. These 40 bits consist of a 1
LSP, a 16-bit MSP, and an 8-bit EXT.Figure 3-10shows the bit positions in the memory
and Data ALU registers in Sixteen-bit Arithmetic mode.

Data ALU

Data ALU

* A2 A1 A0

Input Registers

Accumulator Registers

*Read as sign extension bits, written as either 0 or 1.

X Y

A B

X1 X0

* B2 B1 B0

Y1 Y0

47

23

0

00 23

47

23

0

00 23

55

23

0

00 230723

55

23

0

00 230723
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3.5.1 Moves in Sixteen-Bit Arithmetic Mode

In Sixteen-bit Arithmetic mode, the Data ALU registers are still read or written as 24
48-bit operations over the XDB and the YDB. No 16- or 32-bit moves are supported.
mapping of the 16-bit data to the 24-bit buses is described in the following paragrap
Table 3-3 shows the result of moving data into registers or accumulators.Table 3-4
shows the result of moving data from registers or accumulators.

3.5.1.1 Moves into Registers or Accumulators

When XDB or YDB are moved into a full Data ALU accumulator (A or B), the 16 LSB
of the bus are placed in bits 32–47 of the accumulator (16 MSBs of A1 or B1). Bits 8
of the accumulator (16 MSBs of A0 or B0) are cleared and the EXT of the accumula
(A2 or B2) is loaded with the sign extension. When XDB and YDB (48 bits) are mov
into a full Data ALU accumulator (A or B), the 16 LSBs from XDB are placed into bit
32–47 of the accumulator (16 MSBs of A1 or B1). The 16 LSBs from YDB are place

Figure 3-10. Sixteen-Bit Arithmetic Mode Data Organization

Data ALU

Data ALU

* A2 A1 A0

Input Registers

Accumulator Registers

* Read as sign extension bits; written as either 0 or 1.

X Y

A B

X1 X0

Undefined

* B2 B1 B0

Y1 Y0

Memory Locations

Memory Word Memory Long Word
and Non-Data-ALU Registers

Notes: 1. When switching to and from Sixteen-bit Arithmetic mode, no arithmetic instruction or a MOVE
instruction should be performed for two instruction cycles. The programmer must insert two NOP
instructions. There is no automatic stall insertion for this change.

2. Be cautious about exchanging data between Sixteen-bit Arithmetic mode and 24-bit arithmetic mode
via write-read operations on Data ALU registers and accumulators. Since the write operations in
Sixteen-bit Arithmetic mode corrupt the information in the least significant bytes of the registers or
accumulators, do not use these registers or accumulators for 24-bit data without some processing.

Data Data Data
23 15 0 23 15 0 23 15 0

47 0

23 7 0 23 7 0

47 0

23 7 0 23 7 0

55 0

23 7 0 23 7 0 23 7 0

55 0

23 7 0 23 7 0 23 7 0
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into bits 8–23 of the accumulator (16 MSBs of A0 or B0). The EXT of the accumulat
(A2 or B2) is loaded with the sign extension.

When XDB or YDB is moved into a register (X0, X1, Y0 or Y1) or partial accumulato
(A0, A1, B0 or B1), the 16 LSBs of the bus are loaded into the 16 MSBs of the destina
register. No other portion of the accumulator is affected.

When XDB or YDB is moved into the accumulator extension register (A2 or B2), the
LSBs of the bus are loaded into the 8 LSBs of the destination register and the 16 MSB
the bus are not used. The remaining parts of the accumulator are not affected.

When XDB and YDB are moved into a 48-bit register (X or Y) or partial accumulator
(A10 or B10), the 16 LSBs of XDB bus are loaded into the 16 MSBs of the MSP (X1, Y
A1 or B1) and the 16 LSBs of YDB bus are loaded into the 16 MSBs of the LSP (X0, Y
A0 or B0). The EXT part of the accumulator (A2 or B2) is not affected.

3.5.1.2 Moves from Registers or Accumulators

When a partial accumulator (A0, A1, B0 or B1) is moved to the XDB or YDB, the 16
MSBs of the source are transferred to the 16 LSBs of the bus with eight zeros in the
MSBs. No scaling or limiting is performed. When the source is the accumulator exten
register (A2 or B2), it occupies the 8 LSBs of the bus while the next 16 bits are the s
extension of Bit 7.

Table 3-3 Moves into Registers or Accumulators

Data Source Destination Result

XDB or YDB Full Data ALU
accumulator (A or
B)

• 16 LSBs of bus into bits 32-47 of accumulator
• Accumulator bits 8-23 cleared
• EXT of accumulator (A2 or B2) loaded with sign extension

XDB and YDB Full Data ALU
accumulator (A or
B)

• 16 LSBs of XDB into bits 32-47 of accumulator
• 16 LSBs of YDB into bits 8-23 of the accumulator
• EXT of accumulator (A2 or B2) loaded with sign extension

XDB or YDB Register (X0, X1,
Y0, or Y1) or partial
accumulator (A0,
A1, B0, or B1)

• 16 LSBs of bus into 16 MSBs of destination register
• Remaining parts of accumulator not affected

XDB or YDB Accumulator
extension register
(A2 or B2)

• 8 LSBs of bus into 8 LSBs of destination register
• 16 MSBs of bus not used
• Remaining parts of accumulator not affected

XDB and YDB 48-bit register (X or
Y) or partial
accumulator (A10 or
B10)

• 16 LSBs of XDB into 16 MSBs of MSP
• 16 LSBs of YDB into 16 MSBs of LSP
• EXT of accumulator (A2 or B2) not affected
Motorola Data Arithmetic Logic Unit 3-17
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When a partial accumulator (A10 or B10) is moved to XDB and YDB, the 16 MSBs of
MSP of the source (A1 or B1) are transferred to the 16 LSBs of XDB with eight zero
the MSBs, while the 16 MSBs of the LSP of the source (A0 or B0) are transferred to
16 LSBs of YDB with eight zeros in the MSBs. No scaling or limiting is performed.

When a full Data ALU accumulator (A or B) is moved to XDB or YDB, scaling and
limiting is performed, and then the 16-bit scaled and limited word is placed on the 16
LSBs of the bus and the sign extension is placed in the eight MSBs on the bus.

When a full Data ALU accumulator (A or B) is moved to XDB and YDB, scaling and
limiting is performed, and then the 16 MSBs of the 32-bit scaled and limited double w
are placed on XDB 16 LSBs, and the sign extension is placed in the eight MSBs on
bus. The 16 LSBs of the 32-bit scaled and limited double word are placed on the 16 L
of the YDB with eight zeros on the eight MSBs of the bus.

When a register (X0, X1, Y0 or Y1) is moved to XDB or YDB, the 16 MSBs of the sour
are transferred to the 16 LSBs of the bus with eight zeros in the MSBs.

When a 48-bit register (X or Y) is moved to XDB and YDB, the 16 MSBs of the high
register (X1 or Y1) are placed on the 16 LSBs of the XDB, and eight zeroes are place
the eight MSBs of the bus. The 16 LSBs of the low register (X0 or Y0) are placed on
16 LSBs of the YDB with eight zeros on the eight MSBs of the bus.

Note: When a read operation of a Data ALU register (X, Y, X0, X1, Y0 or Y1)
immediately follows a write operation to the same register, the value place
the eight MSBs of the XDB or YDB is undefined.

Table 3-4 Moves from Registers or Accumulators

Data Source Destination Result

Partial accumulator
(A0, A1, B0, or B1)

XDB or YDB ■ 16 MSBs of source into 16 LSBs of bus with eight zeros in
MSBs

■ No scaling or limiting

Accumulator
extension register
(A2 or B2)

XDB or YDB ■ Source occupies 8 LSBs of bus
■ Next 16 bits are sign extension of Bit 7

Partial accumulator
(A10 or B10)

XDB and YDB ■ 16 MSB of MSP of source (A1 or B1) transferred to 16 LSBs
of XDB with eight zeros in MSBs

■ 16 MSBs of the LSP of source (A0 or B0) transferred to 16
LSBs of YDB with eight zeros in the MSBs.

■ No scaling or limiting

Full Data ALU
accumulator (A or
B)

XDB or YDB ■ Scaling and limiting performed
■ 16-bit scaled word placed on 16 LSBs of bus
■ Sign extension placed in eight MSBs of bus
3-18 DSP56300 Family Manual Motorola
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3.5.1.3 Short Immediate moves

When an Immediate Short Data MOVE is performed in Sixteen-bit Arithmetic mode 
the destination register is A0, A1, B0, or B1, the 8-bit immediate short operand is
interpreted as an unsigned integer and is therefore stored in Bits 15–8 of the registe
(which correspond to the eight LSBs of a 16-bit number). If the destination register i
or B2, the 8-bit immediate short operand is stored in Bits 7–0 of the register.

When the destination register is A, B, X0, X1, Y0, or Y1, the 8-bit immediate short
operand is interpreted as a signed fraction and is stored in bits 47–40 of the accumula
bits 23–16 of a register (which correspond to the eight MSBs of a 16-bit number).

3.5.1.4 Scaling and Limiting

If scaling is specified, the data shifter virtually concatenates the 16-bit LSP to the 16
MSP to provide a numerically correct shift.

During the Sixteen-bit Arithmetic mode of operation, the limiting is affected as descri
below:

■ The maximum positive value is $007FFF ($007FFF00FFFF for double precisi

■ The maximum negative value is $008000 ($008000000000 for double precisi

3.5.2 Sixteen-bit Arithmetic

When an operand is read from a Data ALU register or accumulator to the arithmetic
the 8 LSBs of the 24-bit word are ignored (that is, read as zeros). The arithmetic un
forces these bits to zero when generating a result.

Full Data ALU
accumulator (A or
B)

XDB and YDB ■ Scaling and limiting performed
■ 16 MSBs of 32-bit scaled and limited double word placed on

XDB 16 LSBs
■ Sign extension placed in eight MSBs on bus
■ 16 LSBs of 32-bit scaled and limited double word placed on

16 LSBs of YDB with eight zeros on the eight MSBs of bus

Register (X0, X1, Y0
or Y1)

XDB or YDB ■ 16 MSBs transferred to 16 LSBs of bus with eight zeros in
MSBs

48-bit register (X or
Y)

XDB and YDB ■ 16 MSBs of high register (X1 or Y1) placed on 16 LSBs of
XDB with eight zeros on eight MSBs of bus

■ 16 LSBs of low register (X0 or Y0) placed on 16 LSBs of YDB
with eight zeros on eight MSBs of bus

Table 3-4 Moves from Registers or Accumulators  (Continued)

Data Source Destination Result
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The arithmetic unit virtually concatenates the 16-bit LSP with the 16-bit MSP to form
continuous number. Therefore, all arithmetic operations, including shifts, are numeric
correct. The execution of Data ALU instructions in Sixteen-bit Arithmetic mode is no
affected, except for the following:

■ The operand and result widths are 16/32/40 instead of 24/48/56.

■ The rounding, if specified by the operation, is performed on the Most Significa
Bit of the 16-bit Least Significant Portion (LSP) of the result, that is on the bit
corresponding to bit 23 of A0/B0 (the Scaling mode affects this position
accordingly). See the RND instruction inChapter 13, "Instruction Set," for
details.

■ The arithmetic saturation detection is unchanged, but the saturated values cha
$007FFF00FFFF00 and $FF800000000000.

■ In ADC/SBC instructions, the Carry bit C is added/subtracted to the LSB of th
16-bit LSP.

■ Logic operations affect only the 16-bit wide word.

■ Rotation in rotate instructions is performed on a 16-bit wide word.

■ The possible normalization range changes, thus affecting the CLB instruction

■ The DMAC instruction performs a 16-bit arithmetic right shift of the accumulat
before accumulation.

■ The double-precision multiplication algorithm is not supported, even if the
Double-precision Multiply mode bit is set.

■ The bit parsing instructions (MERGE, EXTRACT, EXTRACTU, and INSERT)
are modified by the Sixteen-bit Arithmetic mode to perform on the appropriate
positions of the 16-bit data. For the INSERT instruction, you must update the of
by adding a bias value of 16. Refer toChapter 13, "Instruction Set,"for details on
specific instructions.

■ In the read-modify-write instructions (BCHG, BCLR, BSET and BTST) and in t
Jump/Branch on bit instructions (BRCLR, BRSET, BSCLR, BSSET, JCLR, JSE
JSCLR, and JSSET), the bit numbering in Sixteen-bit Arithmetic mode is relat
to 16-bit wide words (that is, Bit 0 is the LSB and Bit 15 is the MSB). Do not u
bit numbers greater than 15.

3.6 Pipeline Conflicts

No pipeline dependencies exist when the result of the Data ALU is used as a source
operand for the immediately following Data ALU instruction. However, Data ALU
operations can produce pipeline conflicts as described in the following paragraphs.
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3.6.1 Arithmetic Stall

Since every Data ALU instruction completes in two clock cycles, an interlock conditi
occurs during an attempt to read an accumulator (or parts of an accumulator) if the
preceding instruction is a Data ALU instruction that specifies the same accumulator a
destination. This interlock condition, arithmetic stall, is detected in hardware, and an
cycle (no op) is inserted, thereby guaranteeing the correctness of the result. You ca
optimize code by inserting a useful instruction before the read instruction.Figure 11
describes cases in which the pipelined nature of the Data ALU generates an arithme
stall.

3.6.2 Status Stall

A second interlock condition, namedstatus stall, occurs during an attempt to read the
Status Register (SR) if the preceding or the second preceding instruction is a Data A
instruction or an accumulator read that updates the Scale (S) and Limit (L) condition
codes in the SR. The hardware inserts two or one idle cycles (no op) accordingly, the
guaranteeing the correctness of the result.

Figure 3-11. Pipeline Conflicts—Arithmetic Stall

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for move:

mac x0,y0,a ;data ALU operation

move a1,x:(r0)+ ;one clock delay is added to

;allow mac to complete

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for bset:

tfr a,b ;data ALU operation

bset #3,b ;one clock delay is added to

;allow tfr to complete

following example illustrates a way to find useful usage of

;the pipeline delay clock:

mac x0,y0,a ;data ALU operation

mac x1,y1,b ;insert a useful instruction

move a,x:(r0)+ ;read accumulator A without

;any time penalty
Motorola Data Arithmetic Logic Unit 3-21
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Note: Read Status Register implies a MOVE from SR. Bit manipulation instructio
(for example, BSET) act on an SR bit. Program control instructions (for
example, BSCLR) test for a bit in the SR.

Figure 3-12 describes the cases in which the pipelined nature of the Data ALU gene
a status stall.

3.6.2.1 Transfer Stall

A third interlock condition, transfer stall, occurs when the source Data ALU accumul
of the move portion of an instruction is identical to the destination Data ALU accumula
of the move portion of the preceding instruction. Identical accumulators for this matte
any combination of portions (including the full width) of the same Data ALU accumula
(for example, A1 and A, A2 and A0, etc.). The hardware inserts one idle cycle (no o
thereby guaranteeing the correctness of the result.

Figure 3-12. Pipeline Conflicts—Status Stall

;following example illustrates a two-clock pipeline delay when

;trying to read the status register as source for move:

mac x0,y0,a ;data ALU operation

move sr,x:(r0)+ ;TWO clock delay is added to

;allow mac to update SR

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for bit

;manipulation instruction:

move a,x:(r0)+ ;read full accumulator

nop

btst #5,sr ;ONE clock delay is added (and

;not two) due to the previous nop

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for program control

;instruction:

insert x0,y1,a ;data ALU operation

bsclr #5,sr,$ff00ff ;ONE clock delay is added (and not

;two) since bsclr is a two word

;instruction
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Note: A special case of interlock occurs when a 24-bit logic instruction is used an
write operation occurs concurrently to the EXT or the LSP of the same
accumulator. The hardware inserts one idle cycle (no op), thereby guarante
the correctness of the result. An example of this case is:

or x1,a y1,a0

Figure 3-13. Pipeline Conflicts—Transfer Stall

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator that was written by the preceding

;instruction:

move y:(r1)+,a1 ;write into partial accumulator

move a2,x:(r0)+ ;one clock delay is added

;following example illustrates a way to find useful usage of

;the pipeline delay clock:

move y:(r1)+,a1 ;write into partial accumulator

mac x1,y1,b ;insert a useful instruction

move a,x:(r0)+ ;no time penalty for this read
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Chapter 4
Address Generation Unit
The Address Generation Unit (AGU) is one of three execution units on the DSP5630
core. The AGU performs the effective address calculations (using integer arithmetic
necessary to address data operands in memory and contains the registers used to g
the addresses. To minimize address-generation overhead, the AGU operates in par
with other chip resources. It implements four types of arithmetic:

■ Linear

■ Modulo

■ Multiple wrap-around modulo

■ Reverse-carry

4.1 AGU Architecture

The AGU is divided into halves, each with its own Address Arithmetic Logic Unit
(Address ALU). Each Address ALU has four sets of register triplets, and each regist
triplet is composed of an address register, an offset register, and a modifier register
two Address ALUs are identical. Each contains a 24-bit full adder—an offset
adder—which can perform the following additions/subtractions on an address regist

■ Plus one

■ Minus one

■ Plus the contents of the respective offset register N

■ Minus the contents of the respective offset register N

A second full adder—a modulo adder—adds the summed result of the first full adde
modulo value, M or minus M, where M is stored in the respective modifier register. A
third full adder—a reverse-carry adder—can perform the following additions, with th
carry propagating in the reverse direction (that is, from the Most Significant Bit (MSB
the Least Significant Bit (LSB):

■ Plus one

■ Minus one
Motorola DSP56300 Family Manual 4-1
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■ The offset N (stored in the respective offset register)

■ Minus N to the selected address register

The offset adder and the reverse-carry adder operate in parallel and share common i
The only difference between them is that the carry propagates in opposite directions
logic determines which of the three summed results of the full adders is output.Figure 4-1
shows a block diagram of the AGU.

Each Address ALU can update one address register from its respective address reg
file during one instruction cycle. The contents of the associated modifier register spe
the type of arithmetic to be used in the address register update calculation. The mod
value is decoded in the Address ALU.

The two Address ALUs can generate up to two addresses every instruction cycle:

■ One for the PAB, or

■ One for the XAB, or

■ One for the YAB, or

■ One for the XAB and one for the YAB

The AGU can directly address 16,777,216 locations on each of the XAB, YAB, and P
Using a register triplet to address each operand, the two independent ALUs can work
the two data memories to feed two operands to the Data ALU in a single cycle.

Figure 4-1 AGU Block Diagram
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The registers are:

■ Address Registers R0 – R3 on the Low Address ALU and R4 – R7 on the Hig
Address ALU

■ Offset Registers N0 – N3 on the Low Address ALU and N4 – N7 on the High
Address ALU

■ Modifier Registers M0 – M3 on the Low Address ALU and M4 – M7 on the Hi
Address ALU

These registers are referred to as Rn for any address register, Nn for any offset reg
and Mn for any modifier register. The Rn, Nn, and Mn registers are register triplets—
is, the offset and modulo registers of one triplet can be used only with an address re
that belongs to the same triplet. For example, only N2 and M2 can be used only with
The eight triplets are as follows:

■ Low Address ALU register triplets

— R0:N0:M0

— R1:N1:M1

— R2:N2:M2

— R3:N3:M3

■ High Address ALU register triplets

— R4:N4:M4

— R5:N5:M5

— R6:N6:M6

— R7:N7:M7

The Global Data Bus (GDB) can read from or write to each register. The address ou
multiplexers select the address for the XAB, YAB, and PAB, where the address origin
from the R0 — R3 or R4 — R7 registers.

4.2 Sixteen-bit Compatibility Mode

When the Sixteen-bit Compatibility (SC) mode bit is set in the Status Register (SR)1,
AGU operations are modified in the following ways:

1. For details on the Status Register (SR), seeSection 5.4.1.2, "Status Register (SR)."
Motorola Address Generation Unit 4-3
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■ MOVE operations to/from any of the AGU registers (R0 – R7, N0 – N7 and M
M7) clear the eight MSBs of the destination.

■ The eight MSBs of any AGU address calculation result are cleared.

■ The sign bit of the selected N register is Bit 15 instead of Bit 23.

■ The eight MSBs of the address are ignored in the calculations of memory reg

In Sixteen-bit Compatibility (SC) mode, proper memory access is not guaranteed fo
address register in which the eight MSBs are not all zeros. If SC mode is invoked
dynamically, take care to ensure that the eight MSBs of an address register used to a
memory are cleared, since the switch to SC mode does not automatically clear thes
Due to pipelining, a change in the SC bit takes effect only after three additional instruc
cycles. Therefore, to ensure proper operation, insert three NOP instructions after th
instruction that sets the SC bit.

4.3 Programming Model

The programmer views the AGU as eight sets of three registers, as shown inFigure 4-2.
These registers can be used as temporary data registers and indirect memory point
Automatic updating is available when address register indirect addressing is in use.
address registers can be programmed for linear addressing, modulo addressing (reg
multiple wrap-around), and bit-reverse addressing.

4.3.1 Address Register Files

The eight 24-bit address registers R0 – R7 can contain addresses or general-purpos
The 24-bit address in a selected address register is used in calculating the effective a
of an operand. During parallel X and Y data memory moves, the address registers mu
programmed as two separate files, R0 – R3 and R4 – R7. The contents of an addre
register can point directly to data, or they can be offset.

Figure 4-2 AGU Programming Model
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In addition, an address register (Rn) can be pre-updated or post-updated according
addressing mode selected. If an address register (Rn) is updated, the correspondin
modifier register (Mn) specifies the type of update arithmetic. Offset registers (Nn) a
used for the update-by-offset addressing modes.

The address register modification is performed by one of the two modulo arithmetic u
Most addressing modes modify the selected address register in a read-modify-write
fashion. The address register is read, the associated modulo arithmetic unit modifie
contents, and the register is written with the appropriate output of the modulo arithm
unit. The contents of the offset and modifier registers control the form of address reg
modification performed by the modulo arithmetic unit. These registers are discussed
Section 4.3.3. andSection 4.3.4.

4.3.2 Stack Extension Pointer

The hardware stack is an area in internal memory that provides temporary storage d
program execution. The stack exists in either the X data memory or the Y data memo
selected by the XYS bit in the Operating Mode Register (OMR) (refer toChapter 5,
Program Control Unitfor a detailed description of the OMR). The stack uses push
operations to add data to the stack and pull operations to retrieve data from the stac

The contents of the 24-bit stack Extension Pointer (EP) register point to the stack
extension whenever the stack extension is enabled and move operations to or from
on-chip hardware stack are needed. The EP register points to the next available locat
which a push can be made (that is, it points just past the last item on the stack). The
register is a read/write register and is referenced implicitly (for example, by the DO, J
or RTI instructions) or directly (for example, by the MOVEC instruction). The EP regis
is not initialized during hardware reset, and must be set (using a MOVEC instruction
prior to enabling the stack extension. For more information on the operation of the s
extension, seeChapter 5, Program Control Unit.

4.3.3 Offset Register Files

The eight 24-bit offset registers, N[0 – 7], contain offset values to increment or decrem
address registers in address register update calculations. For example, the contents
offset register are used to step through a table at some rate (for example, five location
step for waveform generation), or the contents can specify the offset into a table or 
base of the table for indexed addressing. Each address register has its own associa
offset register. Each offset register can also be used for 24-bit general-purpose storag
is not required as an address register offset.
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4.3.4  Modifier Register Files

The eight 24-bit modifier registers, M0–M7, define the type of address arithmetic
performed for addressing mode calculations. The Address ALU supports linear, mod
and reverse-carry arithmetic types for all address register indirect addressing mode
modulo arithmetic, the contents of Mn also specify the modulus. Each address registe
its own associated modifier register. Each modifier register is set to $FFFFFF on
processor reset, which specifies linear arithmetic as the default type for address reg
update calculations. Each modifier register can also be used for 24-bit general purp
storage if it is not required as an address register modifier.

4.4  Addressing Modes

As listed inTable 4-5, the DSP56300 family core provides four different addressing
modes:

■ Register Direct

■ Address Register Indirect

■ PC-relative

■ Special

Table 4-5 Addressing Modes Summary

Addressing Modes
Uses Mn
Modifier

Operand Reference Assembler
SyntaxS C D A P X Y L XY

Register Direct

Data or Control Register No √ √
Address Register Rn No √

Address Modifier Register Mn No √
Address Offset Register Nn No √

Address Register Indirect

No Update No √ √ √ √ √ (Rn)
Post-increment by 1 Yes √ √ √ √ √ (Rn) +
Post-decrement by 1 Yes √ √ √ √ √ (Rn) –

Post-increment by Offset Nn Yes √ √ √ √ √ (Rn) + Nn
Post-decrement by Offset Nn Yes √ √ √ √ (Rn) – Nn

Indexed by Offset Nn Yes √ √ √ √ (Rn + Nn)
Pre-decrement by 1 Yes √ √ √ √ – (Rn)

Short/Long Displacement Yes √ √ √ (Rn + displ)

PC-relative

Short/Long Displacement
PC-relative

No √ (PC + displ)

Address Register No √ (PC + Rn)
4-6 DSP56300 Family Manual Motorola
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4.4.1 Register Direct Modes

The Register Direct addressing modes specify that the operand is in one or more of th
Data ALU registers, 24 address registers, or seven control registers.

■ Data or Control Register Direct: The operand is in one, two, or three Data ALU
register(s), as specified in a portion of the data bus movement field in the
instruction. This addressing mode also specifies a control register operand fo
special instructions. This reference is classified as a register reference.

■ Address Register Direct: The operand is in one of the 24 address registers spe
by an effective address in the instruction. This reference is classified as a reg
reference.

4.4.2 Address Register Indirect Modes

The Address Register Indirect modes specify that the address register points to a m
location. The term “indirect” signifies that the register contents are not the operand i
but rather the operand address. These addressing modes specify that an operand is
memory and give the effective address of that operand. In several of the following
calculations, the type of arithmetic used to calculate the address is determined by th
register.

■ No Update (Rn)—The operand address is in the address register. The conten
the address register are unchanged by executing the instruction.

Example: MOVE x:(Rn),x0

Special

Short/Long Immediate Data No √
Absolute Address No √ √ √ √

Absolute Short Address No √ √ √
Short Jump Address No √
I/O Short Address No √ √

Implicit No √ √ √
Note: Use this key to the Operand Reference columns:

S = System Stack Reference X = X Memory reference
C = Program Control Unit Register Reference Y = Y Memory Reference
D = Data ALU Register Reference L = L Memory reference
A = Address ALU Register Reference XY = XY Memory Reference
P = Program Memory Reference

Table 4-5 Addressing Modes Summary  (Continued)

Addressing Modes
Uses Mn
Modifier

Operand Reference Assembler
SyntaxS C D A P X Y L XY
Motorola Address Generation Unit 4-7
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■ Post-Increment By One (Rn) + —The operand address is in the address regis
After the operand address is used, it is incremented by one and stored in the 
address register. The Nn register is ignored.

Example: MOVE x:(Rn)+,x0

■  Post-Decrement By One (Rn) – —The operand address is in the address reg
After the operand address is used, it is decremented by one and stored in the
address register. The Nn register is ignored.

Example: MOVE x:(Rn)-,x0

■ Post-Increment By Offset Nn (Rn) + Nn—The operand address is in the addre
register. After the operand address is used, it is incremented by the contents 
Nn register and stored in the same address register. The contents of the Nn re
are unchanged.

Example: MOVE x:(Rn)+Nn,x0

■ Post-Decrement By Offset Nn (Rn) – Nn—The operand address is in the add
register. After the operand address is used, it is decremented by the contents
Nn register and stored in the same address register. The contents of the Nn re
are unchanged.

Example: MOVE x:(Rn)-Nn,x0

■ Indexed By Offset Nn (Rn + Nn)—The operand address is the sum of the con
of the address register and the contents of the address offset register, Nn. Th
contents of the Rn and Nn registers are unchanged.

Example: MOVE x:(Rn+Nn),x0

■ Pre-Decrement By One -(Rn)—The operand address is the contents of the ad
register decremented by one. The contents of Rn are decremented by one an
stored in the same address register before the memory access. The Nn regis
ignored.

Example: MOVE x:-(Rn),x0

■ Short Displacement (Rn + Short Displacement)—The operand address is the
of the contents of the address register Rn and a short signed displacement
occupying seven bits in the instruction word. The displacement is first
sign-extended to 24 bits (16 bits in SC mode) and then added to Rn to obtain
operand address. The contents of the Rn register are unchanged. The Nn regi
ignored. This reference is classified as a memory reference.

Example: MOVE x:(Rn+63),x0

■ Long Displacement (Rn + Long Displacement)—This addressing mode requir
one word (label) of instruction extension. The operand address is the sum of 
4-8 DSP56300 Family Manual Motorola
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contents of the address register and the extension word. The contents of the ad
register are unchanged. The Nn register is ignored. This reference is classified
memory reference.

Example: MOVE x:(Rn+64),x0

4.4.3 PC-relative Modes

In the PC-relative addressing modes, the operand address is obtained by adding a
displacement, represented in twos-complement format, to the value of the Program
Counter (PC). The PC points to the address of the instruction opcode word. The Nn
Mn registers are ignored, and the arithmetic used is always linear.

■ Short Displacement PC-relative—The short displacement occupies nine bits i
instruction operation word. The displacement is first sign-extended to 24 bits 
then added to the PC to obtain the operand address.

■ Long Displacement PC-relative—This addressing mode requires one word of
instruction extension. The operand address is the sum of the contents of the PC
the extension word.

■ Address Register PC-relative—The operand address is the sum of the conten
the PC and the address register. The Mn and Nn registers are ignored. The co
of the address register are unchanged.

4.4.4 Special Address Modes

The special address modes do not use an address register in specifying an effective
address. These modes either specify the operand or the operand address in a field 
instruction, or they implicitly reference an operand.

■ Immediate Data—This addressing mode requires one word of instruction
extension. The immediate data is a word operand in the extension word of the
instruction. This reference is classified as a program reference.

■ Immediate Short Data—The 8-bit or 12-bit operand is part of the instruction
operation word. An 8-bit operand is used for an immediate move to register, AN
and ORI instructions. It is zero-extended. A 12-bit operand is used for DO and R
instructions. It is also zero-extended. This reference is classified as a program
reference.

■ Absolute Address—This addressing mode requires one word of instruction
extension. The operand address is in the extension word. This reference is
classified as a memory reference and a program reference.
Motorola Address Generation Unit 4-9
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■ Absolute Short Address—The operand address occupies six bits in the instru
operation word, and it is zero-extended. This reference is classified as a mem
reference.

■ Short Jump Address—The operand occupies 12 bits in the instruction operati
word. The address is zero-extended to 24 bits. This reference is classified as
program reference.

■ I/O Short Address—The operand address occupies 6 bits in the instruction
operation word, and it is one-extended. The I/O short addressing mode is used
the bit manipulation and move peripheral data instructions.

■ Implicit Reference—Some instructions make implicit reference to the Program
Counter (PC), System Stack (SSH, SSL), Loop Address Register (LA), Loop
Counter (LC), or Status Register (SR). These registers are implied by the
instruction, and their use is defined by the individual instruction descriptions. S
Chapter 12,Guide to the Instruction Set for more information.

4.5 Address Modifier Types

The DSP56300 family core Address ALU supports linear, reverse-carry, modulo, an
multiple wrap-around modulo arithmetic types for all address register indirect modes
These arithmetic types easily allow the creation of data structures in memory for Fir
First-Out (FIFO) queues, delay lines, circular buffers, stacks, and bit-reversed Fast Fo
Transform (FFT) buffers. Data is manipulated by updating address registers (pointe
rather than moving large blocks of data. The contents of the address modifier regist
define the type of arithmetic to be performed for addressing mode calculations. For
modulo arithmetic, the address modifier register also specifies the modulus. Each ad
register has its own associated modifier register. All address register indirect modes
be used with any address modifier type. The following address modifier types are
available:

■ Linear addressing—Useful for general-purpose addressing

■ Reverse-carry addressing—Useful for 2k-point FFT addressing

■ Modulo addressing—Useful for creating circular buffers for FIFO queues, dela
lines and sample buffers

■ Multiple wrap-around modulo addressing—Useful for decimation, interpolation
and waveform generation, since the multiple wrap-around capability can be u
for argument reduction

Table 4-6 lists the address modifier types.
4-10 DSP56300 Family Manual Motorola
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4.5.1 Linear Modifier (Mn = $XXFFFF)

Address modification is performed using normal 24-bit linear (modulo 16,777,216)
arithmetic. A 24-bit offset, Nn, and±1 can be used in the address calculations. The ra
of values can be considered as signed (Nn from –8,388,608 to +8,388,607) or unsig
(Nn from 0 to +16,777,216), since there is no arithmetic difference between these two
representations.

4.5.2  Reverse-Carry Modifier (Mn = $000000)

Reverse carry is selected by setting the modifier register to zero. Address modificat
performed in hardware by propagating the carry in the reverse direction (that is, from
MSB to the LSB). Reverse carry is equivalent to bit reversing the contents of Rn
(redefining the MSB as the LSB, the next MSB as Bit 1, etc.) and the offset value, N
adding normally, and then bit reversing the result. If the +Nn addressing mode is us
with this address modifier and Nn contains a value 2(k – 1) (a power of two), this
addressing modifier is equivalent to bit reversing the k LSBs of Rn, incrementing Rn
one, and bit reversing the k LSBs of Rn again. This address modification is useful fo
addressing the two middle factors in 2k-point FFT addressing and unscrambling 2k-point
FFT data. The range of values for Nn is 0 to + 8 M (that is, Nn = 223), which allows
bit-reverse addressing for FFTs up to 16,777,216 points.

Table 4-6 Address Modifier Type Encoding Summary

Modifier Mn Address Calculation Arithmetic

$XX0000 Reverse-Carry (Bit-Reverse)

$XX0001 Modulo 2

$XX0002 Modulo 3

: :

$XX7FFE Modulo 32767 (215-1)

$XX7FFF Modulo 32768 (215)

$XX8001 Multiple Wrap-Around Modulo 2

$XX8003 Multiple Wrap-Around Modulo 4

$XX8007 Multiple Wrap-Around Modulo 8

: :

$XX9FFF Multiple Wrap-Around Modulo 213

$XXBFFF Multiple Wrap-Around Modulo 214

$XXFFFF Linear (Modulo 224)

Notes: 1. All other combinations are reserved.
2. XX can be any value.
Motorola Address Generation Unit 4-11
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4.5.3 Modulo Modifier (Mn = Modulus – 1)

Address modification is performed using modulo M, where M ranges from 2 to +32,7
Modulo M arithmetic causes the address register value to remain within an address
of size M, defined by a lower and upper address boundary.

The value m = M – 1 isstored in the modifier register. The lower boundary (base addre
value must have zeros in the k LSBs, where 2k ≥ M, and therefore must be a multiple of
2k. The upper boundary is the lower boundary plus the modulo size minus one (bas
address + M – 1). Since M≤ 2k, once M is chosen, a sequential series of memory bloc
each of length 2k, is created where these circular buffers can be located. If M < 2k, there is
a space between sequential circular buffers of (2k) – M.

The address pointer is not required to start at the lower address boundary or to end
upper address boundary; it can initially point anywhere within the defined modulo add
range. Neither the lower nor the upper boundary of the modulo region is stored; only
size of the modulo region is stored in Mn. The boundaries are determined by the co
of Rn. Assuming the Address Register Indirect with post-increment addressing mod
(Rn)+, if the address register pointer increments past the upper boundary of the buf
(base address + M – 1), it wraps around through the base address (lower boundary
Alternatively, assuming the Address Register Indirect with post-decrement addressi
mode, (Rn)-, if the address decrements past the lower boundary (base address), it w
around through the base address + M – 1 (upper boundary).

If an offset, Nn, is used in the address calculations, the 24-bit absolute value, |Nn|, mu
less than or equal to M for proper modulo addressing. If Nn > M, the result is data
dependent and unpredictable, except for the special case where Nn = P× 2k, a multiple of
the block size where P is a positive integer. For this special case, when using the (R
Nn addressing mode, the pointer, Rn, jumps linearly to the same relative address in a
buffer, which is P blocks forward in memory. Similarly, for (Rn) – Nn, the pointer jum
P blocks backward in memory.

This technique is useful in sequentially processing multiple tables or N-dimensional
arrays. The range of values for Nn is –8,388,608 to +8,388,607. The modulo arithm
unit automatically wraps around the address pointer by the required amount. This ty
address modification is useful for creating circular buffers for FIFO queues, delay lin
and sample buffers up to 8,388,607 words long, and for decimation, interpolation, a
waveform generation. The special case of (Rn)± Nn modulo M with Nn = P× 2k is useful
for performing the same algorithm on multiple blocks of data in memory, for exampl
when performing parallel Infinite Impulse Response (IIR) filtering.
4-12 DSP56300 Family Manual Motorola
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4.5.4  Multiple Wrap-Around Modulo Modifier

The Multiple Wrap-Around Addressing mode is selected by setting bit 15 of the Mn
register to one and clearing bit 14 to zero, as shown inTable 4-6. The address
modification is performed using modulo M, where M is a power of 2 in the range from1

to 214. Modulo M arithmetic causes the address register value to remain within an add
range of size M defined by a lower and upper address boundary. The value M – 1 is s
in the Mn register’s 14 Least Significant Bits (bits 13–0), while bit 15 is set to one and
14 is cleared to zero. The lower boundary (base address) value must have zeros in 
LSBs, where 2k = M, and therefore must be a multiple of 2k. The upper boundary is the
lower boundary plus the modulo size minus one (base address + M – 1).

The address pointer is not required to start at the lower address boundary and may 
anywhere within the defined modulo address range (between the lower and upper
boundaries). If the address register pointer increments past the upper boundary of t
buffer (base address + M – 1), it wraps around to the base address. If the address
decrements past the lower boundary (base address), it wraps around to the base ad
M – 1. If an offset Nn is used in the address calculations, it is not required to be less
or equal to M for proper modulo addressing, since multiple wrap around is supporte
(Rn) + Nn, (Rn) – Nn, and (Rn + Nn) address updates. Multiple wrap around cannot o
with (Rn)+, (Rn)–, and –(Rn) addressing modes.
Motorola Address Generation Unit 4-13
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Chapter 5
Program Control Unit

The Program Control Unit (PCU) of the DSP56300 family core coordinates executio
program instructions and instructions for processing interrupts and exceptions. The 
also controls which of the five DSP56300 core processing states (Normal, Exception
Reset, Wait, or Stop) is currently selected. The PCU functions through a seven-stag
instruction pipeline and several programmable registers. This chapter describes the
hardware, programming model, and instruction pipeline.

5.1 Overview

The PCU coordinates execution of instructions using three hardware blocks: the Pro
Address Generator (PAG), the Program Decode Controller (PDC), and the Program
Interrupt Controller (PIC). These blocks perform the following functions:

■ Fetch instructions

■ Decode instructions

■ Execute instructions

■ Control hardware DO loops and REP

■ Process interrupts and exceptions

Operation of the seven-stage pipeline depends on the current core processing state
seven stages of the pipeline are as follows:

■ Fetch-I

■ Fetch-II

■ Decode

■ Address gen-I

■ Address gen-II

■ Execute-I

■ Execute-II
Motorola Program Control Unit 5-1
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To preserve current operation and status values while processing exceptions and
interrupts, the PCU provides a System Stack to store current register contents befor
executing the exception/interrupt handler program. These contents are restored whe
control returns to the current program. In addition to these standard program flow-co
resources, the PCU provides special support for hardware DO loops and an instruct
REPEAT mechanism.

To perform its functions, the PCU uses a number of programmable registers. The
organization of these registers forms the programming model for the PCU:

■ General configuration and status:

— Operating Mode Register (OMR)—24-bit, read/write

— Status Register (SR)—24-bit, read/write

■ System Stack configuration and operation:

— System Stack (SS) register file—hardware stack, 48-bit× 16 locations,
read/write

— System Stack High (SSH) Register—24-bit, read/write

— System Stack Low (SSL) Register—24-bit, read/write

— Stack Pointer (SP) Register—24-bit, read/write

— Stack Counter (SC) Register—5-bit, read/write

— Stack Size (SZ) Register—24-bit, read/write

Note: The stack Extension Pointer (EP) Register is also used with the System S
but is physically part of the Address Generation Unit. For a description of t
register, refer toChapter 4, Address Generation Unit.

■ Program/Loop/Exception processing control

— Program Counter (PC) Register—24-bit, read/write

— Loop Address (LA) Register—24-bit, read/write

— Loop Counter (LC) Register—24-bit, read/write

— Vector Base Address (VBA) Register—24-bit, read/write
5-2 DSP56300 Family Manual Motorola
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5.2 PCU Hardware Architecture

The three PCU hardware blocks are:

■ Program Address Generator (PAG)—Contains all the hardware needed for
program address generation, System Stack, and loop control

■ Program Decode Controller (PDC)

— Decodes the 24-bit instruction loaded into the instruction latch

— Generates all signals for pipeline control

— Performs required data transfers between the Data Arithmetic Logic Unit (D
ALU) and memory

■ Program Interrupt Controller (PIC)—Arbitrates among all interrupt requests
(internal interrupts and the five external interrupts:IRQA, IRQB, IRQC, IRQD and
NMI) and generates the appropriate interrupt vector address

Figure 5-1 shows a block diagram of the PCU.

5.3 Instruction Pipeline

Within the seven-stage pipelined architecture of the PCU, instructions execute
concurrently. Execution of a given pipeline stage for one instruction occurs concurre
with execution of other pipeline stages for other instructions.Table 5-1 andFigure 5-2
show that these stages include two fetch stages, one decode stage, two address gen
stages, and two execute stages. The pipelined operation is essentially transparent, 
easing programmability. Transparency is achieved by means of interlock hardware pr
in every execution unit of the processor so that programs written for the DSP56000 fa
devices execute correctly on the DSP56300 core without any modification. Howeve
code can be optimized to reduce interlocks and improve execution speed.

Figure 5-1. PCU Architecture

Program
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Program
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Program
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Interrupt Request InputsLegend:
GDB—Global Data Bus

PDB—Program Data Bus
PAB—Program Address Bus

RESET
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5.4 Programming Model

The PCU programming model comprises three functional areas:

■ Configuration and status registers

■ System Stack configuration and operation registers

■ Program/Loop/Exception processing control registers

Figure 5-3 shows the PCU programming model with the registers and the System S
The following paragraphs describe each register.

Table 5-1 Seven-Stage Pipeline

Pipeline Stage Description

Fetch-I ■ Address generation for Program Fetch
■ Increment PC register

Fetch-II ■ Instruction word read from memory

Decode ■ Instruction Decode

AddressGen-I ■ Address generation for Data Load/Store operations

AddressGen-II ■ Address pointer update

Execute-I ■ Read source operands to Multiplier and Adder
■ Read source register for memory store operations
■ Multiply
■ Write destination register for memory load operations

Execute-II ■ Read source operands for Adder if written by previous ALU operation
■ Add
■ Write Adder results to the Adder destination operand
■ Write Multiplier results to the Multiplier destination operands

Figure 5-2. Seven-Stage Pipeline

Fetch
I

Fetch
II

Decode Address
Gen I

Address
Gen II

Execute
I

Execute
II
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5.4.1 Configuration and Status Registers

Note: Bits that are listed as reserved in the following sections can be defined for
specific devices within the DSP56300 family. Refer to the device-specific
user’s manual to determine whether a reserved bit is defined for that devic

The PCU contains two registers that configure and report the current status of the P

■ Operating Mode Register (OMR)

■ Status Register (SR)

Figure 5-3. PCU Programming Model
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Status Register (SR)

Loop Address Register
(LA)

Loop Counter (LC)

Stack Pointer (SP)

Read as 0. Write
with 0 for future
compatibility.
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System Stack (SS)

Operating Mode
Register (OMR)

Vector Base Address
(VBA)

Stack Size (SZ)

Stack Counter(SC)
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23 0
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23 6 5 4 3 0
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23 0

23 08 7

16 15 78

1615
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23 0

Configuration and
Status Registers

System Stack and its Processing Control
Registers

Notes: 1. The Extension Pointer (EP) Register is also used with the System Stack, but it is physically part
of the Address Generation Unit (AGU).

2. SSH and SSL point to the upper and lower halves of the stack location specified by the SP.

Configuration and Operation Registers
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5.4.1.1 Operating Mode Register

The OMR (Figure 5-4) is a 24-bit register that is partitioned into the following three
bytes:

■ OMR[23 – 16], System Stack Control/Status (SCS) Byte: Controls and monito
the stack extension in the data memory. The SCS byte is referenced implicitly
some instructions—such as DO, JSR, and RTI—or directly by the MOVEC
instruction.

■ OMR[15 – 8], Extended Chip Operating Mode (EOM) Byte: Determines the
operating mode of the chip. This byte is affected only by hardware reset and b
instructions directly referencing the OMR (that is, ANDI, ORI, and other
instructions, such as MOVEC, that specify OMR as a destination).

■ OMR[7 – 0], Chip Operating Mode (COM) Byte: Determines the operating mo
of the chip. This byte is affected only by hardware reset and by instructions dire
referencing the OMR (that is, ANDI, ORI, and other instructions, such as MOVE
that specify OMR as a destination). During hardware reset, the chip operating
mode bits (MD, MC, MB, and MA) are loaded from the external mode select p
MODD, MODC, MODB, and MODA, respectively.

The following sections describe all defined bit functions; however, not all defined
functions are implemented on all DSP56300 family devices. Always write
non-implemented functions as zeros to ensure future compatibility. Refer to the late
device-specific user’s manuals, technical data sheets, and technical bulletins for de
information about implementation and usage for a particular device.
5-6 DSP56300 Family Manual Motorola
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Figure 5-4. Operating Mode Register (OMR)

Stack Control/Status (SCS) Extended Operating Mode (EOM) Chip Operating Mode (COM)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEN MSW[1:0] SEN WRP EOV EUN XYS ATE APD ABE BRT TAS BE CDP[1:0] MS SD EBD MD MC MB MA

Reserved bit. Read as zero; write with zero for future compatibility
Values after reset:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 * * * *
* After reset, these bits reflect the corresponding value of the mode input (that is, MODD, MODC, MODB, or

MODA, respectively).

PEN—Patch Enable ATE—Address Trace Enable MS—Memory Switch Mode
MSW1—Memory Switch
Configuration 1

APD—Address Attribution Priority
Disable

SD—Stop Delay Mode

MSW0—Memory Switch
Configuration 0

ABE—Asynch. Bus Arbitration
Enable

SEN—Stack Extension Enable BRT—Bus Release Timing EBD—External Bus Disable
WRP—Stack Extension Wrap Flag TAS—TA Signal Synchronize

Select
MD—Chip Operating Mode D

EOV—Stack Extension Overflow
Flag

BE—Cache Burst Mode Enable MC—Chip Operating Mode C

EUN—Stack Extension Underflow
Flag

CDP1—Core-DMA Priority 1 MB—Chip Operating Mode B

XYS—Stack Extension Space
Select

CDP0—Core-DMA Priority 0 MA—Chip Operating Mode A

Table 5-2 Operating Mode Register Bit Definitions

Bit Number Bit Name Reset Value Description

23 PEN 0 Patch Enable
Enables/Disables the memory patch function, if implemented. Refer to
the device-specific user’s manual to determine whether and how this
function is used on a specific device. Hardware reset clears this bit.

22 – 21 MSW 0 Memory Switch Configuration
Determine what portion of the higher locations of internal X and Y data
memory are switched to internal program memory when Memory
Switch mode is enabled. Memory Switch mode allows reallocation of
portions of X and Y data RAM as program RAM. Memory Switch mode
is enabled when the Memory Switch bit, OMR[7] is set. For details on
how much memory is switched, see the device-specific user’s manual
for a particular DSP56300 family device. The MSW bits are not
available on all members of the DSP56300 family.

20 SEN 0 Stack Extension Enable
Enables/ Disables the stack extension in data memory. If SEN is set,
the extension is enabled. Hardware reset clears this bit, so the default
out of reset is a disabled stack extension.
Motorola Program Control Unit 5-7
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19 WRP 0 Stack Extension Wrap Flag
During the debugging phase of the software development, this flag can
be used to evaluate and increase the speed of software-implemented
algorithms. WRP is set when copying from the on-chip hardware stack
(System Stack Register file) to the stack extension memory begins. The
WRP flag is a sticky bit (that is, cleared only by hardware reset or by an
explicit MOVE operation to the OMR). Hardware reset clears the WRP
flag.

18 EOV 0 Stack Extension Overflow Flag
Set when a stack overflow occurs in Stack Extended mode. Extended
stack overflow is recognized when a push operation is requested while
SP = SZ (Stack Size register), and the Extended mode is enabled by
the SEN bit. The EOV flag is a sticky bit (that is, cleared only by
hardware reset or by an explicit MOVE operation to the OMR). The
transition of the EOV flag from zero to one causes a Priority Level 3
(Non-maskable) stack error exception. Hardware reset clears the EOV
flag.

17 EUN 0 Stack Extension Underflow Flag
Set when a stack underflow occurs in the Stack Extended mode. Stack
extended underflow is recognized when a pull operation is requested,
SP = 0, and the Extended mode is enabled by the SEN bit. The EUN
flag is a sticky bit (that is, cleared only by hardware reset or by an
explicit MOVE operation to the OMR). Transition of the EUN flag from
zero to one causes a Priority Level 3 (Non-maskable) stack error
exception. Hardware reset clears the EUN flag.

NOTE: While the chip is in Extended Stack mode, the UF bit in the SP
acts like a normal counter bit.

16 XYS 0 Stack Extension XY Select
Determines if the stack extension is mapped onto the X memory space
or onto the Y memory space. If XYS is clear, then the stack extension is
mapped onto the X memory space. If XYS is set, the stack extension is
mapped to the Y memory space. Hardware reset clears the XYS bit.

15 ATE 0 Address Trace Enable
Enables Address Trace mode. The Address Trace mode is a
debugging tool that reflects internal memory accesses at the external
address lines. Refer to device-specific user’s manuals and technical
data sheets to determine if this feature is implemented for a specific
device and how to use it during debugging. Hardware reset clears the
ATE bit.

Table 5-2 Operating Mode Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
5-8 DSP56300 Family Manual Motorola
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14 APD 0 Address Attribute Priority Disable
Disables the priority assigned to the Address Attribute signals
(AA0-AA3). When APD = 0 (default setting), the four Address Attribute
signals each have a certain priority: AA3 has the highest priority, AA0
has the lowest priority. Therefore, only one AA signal can be active at
one time. This allows continuous partitioning of external memory;
however, certain functions, such as using the AA signals as additional
address lines, require additional interface hardware. When APD = 1,
the priority mechanism is disabled, allowing more than one AA signal to
be active simultaneously. Therefore, the AA signals can be used as
additional address lines without the need for additional interface
hardware. To determine whether this feature is implemented for a
particular device, refer to the user’s manual and technical data sheets
relating to that device. For details on the Address Attribute Registers,
see Chapter 9, External Memory Interface (Port A). Hardware reset
clears the APD bit.

13 ABE 0 Asynchronous Bus Arbitration Enable
Eliminates the setup and hold time requirements (with respect to
CLKOUT) for BB and BG, and substitutes a required non-overlap
interval between the deassertion of one BG input to a DSP56300 family
device and the assertion of a second BG input to a second DSP56300
family device on the same bus. When the ABE bit is set, the BG and BB
inputs are synchronized. This synchronization causes a delay between
a change in BG or BB until the receiving device actually accepts the
change. Hardware reset clears the ABE bit.

12 BRT 0 Bus Release Timing
Selects between fast or slow bus release. If BRT is cleared, a Fast Bus
Release mode is selected (that is, no additional cycles are added to the
access and BB is not guaranteed to be the last Port A pin that is
tri-stated at the end of the access). If BRT is set, a Slow Bus Release
mode is selected (that is, an additional cycle is added to the access,
and BB is the last Port A pin that is tri-stated at the end of the access).
Hardware reset clears the BRT bit. For details on the bus release
modes and their applications, refer to Chapter 9 .

11 TAS 0 TA Synchronize Select
Selects the synchronization method for the input Port A pin, TA
(Transfer Acknowledge). If TAS is cleared, you are responsible for
asserting the TA pin synchronized to the chip clock, as described in the
device-specific technical data sheet. If TAS is set, the TA input
assertion is synchronized inside the chip, thus eliminating the need for
an off-chip synchronizer. Note that the TAS bit has no effect when the
TA pin is deasserted: you are responsible for deasserting the TA pin (if
additional wait states are desired) before the chip finishes inserting wait
states as defined in the BCR (Bus Control Register). See Chapter 9 for
details. Hardware reset clears the TAS bit

Table 5-2 Operating Mode Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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10 BE 0 Cache Burst Mode Enable
Enables/Disables the Burst mode in the memory expansion port during
an instruction cache miss. If the bit is cleared, the Burst mode is
disabled and only one program word is fetched from the external
memory when an instruction cache miss condition is detected. If the bit
is set, the Burst mode is enabled, and up to four program words are
fetched from the external memory when an instruction cache miss is
detected. For details on the Burst mode, see Chapter 8, Instruction
Cache . Hardware reset clears the BE bit.

9 – 8 CDP[1 – 0] 1 Core-DMA Priority
Specify the priority between core accesses and DMA accesses to the
external bus. Following are the core-DMA priorities for these bits. The
CDP[1 – 0] bits are set during hardware reset.

CDP1 – 0 Core-DMA Priority

00 Determined by comparing status register CP[1 – 0] to
the active DMA channel priority

01 DMA accesses have higher priority than core
accesses

10 DMA accesses have the same priority as the core
accesses

11 DMA accesses have lower priority than the core
accesses

7 MS 0 Memory Switch Mode
Allows some internal memory modules to be switched from Program
RAM to data RAM (X, Y, or both) or vice versa. The MS bit is cleared
during hardware reset.
NOTES:

1. For some DSP56300 family chip products, program data
placed into the Program RAM/Instruction Cache area
changes its placement after the MS bit is set (that is, the
Instruction Cache always uses the highest internal
Program RAM addresses). For example, this is true in the
DSP56301 but not in the DSP56307 or DSP56311. Check
your device-specific user’s manual.

2. To ensure proper operation, place six NOP instructions
after the instruction that changes the MS bit.

3. To ensure proper operation, do not change the MS bit
while the Instruction Cache is enabled (CE bit is set in
SR).

4. Actual memory configuration is device-specific; refer to
the device-specific technical data sheets and user’s
manuals for implementation information.

Table 5-2 Operating Mode Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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5.4.1.2 Status Register (SR)

The Status Register (SR) (Figure 5-5) is a 24-bit register that consists of the following
three 8-bit special-purpose control registers:

■ Extended Mode Register (EMR) (SR[23 – 16]): Defines the current system stat
the processor. The EMR bits are affected by hardware reset, exception proce
DO FOREVER instructions, ENDDO (end current DO loop) instructions, BRK
instructions, RTI (return from interrupt) instructions, TRAP instructions, and
instructions that specify SR as their destination (for example, MOVEC). Durin
hardware reset, all EMR bits are cleared.

■ Mode Register (MR) (SR[15 – 8]): Defines the current system state of the
processor. The MR bits are affected by hardware reset, exception processing
instructions, ENDDO (end current DO loop) instructions, RTI (return from
interrupt) instructions, TRAP instructions, and instructions that directly referen

6 (SD) 0 Stop Delay Mode
Determines the length of the delay invoked when the core exits the
Stop state. The STOP instruction suspends core processing indefinitely
until a defined event occurs to restart it. If the Stop Delay (SD) mode bit
is cleared, a 128 K clock cycle delay is invoked before a STOP
instruction cycle continues. However, if the SD bit is set, the delay
before the instruction cycle resumes is 16 clock cycles. The long delay
allows a clock stabilization period for the internal clock to begin
oscillating. When a stable external clock is used, the shorter delay
allows faster start-up of the DSP56300 core. The SD bit is cleared
during hardware reset.

5 0 Reserved
Write to zero for future compatibility.

4 EBD 0 External Bus Disable
Disables the external bus controller in order to reduce power
consumption when external memories are not used. When the EBD bit
is set, the external bus controller is disabled and external memory
cannot be accessed. When the EBD bit is cleared, the external bus
controller is enabled and external access can be performed. Hardware
reset clears the EBD bit.

3 – 0 MD–MA * Chip Operating Mode
Indicate the operating mode of the DSP56300 core. On hardware reset,
these bits are loaded from the external mode select pins, MODD,
MODC, MODB, and MODA, respectively. After the DSP56300 core
leaves the Reset state, MD, MC, MB, and MA can be changed under
program control.

*After reset, these bits reflect the corresponding value of the mode input
(that is, MODD, MODC, MODB, or MODA, respectively).

Table 5-2 Operating Mode Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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the MR (for example, ANDI, ORI, or instructions, such as MOVEC, that specif
SR as the destination). During hardware reset, the interrupt mask bits are set a
other bits are cleared.

■ Condition Code Register (CCR) (SR[7 – 0]): Defines the results of previous
arithmetic computations. The CCR bits are affected by Data Arithmetic Logic U
(Data ALU) operations, parallel move operations, instructions that directly
reference the CCR (ORI and ANDI), and by instructions that specify SR as a
destination (for example, MOVEC). Parallel move operations affect only the S
L bits of the CCR. During hardware reset, all CCR bits are cleared.

The SR is pushed onto the System Stack when:

■ Program looping is initialized

■ A JSR is performed, including long interrupts

The three 8-bit registers are defined within the SR primarily for compatibility with oth
Motorola DSPs. Bit definitions in the following paragraphs identify the bits within the S
and not within the subregister.

Figure 5-5. Status Register (SR)

Extended Mode Register (EMR) Mode Register (MR) Condition Code Register (CCR)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CP1 – 0 RM SM CE SA FV LF DM SC S1 – 0 I1 – 0 S L E U N Z V C

Reserved bit. Read as zero. Write with zero for future compatibility

Values after reset:
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

CP1 - Core Priority Bit 1 LF - DO-Loop Flag S - Scaling Flag

CP0 - Core Priority Bit 0 DM - Double Precision Multiply L - Limit Flag

RM - Rounding Mode SC - Sixteen-bit Compatibility E - Extension Flag

SM - Arithmetic Saturation
Mode

S1 - Scaling Mode Bit 1 U - Unnormalized Flag

CE - Instruction Cache Enable S0 - Scaling Mode Bit 0 N - Negative Flag

SA - Sixteenth-Bit Arithmetic I1 - Interrupt Mask Bit 1 Z - Zero Flag

FV - DO-Forever Flag I0 - Interrupt Mask Bit 0 V - Overflow Flag

C - Carry Flag
5-12 DSP56300 Family Manual Motorola
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Table 5-3 Status Register Bit Definitions

Bit Number Bit Name Reset Value Description

23 – 22 CP[1 – 0] 1 Core Priority
Under the control of CDP[1 – 0] bits in the Operating Mode Register
(OMR), the Core Priority bits, CP1 and CP0, specify the priority of core
accesses to external memory. These bits are compared against the
priority bits of the active DMA channel. If the core priority is greater
than the DMA priority, the DMA waits for a free time slot on the
external bus. If the core priority is less than the DMA priority, the core
waits for a free time slot on the external bus. If the core priority equals
the DMA priority, the core and DMA access the external bus in a round
robin pattern (for example, ... P, X, Y, DMA, P, X, Y, ...). The core
priority bits are set during hardware reset.

Priority
Mode

Core
Priority

DMA Priority
OMR (CDP

[1 – 0])
SR (CP[1 – 0])

Dynamic

0
(Lowest) Determined

by DCRn
(DPR[1 – 0])

for active
DMA channel

00 00

1 00 01

2 00 10

3
(Highest)

00 11

Static

core < DMA 01 xx

core = DMA 10 xx

core > DMA 11 xx

21 RM 0 Rounding Mode
Selects the type of rounding performed by the Data ALU during
arithmetic operations. If the bit is cleared, convergent rounding is
selected. If the bit is set, twos-complement rounding is selected. The
RM bit is cleared during hardware reset.

20 SM 0 Arithmetic Saturation Mode
Selects automatic saturation on 48 bits for the results going to the
accumulator. A special circuit inside the MAC unit performs the
saturation. This bit is provides an Arithmetic Saturation mode for
algorithms that do not recognize or cannot take advantage of the
extension accumulator. The SM bit is cleared during hardware reset.
Motorola Program Control Unit 5-13
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19 CE 0 Cache Enable
Enables/Disables the operation of the instruction cache controller. If
the bit is set, the cache is enabled, and instructions are cached into
and fetched from the internal Program RAM. If the bit is cleared, the
cache is disabled and the DSP56300 core fetches instructions from
external or internal program memory, according to the memory space
table of the specific DSP56300 core-based device. The CE bit is
cleared during a hardware reset.

Note: To ensure proper operation, do not clear Cache Enable
mode (CE bit in SR) while Burst mode is enabled (BE bit
in OMR is set).

18 0 Reserved Bit
Write to zero for future compatibility.

17 SA 0 Sixteen-bit Arithmetic Mode
Enables the Sixteen-bit Arithmetic mode of operation. When SA is set,
the core uses 16-bit operations instead of 24-bit operations. In this
mode, 16-bit data is right-aligned in the 24-bit memory locations,
registers, and 24-bit register portions. Shifting, limiting, rounding,
arithmetic instructions, and moves are performed accordingly. For
details on the operation of Sixteen-bit Arithmetic mode, see Chapter
3.1, Introduction. Hardware reset clears the SA bit.

16 FV 0 DO FOREVER Flag
Set when a DO FOREVER loop executes. The FV flag, like the LF flag,
is restored from the stack when a DO FOREVER loop terminates.
Stacking and restoring the FV flag when initiating and exiting a DO
FOREVER loop, respectively, allow the nesting of program loops.
When returning from the long interrupt with an RTI instruction, the
System Stack is pulled and the value of the FV bit is restored.
Hardware reset clears the FV bit.

15 LF 0 DO Loop Flag
Enables the detection of the end of a program loop. The LF is restored
from stack when a program loop terminates. Stacking and restoring
the LF when initiating and exiting a program loop, respectively, allow
the nesting of program loops. When returning from the long interrupt
with an RTI instruction, the System Stack is pulled and the LF bit value
is restored. Hardware reset clears the LF bit.

Table 5-3 Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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14 DM 0 Double-Precision Multiply Mode
Enables the operation of four multiply/MAC operations to implement a
double precision algorithm. This algorithm multiplies two 48-bit
operands with a 96-bit result. Clearing the DM bit disables the mode.
The Double Precision Multiply mode is supported in order to maintain
object code compatibility with devices in the DSP56000 family. For a
more efficient way of executing double-precision multiply, refer to
Chapter 3, Data Arithmetic Logic Unit

In Double-Precision Multiply mode, the behavior of the four specific
operations listed in the double-precision algorithm is modified.
Therefore, do not use these operations (with those specific register
combinations) in Double Precision Multiply mode for any purpose
other than the double-precision multiply algorithm. All other Data ALU
operations (or the four listed operations, but with other register
combinations) can be used.

The double-precision multiply algorithm uses the Y0 Register at all
stages. Therefore, do not change Y0 when running the
double-precision multiply algorithm. If the Data ALU must be used in
an interrupt service routine, Y0 should be saved with other Data ALU
registers to be used and restored before leaving the interrupt routine.
The DM bit is cleared during a hardware reset.

13 SC 0 Sixteen-bit Compatibility Mode
Enables full compatibility with object code written for the DSP56000
family. When the SC bit is set, MOVE operations to/from any of the
following PCU registers clear the eight MSBs of the destination: LA,
LC, SP, SSL, SSH, EP, SZ, VBA and SC. If the source is either the SR
or OMR, then the eight MSBs of the destination are also cleared. If the
destination is either the SR or OMR, then the eight MSBs of the
destination are left unchanged. In order to change the value of one of
the eight MSBs of the SR or OMR, clear the SC mode bit.
The SC mode bit also affects the contents of the Loop Counter
Register. If the SC bit is cleared (normal operation), then a loop count
value of zero causes the loop body to be skipped, and a loop count
value of $FFFFFF causes the loop to execute the maximum number of

224 – 1 times. If the SC bit is set, a loop count value of zero causes the

loop to be executed 216 times, and a loop count value of $FFFFFF

causes the loop to be executed 216 – 1 times. The AGU also uses this
bit. When SC is set, the 8 MSBs are ignored while checking whether
the address is internal or external. Refer to the memory configuration
chapter of the device-specific user’s manual for a full description of the
memory map when this bit is set. A read to/from the AGU registers
clears the 8 MSBs.

Note: Due to pipelining, a change in the SC bit takes effect only
after three instruction cycles. Insert three NOP
instructions after the instruction that changes the value
of this bit to ensure proper operation.

12 0 Reserved
Write to zero for future compatibility.

Table 5-3 Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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11 – 10 S[1 – 0] 0 Scaling Mode
The following table shows that the Scaling mode bits, S1 and S0,
specify the scaling to be performed in the Data ALU shifter/limiter and
the rounding position in the Data ALU MAC unit. The Shifter/limiter
Scaling mode affects data read from the A or B accumulator registers
out to the X-data bus (XDB) and Y-data bus (YDB). Different scaling
modes can be used with the same program code to allow dynamic
scaling. One application of dynamic scaling is to facilitate block
floating-point arithmetic. The scaling mode also affects the MAC
rounding position to maintain proper rounding when different portions
of the accumulator registers are read out to the XDB and YDB. Scaling
mode bits are cleared at the start of a long Interrupt Service Routine
and during a hardware reset.

S1 S0
Scaling
Mode

Rounding
Bit

S Equation

0 0 No scaling 23 S = (A46 XOR
A45) OR (B46
XOR B45) OR S
(previous)

0 1 Scale down 24 S = (A47 XOR
A46) OR (B7 XOR
B46) OR S
(previous)

1 0 Scale up 22 S = (A45 XOR
A44) OR (B45
XOR B44) OR S
(previous)

1 1 Reserved — S undefined

9 – 8 I[1 – 0] 1 Interrupt Mask
Reflects the current Interrupt Priority Level (IPL) of the processor and
indicates the IPL needed for an interrupt source to interrupt the
processor. The current IPL of the processor can be changed under
software control. The interrupt mask bits are set during hardware
reset, but not during software reset. For details about how I1 and I0
are automatically altered during a long interrupt, see Chapter 2, “Core
Architecture Overview”.

Priority I1 I0
Exceptions
Permitted

Exceptions
Masked

Lowest 0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

Highest 1 1 IPL 3 IPL 0, 1, 2

Table 5-3 Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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7 S 0 Scaling
Set when a result moves from accumulator A or B to the XDB or YDB
buses (during an accumulator-to-memory or accumulator-to-register
move) and remains set until explicitly cleared; that is, the S bit is a
sticky bit. The logical equations of this bit are dependent on the
Scaling mode. The scaling bit is set if the absolute value in the
accumulator, before scaling, is > 0.25 and < 0.75. This bit is cleared
during a hardware reset.

6 L 0 Limit
Set if the overflow bit is set or if the data shifter/limiter circuits perform
a limiting operation. In Arithmetic Saturation mode, the L bit is also set
when an arithmetic saturation occurs in the Data ALU result;
otherwise, it is not affected. The L bit is cleared only by a hardware
reset or by an instruction that specifically clears it (that is, a sticky bit);
this allows the L bit to be used as a latching overflow bit. The L bit is
affected by data movement operations that read the A or B
accumulator registers.

5 E 0 Extension
Indicates when the accumulator extension register is in use. This bit is
cleared if all the bits of the integer portion of the 56-bit result are all
ones or all zeros; otherwise, this bit is set. As shown below, the
Scaling mode defines the integer portion. If the E bit is cleared, then
the low-order fraction portion contains all the significant bits; the
high-order integer portion is sign extension. In this case, the
accumulator extension register can be ignored.

S1 S0
Scaling
Mode

Integer Portion

0 0 No Scaling Bits 55,54..............48,47

0 1 Scale Down Bits 55,54..............49,48

1 0 Scale Up Bits 55,54..............47,46

4 U 0 Unnormalized
Set if the two MSBs of the Most Significant Portion (MSP) of the result
are identical; otherwise, this bit is cleared. The MSP portion of the A or
B accumulators is defined by the Scaling mode. The U bit is computed
as follows.

S1 S0
Scaling
Mode

U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

3 N 0 Negative
Set if the MSB of the result is set; otherwise, this bit is cleared.

Table 5-3 Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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5.4.2 Stack and Stack Extension

The following registers control the operation of the System Stack:

■ System Stack High (SSH) and System Stack Low (SSL) registers

■ Stack Pointer (SP)

■ Stack Counter (SC)

■ Stack Size Register (SZ) (used for stack extension)

■ Extension Pointer (EP) Register (used for stack extension)

The 24-bit stack Extension Pointer (EP) register points to the stack extension in dat
memory whenever the stack extension is enabled and move operations to/from the on
hardware stack are needed. The EP register is located in the Address Generation U
(AGU). For details, refer toChapter 4, Address Generation Unit.

5.4.3 System Stack Configuration and Operation Registers

The PCU hardware System Stack is a 16-level by 48-bit separate internal memory t
stores the PC and SR contents during subroutine calls and long interrupts. For hard
loops, the System Stack also automatically stores the contents of the LC and LA regi
All other data and control register contents can be stored in the System Stack via sof
control. Each location in the System Stack is addressable as two 24-bit registers, Sy
Stack High (SSH) and System Stack Low (SSL), to which the four LSBs of the SP reg
collectively point. The System Stack is extended in the data memory in a space spe

2 Z 0 Zero
Set if the result equals zero; otherwise, this bit is cleared.

1 V 0 Overflow
Set if an arithmetic overflow occurs in the 56-bit result; otherwise, this
bit is cleared. This bit indicates that the result cannot be represented in
the accumulator register (that is, the register overflowed). In Arithmetic
Saturation mode, an arithmetic overflow occurs if the Data ALU result
is not representable in the accumulator without the extension part (that
is, 48-bit accumulator or the 32-bit accumulator in Arithmetic
Sixteen-bit mode).

0 C 0 Carry
Set if a carry is generated by the MSB resulting from an addition
operation. This bit is also set if a borrow is generated in a subtraction
operation; otherwise, this bit is cleared. The carry or borrow is
generated from bit 55 of the result. The C bit is also affected by bit
manipulation, rotate, and shift instructions.

Table 5-3 Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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by the stack control registers that monitor System Stack accesses. This hardware c
the Least Recently Used (LRU) location of the System Stack to data memory if the
on-chip hardware stack is full and brings data from data memory when the on-chip
hardware stack is empty. The main tasks performed by the System Stack include:

■ Storing return address and status for subroutine calls (including long interrupt

■ Storing LA, LC, PC and SR for the hardware DO loops

When a subroutine is called (for example, using the JSR instruction), the return add
(PC) is automatically stored in the SSH, and the status register (SR) is automatically
stored in the SSL. When the RTS instruction initiates a return from the subroutine, t
contents of the top location in the SSH are pulled and loaded into the PC, and the SR
affected. When the RTI instruction initiates a return, the contents of the top location in
System Stack are pulled and loaded into the PC and SR (from SSH and SSL, respect

The System Stack is also used to implement no-overhead nested hardware DO loop
When a hardware DO loop is initiated (for example, by using the DO instruction), the
previous contents of the LC Register are automatically stored in the SSL, the previo
contents of the LA Register are automatically stored in the SSH, and the Stack Poin
(SP) is incremented. After the SP is incremented, the address of the loop’s first instru
(PC) is also stored in the SSH, and the SR is stored in the SSL.

Note: Moving data to or from SSH increments or decrements the SP. The SSL d
not affect the SP.

The System Stack can be extended into 24-bit wide X or Y data memory via control
hardware that monitors the accesses to the System Stack. This extension is enabled
Stack Extension Enable (SEN) bit in the chip Operating Mode Register (OMR). If this
is cleared, the extension of the system stack is disabled, and the amount of nesting
determined by the limited size of the hardware stack (that is, 15 available locations;
location is unusable when the stack extension is disabled). The System Stack can
accommodate up to 15 long interrupts, seven DO loops, or 15 JSRs, (or equivalent
combinations of these) when its extension into data memory is disabled. When the Sy
Stack limit is exceeded (either in Extended or in the Non-extended mode), a nonmas
stack error interrupt occurs. By enabling the Stack extension, the limits on the level 
nesting of subroutines or DO loops can be set to any desired value, subject to availa
internal/external memory. The XYS bit in the OMR Register determines whether X o
data memory is used.

When enabled, a stack extension algorithm is applied to all accesses to the stack:

■ If an explicit (for example, MOVE to SSH) or implicit (for example, JSR) push
operation is performed, then the stack extension control logic examines the s
Motorola Program Control Unit 5-19
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after that push has finished. If the on-chip hardware stack is full, the least rec
used word is moved into data memory to the location specified by the stack
Extension Pointer (EP). The push is always made to the System Stack, and th
extension memory space always has the least recently used words moved int
This always moves one or two 48-bit items or two or four 24-bit words into the
next extension memory space to which the stack Extension Pointer (EP) poin

■ If an explicit (for example, MOVE from SSH) or implicit (for example, RTS) pu
operation is performed, then the stack extension control logic examines the s
after that pull finishes. If the on-chip hardware stack is empty, then the stack i
loaded from the location (in data memory) specified by the stack Extension Poi
(EP). For information on stack extension delays, seeAppendix A, Instruction
Timing and Restrictions.

■ External memory can be used for stack extension, and wait states affect it in 
same way as they affect any other external memory access.

5.4.3.1 Stack Pointer (SP) Register

The 24-bit Stack Pointer (SP) register indicates the location of the top of the System
Stack. The status of the System Stack is also indicated in SP when the Extended m
disabled (underflow, empty, full, and overflow functions). The SP register is referenc
implicitly by some instructions (for example, DO, JSR, RTI, etc.) or directly by the
MOVEC instruction. The following paragraphs describe the SP register format, show
Figure 5-6. The SP register is a 24-bit counter that addresses (selects) a 16-location
with its four LSBs. The possible SP values in the Non-extended mode are shown in T
4 on page 5-21 in the description for the SE bit.

Immediately after hardware reset, the SP bits are cleared (SP = 0), so SP points to lo
0, indicating that the System Stack is empty. Data is pushed onto the System Stack
incrementing the SP, then writing data to the location to which the SP points (the firs
push after reset is to location 1). An item is pulled off the stack by copying it from th
location to which the SP points and then decrementing SP.

Figure 5-6. Stack Pointer (SP) Register Format

P[23:6] UF/P5 SE/P4 P[3 – 0]

23 6 5 4 3 0

Stack Pointer
Stack Error Flag/P4
Underflow Flag/P5
P[23 – 6] (Extended Mode only
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Table 5-4 Stack Pointer (SP) Register Bit Definitions

Bit Number Bit Name Reset Value Description

23 – 6 P[23 – 6] 0 P[23 – 6]
In extended mode, these bits act as bits 6 through 23 of the Stack
Pointer as part of a 24-bit up/down counter.

5 UF 0 Underflow Flag / P5
In the Extended mode, UF acts as bit 5 of the Stack Pointer as part of
a 24-bit up/down counter. In the Non-extended mode, UF is set when
a stack underflow occurs. The stack UF is a sticky bit (that is, once the
Stack Error flag is set, the UF does not change state until explicitly
written by a MOVE instruction). The combination of “underflow = 1”
and “stack error = 0” is an illegal combination and does not occur
unless you force it. Also see the description for the Stack Error flag.

4 SE 0 Stack Error/P4
In Extended mode,SE acts as bit 4 of the Stack Pointer as part of a
24-bit up/down counter. In the Non-extended mode, it serves as the
Stack Error (SE) flag that indicates that a stack error has occurred.
The transition of the SE flag from zero to one in the Non-extended
mode causes a Priority Level 3 (Non-maskable) stack error exception.
When the non-extended stack is completely full, the SP reads
001111, and any operation that pushes data onto the stack causes a
stack error exception. The SP reads 010000 (or 010001 if an implied
double push occurs). Any implied pull operation with SP equal to zero
causes a stack error exception, and the SP reads $00003F (or
$00003E if an implied double pull occurs). In extended mode, the SP
reads $FFFFFF (or $FFFFFE if an implied double pull occurs). During
such cases, the stack error bit is set as shown here.

NOTE: The stack error flag is a sticky bit which, once set, remains set
until you clear it. The overflow/underflow bit remains latched until the
first move to SP executes.

SP Register Values in Non-extended Mode

UF SE P3 P2 P1 P0 Description

1 1 1 1 1 0 Stack Underflow condition after
double pull

1 1 1 1 1 1 Stack Underflow condition

0 0 0 0 0 0 Stack Empty (Reset); pull causes
underflow

0 0 0 0 0 1 Stack Location 1

0 0 * * * * Stack Locations 2-13

0 0 1 1 1 0 Stack Location 14

0 0 1 1 1 1 Stack Location 15; push causes
overflow

0 1 0 0 0 0 Stack Overflow condition

0 1 0 0 0 1 Stack Overflow condition after
double push

*Equal to Stack Locations 2 – 13
Motorola Program Control Unit 5-21
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5.4.3.2 Stack Counter (SC) Register

The 5-bit Stack Counter (SC) register monitors how many entries of the hardware s
are in use. The SC is a read/write register and is referenced implicitly by some instruc
(for example, DO, JSR, and RTI) or directly by the MOVEC instruction. The stack
counter register is cleared during hardware reset. During normal operation, do not wr
the SC register. If a task switch is needed, writing a value greater than 14 or smaller th
automatically activates the stack extension control hardware. For proper operation, th
should not be written with values greater than 16.

5.4.3.3 Stack Size (SZ) Register

The 24-bit Stack Size (SZ) register determines the number of data words allocated 
memory for the stack in the Extended mode. The necessary value of the SZ register c
determined by SZ = 15 + software_buffer_size / 2, where the buffer size is the numb
24-bit words allocated for the stack extension in data memory. (Fifteen is the maxim
number of 48-bit entries that can be occupied in the 16-entry hardware stack at any
time.) The extended stack overflow flag is generated when the value in SP equals th
value in SZ and then a push is done.

Note: A stack exception can occur only when the stack is used in Non-extended m

The SZ register is not initialized during hardware reset, and must be set, using a MO
instruction, prior to enabling the stack extension.

3 – 0 P[3 – 0] 0 Stack Pointer
Point to the 48-bit entry in the System Stack into which the last push
was made. In the Non-extended mode, SP is a physical pointer, P[3 –
0] always having a value less than or equal to the highest physical
location in the System Stack. In the extended mode, SP becomes a
logical pointer, possibly having a value greater than the highest
physical location in the System Stack. However, P[3 – 0] still point to
the top of the stack, which is always in the System Stack.

Table 5-4 Stack Pointer (SP) Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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5.4.4 Program, Loop, and Exception Processing Control

The code execution flow control is performed using four registers in the PCU:

■ Program Counter (PC)

■ Loop Address (LA) Register

■ Loop Counter (LC) Register

■ Vector Base Address (VBA) Register

5.4.4.1 Program Counter (PC) Register

The Program Counter Register (PC) is a special-purpose 24-bit address register tha
contains the address of instruction words in the program memory space. The PC can
to instructions, data operands, or addresses of operands. References to this registe
always inherent and are implied by most instructions. The PC is stacked when hard
loops are initialized, when a JSR is performed, or when a long interrupt occurs. The P
the source for the calculation of the real address in all position-independent instruct
(such as the instruction BRA).

5.4.4.2 Loop Address (LA) Register

The contents of the 24-bit Loop Address (LA) register indicate the location of the las
instruction word in a hardware loop. This register is stacked into the SSH by a DO
instruction and is unstacked either by end-of-loop processing or by execution of EN
and BRKcc instructions. The LA register, a read/write register, is written by a DO
instruction and read by the System Stack when the register is stacked.

5.4.4.3 Loop Counter (LC) Register

The Loop Counter (LC) register is a special read/write 24-bit counter that specifies t
number of times a hardware program loop repeats, in the range of 0 to (224 – 1). This
register is stacked into the SSL by a DO instruction and unstacked by end-of-loop
processing or by execution of ENDDO and BRKcc instructions. The LC is also used in
REP instruction to specify how many times to repeat the repeated instruction.

5.4.4.4 Vector Base Address (VBA) Register

The Vector Base Address Register (VBA) is a 24-bit register. Eight of the bits VBA[7 –
are read-only and always cleared. The VBA is used as a base address of the interru
vector table (discussed inChapter 2,Core Architecture Overview). When a fast or long
interrupt executes, VBA[7– 0] are driven from the program interrupt control unit, and
23–8 are driven from the VBA. The VBA Register is a read/write register that is
referenced implicitly by interrupt processing or directly by the MOVEC instruction. T
VBA is cleared during hardware reset.
Motorola Program Control Unit 5-23
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PLL and Clock Generator

The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its cen
processing module. The PLL allows the processor to operate at a high internal clock
frequency derived from a low-frequency clock input, a feature that offers two immed
benefits. The lower frequency clock input reduces the overall electromagnetic interfer
generated by a system. The ability to oscillate at different frequencies reduces costs
eliminating the need to add additional oscillators to a system.Figure 6-1 shows the two
main blocks of the clock generator in the DSP56300 core:

■ Phase Locked Loop (PLL) that performs:

— Clock input division

— Frequency multiplication

— Skew elimination

■ Clock Generator (CLKGEN) that performs:

— Low-power division

— Internal and external clock generation

Figure 6-1. PLL Clock Generator Block Diagram
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6.1 PLL and Clock Signals

The PLL and clock pin configuration for each DSP56300 family member is available
the device-specific technical data sheet. The following pins are dedicated to the PLL
clock operation:

■ PCAP: Connects an off-chip capacitor to the PLL filter. One terminal of the
capacitor connects toPCAP, the other connects to VCCP. The value of this capacitor
depends on the PLL Multiplication Factor (MF). See the device-specific techn
data sheet for the correct formula to use for this calculation.

■ CLKOUT: Provides a 50 percent duty cycle output clock synchronized to the inte
processor clock when the PLL is enabled and locked. When the PLL is disabl
the output clock atCLKOUT is derived fromEXTAL, and has half the frequency of,
EXTAL. This pin is operational in all device processing states except when the 
Control 1(PCTL1) Register Clock Out Disable (COD) bit is set, and during the
Stop state. When the device is in the Wait state, theCLKOUT pin continues to
provide a signal.

■ PINIT: During assertion of hardware reset, the value of thePINIT input pin is written
into the PCTL1 PLL Enable (PEN) bit. After hardware reset is deasserted, the
ignores thePINIT pin, and it can have a different function in the device.

■ PLOCK: Originates from the Phase Detector. The device assertsPLOCK when the
PLL is enabled and locked. When the device deassertsPLOCK output, the PLL is
enabled but not locked.PLOCK is also asserted when the PLL is disabled.PLOCK is a
reliable indicator of the PLL lock state only after exiting the hardware reset sta

6.2 PLL Block

Figure 6-2 shows the PLL block diagram. This section describes the PLL control
mechanisms.

Figure 6-2. PLL Block Diagram
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6.2.1 Frequency Predivider

Clock input frequency division is accomplished by means of a frequency predivider o
input frequency. The programmable Division Factor ranges from 1 to 16.

6.2.2 Phase Detector and Charge Pump Loop Filter

The Phase Detector (PD) detects any phase difference between the external clock (EXTAL)
and the phase of the clock generated by the frequency divider. At the point where th
negligible phase difference and the frequency of the two inputs is identical, the PLL 
the Locked state. The charge pump loop filter receives signals from the PD and eith
increases or decreases the phase based on the PD signals. An external capacitor is
connected to thePCAP input to determine low pass filter corner frequencies. The value
this capacitor depends on the Multiplication Factor (MF) of the PLL. See the
Specifications section in the device-specific technical data sheet for the formula to
determine the proper value for the PLL capacitor. After the PLL locks onto the prope
phase and frequency, it reverts to the Narrow Bandwidth mode, which is useful for
tracking small changes due to frequency drift of theEXTAL clock.

6.2.3 Voltage Controlled Oscillator (VCO)

The Voltage Controlled Oscillator (VCO) can oscillate at frequencies from the minim
speed up to the maximum allowed clock input frequency. See the device-specific tech
data sheet for these speeds.

Note: When the PLL is enabled, the device operating frequency is half of the VC
oscillating frequency.

If EXTAL is less than the VCO minimum working frequency, the hardware design sho
hold thePINIT input low during hardware reset. Following reset, the software can cha
MF to the desired value, and set the PCTL[PEN] bit.

6.2.3.1 Divide by 2

The output of the VCO is divided by 2. This results in a constant× 2 multiplication of the
PLL clock output used to generate the special device clock phases.

6.2.3.2 Frequency Divider

The Frequency Divider, which connects to the feedback loop of the PLL, multiplies t
incoming external clock. In the PLL closed loop, the effect of the frequency divider is
multiply the PLL input frequency by its Division Factor. Therefore, the terms “Frequen
Multiplication” and “Frequency Division” are used interchangeably in this chapter. Th
programmable Division Factor ranges from 1 to 4096, resulting in frequency
Motorola PLL and Clock Generator 6-3
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multiplication in the same range. This factor is programmable using the PCTL MF[11
bits.

6.2.3.3 PLL Control Elements

The PLL uses three major control elements in its circuitry:

■ Clock input division

■ Frequency multiplication

■ Skew elimination

6.2.3.3.1   Clock Input Division

The PLL can divide the input frequency by any integer between 1 and 16. The
combination of input division and output low-power division enables you to generate
almost every frequency value out of the PLL (seeSection 6.2.3.3.7, "Operating
Frequency," on page 6-6). The Division Factor can be modified by changing the valu
the PCTL Predivider Factor (PDF) bits (PD[3 – 0]). The output frequency of the
predivider is determined using the following formula:

6.2.3.3.2   Frequency Multiplication

The PLL can multiply the input frequency by any integer between 1 and 4096. The
Multiplication Factor can be modified by changing the value of the PCTL Multiplicati
Factor (MF[11 – 0]) bits. The output frequency of the PLL (that is, PLL Out as shown
Figure 6-1 on page 6-1) is computed using the following formula:

6.2.3.3.3   Skew Elimination

The phase skew of the PLL is defined as the time difference between the falling edg
EXTAL andCLKOUT for a given capacitive load onCLKOUT, over the entire process,
temperature, and voltage ranges. The PLL can eliminate the skew between the exte
clock (EXTAL), the internal clock phases, and theCLKOUT signal, allowing tighter
synchronous timings. Skew elimination is active only when the PLL is enabled and
programmed with a Multiplication Factor less than or equal to 4. When the PLL is
disabled, or when the Multiplication Factor is greater than 4, clock skew can exist.

Fextal
PDF

---------------
FEXTAL

Fextal MF× 2×
PDF

------------------------------------------
FEXTAL
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Note: Skew elimination is assured only ifEXTAL is greater than the minimum
frequency specified in the device-specific technical data sheet (typically 15
MHz).

6.2.3.3.4   Clock Generator

Figure 6-3on page 6-5 shows the Clock Generator block diagram. The components o
Clock Generator are described in the following sections.

6.2.3.3.5   Low-Power Divider (LPD)

The Clock Generator has a divider connected to the output of the PLL. The Low-Po
Divider (LPD) divides the output frequency of the VCO by any power of 2 from 20 to 27.
The Division Factor (DF) of the LPD can be modified by changing the value of the P
Control Register (PCTL) Division Factor bits DF[2 – 0]. Since the LPD is not in the
closed loop of the PLL, changes in the DF do not cause a loss of lock condition. The r
is a significant power savings when the LPD operates in low-power consumption mo
as the device is not involved in intensive calculations. When the device is required to
a low-power mode, it can immediately do so with no time needed for clock recovery
PLL lock.

6.2.3.3.6   Internal and External Clock Pulse Generator

The output stage of the Clock Generator generates the clock signals to the core and
device peripherals, and drives theCLKOUT pin. The output stage divides the frequency b
two. The input source to the output stage is selected between:

■ EXTAL (PEN = 0, PLL disabled), which generates a device frequency defined by
following formula:

Figure 6-3. CLKGEN Block Diagram

EXTAL
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20 to 27
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■ Low-Power Divider output (PEN = 1, PLL enabled), which generates a device
frequency defined by the following formula:

6.2.3.3.7   Operating Frequency

When PEN = 1, the operating frequency of the core is governed by the frequency co
bits in the PCTL Register according to the following formula:

where:

■ MF is the Multiplication Factor defined by MF[11 – 0]

■ PDF is the Predivider Factor defined by PD[3 – 0]

■ DF is the Division Factor defined by DF[2 – 0]

■ FCORE is the device operating frequency

■ FEXTAL is the external EXTAL input

6.3 PLL Programming Model

The PLL clock generator uses a single register, the PCTL Register. The PCTL is an X
mapped 24-bit read/write register used to direct the operation of the on-chip PLL.Figure
6-4 shows the PCTL control bits.

Figure 6-4. PLL Control Register (PCTL)

FEXTAL MF×
PDF DF×

---------------------------------------
FEXTAL

FCORE

FEXTAL MF×

PDF DF×
--------------------------------------=
FEXTAL

23 22 21 20 19 18 17 16 15 14 13 12

PD3 PD2 PD1 PD0 COD PEN PSTP XTLD XTLR DF2 DF1 DF0

11 10 9 8 7 6 5 4 3 2 1 0

MF11 MF10 MF9 MF8 MF7 MF6 MF5 MF4 MF3 MF2 MF1 MF0
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Table 6-1. PLL Control Register (PCTL) Bit Definitions

Bit Number Bit Name Reset Value Description

23 – 20 PD Predivider Factor
Define the PDF value that is applied to the input frequency. PDF can be any
integer from 1 to 16. The VCO oscillates at a frequency defined by the following
formula:

PDF must be chosen to ensure that the resulting VCO output frequency lies in
the range specified in the device-specific technical data sheet. Any time a new
value is written into the PD[3 – 0] bits, the PLL loses the lock condition. After a
time delay (zero to 1,000 clock cycles), the PLL relocks. The PDF bits (PD[3 –
0]) are set to a predetermined value during hardware reset. The reset value is
implementation dependent and is listed in the device-specific user’s manual.

PD[3 – 0] PDF Value

0000 1

0001 2

0010 3

0011 4

0100 5

0101 6

0110 7

0111 8

1000 9

1001 10

1010 11

1011 12

1100 13

1101 14

1110 15

1111 16

19 COD 0 Clock Output Disable
Controls the output buffer of the clock at the CLKOUT pin. When COD is set, the
CLKOUT output is pulled high. When COD is cleared, the CLKOUT pin provides
a 50 percent duty cycle clock synchronized to the internal core clock. If CLKOUT
is not connected to external circuits, set COD (disabling clock output) to
minimize RFI noise and power dissipation. The CLKOUT pin oscillates during all
operating states except Stop state and when COD = 1.

Fextal MF× 2×
PDF

----------------------------------------
FEXTAL
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18 PEN PLL Enable
Enables PLL operation. When PEN is set, the PLL is enabled and the internal
clocks are derived from the PLL VCO output. When PEN is cleared, the PLL is
disabled and the internal clocks are derived directly from the EXTAL signal.
When the PLL is disabled, the VCO stops to minimize power consumption. The
PEN bit may be set or cleared by software any time during the device operation.
During hardware reset, this bit is set or cleared based on the value of the PLL
PINIT input.

17 PSTP 0 PLL Stop State
Controls PLL and on-chip crystal oscillator behavior during the Stop processing
state. When PSTP is set, the PLL and the on-chip crystal oscillator remain
operating when the chip is in the Stop state. When PSTP is cleared and the
device enters the Stop state to support minimum power consumption, the PLL
and the on-chip crystal oscillator are disabled, to further reduce power
consumption; this however results in longer recovery time upon exit from the
Stop state. To enable rapid recovery when exiting the Stop state (but at the cost
of higher power consumption during the Stop state), PSTP should be set.

NOTE: PSTP and PEN are related. When PSTP is set, and PEN is cleared, the
on-chip crystal oscillator remains operating in the Stop state, but the PLL is
disabled. This power saving feature enables rapid recovery from the Stop state
when you operate the device with an on-chip oscillator and with the PLL
disabled.

PSTP PEN
Operation During Stop State Recovery Time

From Stop State

Power
Consumption
During Stop

StatePLL Oscillator

0 x Disabled Disabled Long Minimal

1 0 Disabled Enabled Short Lower

1 1 Enabled Enabled Short Higher

16 XTLD XTAL Disable
Controls the XTAL output from the crystal oscillator on-chip driver. When XTLD
is cleared, the XTAL output pin is active, permitting normal operation of the
crystal oscillator. When XTLD is set, the XTAL output pin is pulled high, disabling
the on-chip oscillator driver. If the on-chip crystal oscillator driver is not used
(that is, EXTAL is driven from an external clock source), set XTLD (disabling
XTAL) to minimize RFI noise and power dissipation.

NOTE: The XTLD bit is set to a predetermined value during hardware reset. The
value is implementation dependent and may vary between different

DSP56300-based devices.

Table 6-1. PLL Control Register (PCTL) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
6-8 DSP56300 Family Manual Motorola
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15 XTLR Crystal Range
Controls the on-chip crystal oscillator transconductance. If the external crystal
frequency is less than 200 kHz (that is, a 32 KHz clock crystal), set this bit to
decrease the transconductance of the input amplifier. Otherwise, the internal
clocks may not be stable. If the external crystal frequency is greater than 200
kHz, clear this bit in order to have full transconductance. Otherwise, the crystal
oscillator may not function at all.

NOTE: The XTLR bit is set to a predetermined value during hardware reset. The
value is implementation dependent and may vary between different
DSP56300-based devices.

14 – 12 DF 0 Division Factor
Define the DF of the low-power divider. These bits specify the DF as a power of

two in the range from 20 to 27. Changing the value of the DF[2 – 0] bits does not
cause a loss of lock condition. Whenever possible, changes of the operating
frequency of the device (for example, to enter a low-power mode) should be
made by changing the value of the DF[2 – 0] bits rather than changing the MF[11
– 0] bits.

For MF ≤ 4, changing DF[2 – 0] may lengthen the instruction cycle following the
PLL control register update; this ensures synchronization between EXTAL and
the internal device clock. For MF > 4 such synchronization is not ensured, and
the instruction cycle is not lengthened.

DF[2 – 0] DF Value

000 20

001 21

010 22

011 23

100 24

101 25

110 26

111 27

Table 6-1. PLL Control Register (PCTL) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
Motorola PLL and Clock Generator 6-9
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6.4 Clock Synchronization

When the PLL is enabled, (the PEN bit in the PCTL register is set), low clock skew
betweenEXTAL andCLKOUT is guaranteed if MF< 5. CLKOUT and the internal device clock
are fully synchronized. See the device-specific technical data sheet for additional
information.

6.5 Design Guidelines for Ripple and PCAP

The voltage noise on the VCCP pin is critical to the PLL operation, since the PLL loo
filter capacitor connects to it. The following recommendations for filtering the PLL pow
supply apply to all DSP56300 family devices.

11 – 0 MF Multiplication Factor
Defines the Multiplication Factor (MF) that is applied to the PLL input frequency.
The MF can be any integer from 1 to 4096. The VCO oscillates at a frequency
defined by the following formula where PDF is the Predivider Division Factor:

The MF must be chosen to ensure that the resulting VCO output frequency is in
the range specified in the device-specific technical data sheet. Any time a new
value is written into the MF[11 – 0] bits, the PLL loses the lock condition. After a
time delay (provided in the device-specific technical data sheet), the PLL
relocks. The Multiplication Factor bits MF[11 – 0] are set to a predetermined
value during hardware reset; the value is implementation dependent and is
provided in the device-specific user’s manual.

MF[11 – 0] Multiplication Factor MF

$000 1

$001 2

$002 3

•
•
•

•
•
•

$FFE 4095

$FFF 4096

Table 6-1. PLL Control Register (PCTL) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

Fextal MF× 2×
PDF

----------------------------------------
FEXTAL
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■ The PLL power supply should be very well regulated and noise-free. Here are s
recommendations for a Vcc noise filter for the PLL power supply:

— The Wn (bandwidth) of the PLL is 2MHz/(Multiplication Factor). The cutoff
frequency of the Vcc filter should be less than Wn/100.

— The maximum allowed accumulated noise at frequencies from Wn/10 to
infinity is 6mV. The maximum allowed accumulated noise at frequencies fr
0 Hz to Wn/10 is 30mV.

— The filter should have as low as possible impedance for DC, in order to
minimize voltage drop to the PLL power supplies.

— Take care to ensure that no more than 0.5V voltage differential exists betw
the PLL power supply and the DSP power supplies at all times.

In the PLL filter circuit inFigure 6-5:

■ Note that the 0.1F capacitor should be in parallel with the 22µF, since the high
frequency current needs for the PLL cannot be met with a regular 22µF. If
high-frequency noise is not attenuated due to the lack of this capacitor, it will co
through the PCAP and cause jitter on the VCO. Beside that, the 12Ω with 22µF
gives Fc = 1/(2*3.14*12*22u) ~ 600Hz,

■  Wn = 2MHz / 8 = 125kHz, so the noise attenuation is expected to be about 5
near DC, meaning that up to about 1Vp-p high-frequency noise may occur be
the filter. For 4mA current consumption of the PLL, it means Vdrop = 12 *4mA≈
50mV, which is also acceptable.

Figure 6-5. PLL Filter Circuit

NOTES:

1. FB = Ferrite Bead with 600Ω impedance at 100 MHz, 12Ω at DC.

2. PCAP value calculated according to datasheet.

VCC = 5v

Gnd

0.1µF

PCAP 22µF 0.1µF

VCCP PCAP GndPGndP

Ferrite
Bead
Motorola PLL and Clock Generator 6-11
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Chapter 7
Debugging Support
The DSP56300 modules and features for debugging applications during system
development are as follows:

■ JTAG Test Access Port (TAP): Provides the TAP and Boundary Scan functionalit
based on theIEEE Standard Test Access Port and Boundary-Scan Architecture
(IEEE 1149.1), which can test a circuit board containing a DSP56300 family c
including signal levels at the chip-to-board interface (that is, the boundary), but
the internal chip functions. The TAP also provides external access to the On-
Emulation (OnCE™) module

■ OnCE module:Debugs software used with a DSP56300 family device and tests
hardware interface. The OnCE module has one dedicated external pin conne
the Debug Event (DE) pin. All other communication with the module occurs
through the TAP pins.

■ Address Trace Mode: This feature, enabled by the ATE bit in the Operating Mod
Register (OMR), allows tracing of internal accesses by monitoring the externa
address lines (A[23 – 0]or A[17–0]).

The debugging interface uses six interface signals. As described in the IEEE 1149.1
standard, the JTAG TAP requires a minimum of four pins to support theTDI, TDO, TCK,
andTMS signals. The DSP56300 family also provides a pin for the optionalTRST signal.
The OnCE module uses one pin for theDE signal.Table 7-1 describes the signals.

Table 7-1. Debugging Control Signals

Name Abbrev. Type Module Signal Description

Test Clock TCK Input TAP TCK is the external clock that synchronizes the test logic.

Test Mode
Select

TMS Input TAP TMS sequences the TAP controller state machine. TMS is
sampled on the rising edge of TCK and has an internal pull-up
resistor.

Test Data
Input

TDI Input TAP Receives serial test instruction and data, which is sampled on
the rising edge of TCK and has an internal pull-up resistor.
Register values are shifted in Least Significant Bit (LSB) first.
Motorola DSP56300 Family Manual 7-1
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7.1 JTAG Test Access Port

The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) 
on theIEEE Standard Test Access Port and Boundary-Scan Architecture (IEEE 114.
Problems of testing high density circuit boards led to development of this standard u
the sponsorship of the Test Technology Committee of IEEE and the Joint Test Actio
Group (JTAG). The DSP56300 core implementation supports circuit-board test strate
based on this standard.

7.1.1 Boundary Scan Architecture Overview

The test logic includes a TAP consisting of four dedicated signal pins, a 16-state
controller, and three test data registers. A Boundary Scan Register (BSR) links all d
signal pins into a single shift register. The test logic, implemented with static logic des

Test Data
Output

TDO Output TAP The serial output for test instructions and data. TDO is
tri-stateable and is actively driven in the shift-IR and shift-DR
controller states. TDO changes on the falling edge of TCK.
Register values are shifted out LSB first.

Test Reset TRST Input TAP Initializes the test controller asynchronously. TRST has an
internal pull-up resistor. To reset the TAP controller
synchronously, use TCK to clock five consecutive 1s into
TMS. To reset the remaining parts of the DSP core and the
peripherals (or in some cases, such as the HI32, only the
internal portion of a peripheral), use the RESET input signal.

Debug
Event

DE Input or
Output

OnCE An open-drain signal providing, as an input, a means of
entering the Debug mode of operation from an external
command controller, and, as an output, a means of
acknowledging that the chip has entered the Debug mode.
This signal, when asserted as an input, causes the
DSP56300 core to finish executing the current instruction,
save the instruction pipeline information, enter Debug mode,
and wait for commands to be entered from the debug serial
input line. This signal is asserted as an output for three clock
cycles when the chip enters Debug mode as a result of a
debug request or as a result of meeting a breakpoint
condition. The DE has an internal pull-up resistor.

This is not a standard part of the JTAG Test Access Port
(TAP) Controller. The signal connects directly to the OnCE
module to initiate Debug mode directly or to provide a direct
external indication that the chip has entered Debug mode. All
other interaction with the OnCE module must occur through
the JTAG port.

Table 7-1. Debugging Control Signals  (Continued)

Name Abbrev. Type Module Signal Description
7-2 DSP56300 Family Manual Motorola
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is independent of the device system logic. The DSP56300 core has the following
capabilities initiated by the associated JTAG commands (listed in parentheses):

■ Perform boundary scan operations to test circuit-board electrical continuity
(EXTEST)

■ Bypass the DSP56300 core for a given circuit board test by effectively reducing
BSR to a single cell (BYPASS)

■ Sample the DSP56300 core-based device system pins during operation and
transparently shift out the result in the BSR; preload values to output pins prio
invoking the EXTEST instruction (SAMPLE/PRELOAD)

■ Disable the output drive to pins during circuit-board testing (HIGHZ)

■ Access the OnCE controller and circuits to control a target system
(ENABLE_ONCE)

■ Enter the Debug mode of operation (DEBUG_REQUEST)

■ Query identification information on manufacturer, part number, and version fro
DSP56300 core-based device (IDCODE)

■ Force test data onto the outputs of a DSP56300 core-based device while repl
its BSR in the serial data path with a single-bit register (CLAMP)

This section discusses aspects of the JTAG implementation that are specific to the
DSP56300 core and is to be used with the supporting IEEE 1149.1 standards docum
The discussion covers items the standard requires to be defined and includes additi
information specific to the DSP56300 core implementation.Figure 7-1 shows the block
diagram of the DSP56300 core implementation of JTAG, which includes a 4-bit
Instruction Register and three test registers: a 1-bit Bypass Register, a 32-bit Identific
Register, and a Boundary Scan Register (BSR) whose size is chip-specific. This
implementation includes a dedicated TAP and five pins.

7.1.2 TAP Controller

The TAP controller interprets the sequence of logical values on the TMS signal. It is
synchronous state machine that controls the operation of the JTAG logic.Figure 7-2.
shows the state machine. The value shown adjacent to each change-of-state arrow
represents the value of theTMS signal sampled on the rising edge of theTCK signal. For a
description of the TAP controller states, see the IEEE 1149.1 specification.
Motorola Debugging Support 7-3
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Figure 7-1. Test Access Port with OnCE Module Block Diagram
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Figure 7-2. TAP Controller State Machine

7.1.3 Boundary Scan Register

The Boundary Scan Register (BSR) in the DSP56300 core JTAG implementation con
bits for all device signal and clock pins and associated control signals. All bidirection
pins are controlled by an associated control bit in the BSR. The boundary scan bit
definitions vary according to specific chip implementations. See the device-specific u
manual for a complete description of the BSR contents.

7.1.4 Instruction Register

The DSP56300 core JTAG implementation includes the three mandatory public
instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and supports the option
CLAMP instruction defined by IEEE 1149.1. The HI-Z public instruction can disable 

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Test-Logic-Reset

Run-Test/Idle

Update-DR

1

0

0

1

0

1

1

0

1

1

0

0

1 0

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

0

0

1

0

1

1

0

1

1

0

0

1 0

01

0

1 1
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device output drivers. The ENABLE_ONCE public instruction enables the JTAG por
communicate with the OnCE circuitry. The DEBUG_REQUEST public instruction
enables the JTAG port to force the DSP56300 core into Debug mode. The DSP56300
includes a 4-bit instruction register without parity consisting of a shift register with fo
parallel outputs. Data is transferred from the shift register to the parallel outputs durin
Update-IR controller state.Figure 7-3 shows the Instruction Register configuration.

The four bits decode the eight instructions shown inTable 7-2. The 0101 code is reserved
for future enhancements. All other encodings (1000 – 1110) are decoded as BYPAS

The parallel output of the instruction register is reset to 0010 in the Test-Logic-Rese
controller state, which is equivalent to the IDCODE instruction. During the Capture-I
controller state, the parallel inputs to the instruction shift register are loaded with 01 in
Least Significant Bits (LSBs) as required by the standard. The Two Most Significant
(MSBs) are loaded with the values of the core status bits OS1 and OS0 from the On
controller.

Figure 7-3. JTAG Instruction Register Format

Table 7-2. JTAG Instructions

Code
Instruction

B3 B2 B1 B0

0 0 0 0 EXTEST

0 0 0 1 SAMPLE/PRELOAD

0 0 1 0 IDCODE

0 0 1 1 RESERVED

0 1 0 0 HI-Z

0 1 0 1 CLAMP

0 1 1 0 ENABLE_ONCE1

0 1 1 1 DEBUG_REQUEST1

1 1 1 1 BYPASS

Notes: 1. The ENABLE_ONCE and DEBUG_REQUEST public
instructions are not part of the IEEE 1149.1 standard.

2. x = either 1 or 0

JTAG Instruction
Register (IR) B3 B2 B1 B0
7-6 DSP56300 Family Manual Motorola



JTAG Test Access Port

nal

s a
n the
h the

d

of
e

 the
7.1.4.1 EXTEST (B[3 – 0] = 0000)

The external test (EXTEST) instruction selects the BSR. EXTEST also asserts inter
reset for the DSP56300 core system logic to force a predictable internal state while
performing external boundary scan operations. Using the TAP, the BSR can:

■ Scan user-defined values into the output buffers

■ Capture values presented to input pins

■ Control the direction of bidirectional pins

■ Control the output drive of tri-stateable output pins

For details on the function and use of EXTEST, refer to the IEEE 1149.1 standards
document.

7.1.4.2 SAMPLE/PRELOAD (B[3 – 0] = 0001)

The SAMPLE/PRELOAD instruction performs two separate functions. First, it obtain
snapshot of system data and control signals that occurs on the rising edge of TCK i
Capture-DR controller state. The data is observed by shifting it transparently throug
BSR.

Note: Since no internal synchronization exists between the JTAG clock (TCK) an
the system clock (CLK), you must provide some form of external
synchronization to achieve meaningful results.

Secondly, SAMPLE/PRELOAD can initialize the BSR output cells prior to selection 
EXTEST. This initialization ensures that known data appears on the outputs when th
EXTEST instruction starts executing.

7.1.4.3 IDCODE (B[3 – 0] = 0010)

The IDCODE instruction selects the ID register. This public instruction allows
identification of the manufacturer, part number, and version of a component through
TAP. Figure 7-3 shows the ID register configuration.

Figure 7-3. Identification Register Configuration

01111231

n n n n 10 0 0 0 0 0 0 1 1 1 0

2122 1617

 0 0 0 0 0 0 0 0 1 1 0 n n n n n

IEEE 1149.1
Requirement
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Number
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One application of the ID register is to distinguish the manufacturer(s) of components
board when multiple sourcing is used. As more components that conform to the IEE
1149.1 standard emerge, it is desirable for a system diagnostic controller unit to blin
interrogate a board design in order to determine the type of each component in eac
location. This information is also available for factory process monitoring and for fail
mode analysis of assembled boards.

Once the IDCODE instruction is decoded, it selects the ID register, which is a 32-bit
register. The Bypass register loads a logic 0 at the start of a scan cycle, whereas th
register loads a logic 1 into its LSB. Examination of the first bit of data shifted out of
component during a test data scan sequence immediately following exit from
Test-Logic-Reset controller state shows whether such a register is included in the d
When the IDCODE instruction is selected, the operation of the test logic has no effe
the operation of the on-chip system logic as required by the IEEE 1149.1 standard.

Version Number The major revision or mask set change of the device (for
example, 0000 = Revision 0; 0001 = Revision A). This
information is in the boundary-scan description language
(BSDL) file for the device. The BSDL file for each device
in the DSP56300 family is available for download from
Motorola’s World Wide Web site at:
http://www.mot.com/pub/SPS/DSP/LIBRARY/

Note that there are no revision changes for individual masks
of a chip. Revision changes apply to groupings of masks
(that is, mask sets). For example, for the DSP56301, a mask
set of 0F92R and 1F92R has the revision number of $1. A
different mask set consisting of 0F48S, 1F48S, and 3F48S
comprises Revision $2.

Manufacturer’s Use The Motorola Design Center Number (bits 27 – 22). The
Motorola Semiconductor Israel Ltd (MSIL) Design Center
Number is 000110.

Sequence Number Divided into two parts: Core Number (bits 21:17) and Chip
Derivative Number (bits 16 – 12). the DSP56300 core
number is 00000.

Manufacturer Identity Motorola’s Manufacturer Identity is 00000001110.
7-8 DSP56300 Family Manual Motorola
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7.1.4.4 CLAMP (B[3 – 0] = 0011)

CLAMP is an optional instruction defined by the IEEE 1149.1 standard. It selects the 1
Bypass register as the serial path between TDI and TDO, while allowing signals driv
from the component pins to be determined from the BSR. During testing of ICs on a P
it may be necessary to place static guarding values on signals that control operation
logic not involved in the test. The EXTEST instruction could be used for this purpose,
since it selects the BSR, the required guarding signals would be loaded as part of th
complete serial data stream shifted in, both at the start of the test and each time a ne
pattern is entered. Since the CLAMP instruction allows guarding values to be applie
using the BSR of the appropriate ICs while selecting their Bypass registers, it allows m
faster testing than EXTEST. Data in the boundary scan cell remains unchanged unt
new instruction is shifted in or the JTAG state machine is set to its reset state. The
CLAMP instruction also asserts internal reset for the DSP56300 core system logic to
a predictable internal state while performing external boundary scan operations.

7.1.4.5 HI-Z (B[3 – 0] = 0100)

HI-Z is a manufacturer’s optional public instruction to prevent the need to backdrive
output pins during circuit-board testing. When HI-Z is invoked, all output drivers,
including the two-state drivers, are turned off (that is, high impedance). The instruct
selects the Bypass register. HI-Z also asserts internal reset for the DSP56300 core 
logic to force a predictable internal state while performing external boundary scan
operations.

7.1.4.6 ENABLE_ONCE(B[3:0] = 0110)

ENABLE_ONCE is not included in the IEEE 1149.1 standard. It is a public instructio
that enables you to perform system debug functions. When ENABLE_ONCE is deco
theTDI andTDO pins connect directly to the OnCE registers. The particular OnCE regis
connected betweenTDI andTDO at a given time is selected by the OnCE controller,
depending on the OnCE instruction currently executing. All communication with the
OnCE controller occurs through the Select-DR-Scan path of the JTAG TAP Controll

7.1.4.7 DEBUG_REQUEST(B[3 – 0] = 0111)

DEBUG_REQUEST is not included in the IEEE 1149.1 standard. It is a public instruc
that enables you to generate a debug request signal to the DSP56300 core. When
DEBUG_REQUEST is decoded, theTDI andTDO pins connect to the instruction registers
In the Capture-IR state of the TAP, the OnCE status bits are captured in the Instruc
shift register, so the external JTAG controller must continue to shift in the
DEBUG_REQUEST while polling the status bits that are shifted out until the Debug
mode of operation is entered (acknowledged by the combination 11 on OS[1 – 0]). A
Motorola Debugging Support 7-9
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acknowledgment of Debug mode is received, the external JTAG controller must issu
ENABLE_ONCE instruction so you can perform system debug functions.

7.1.4.8 BYPASS (B[3 – 0] = 1111)

BYPASS selects the single-bit Bypass register, as shown inFigure 7-4. This creates a
shift-register path fromTDI to the Bypass register, and finally to TDO, circumventing th
BSR. This instruction enhances test efficiency when a component other than the
DSP56300 core-based device becomes the device under test. When the current inst
selects the Bypass register, the shift-register stage is set to a logic 0 on the rising ed
TCK in the Capture-DR controller state. Therefore, the first bit shifted out after selectio
the Bypass register is always a logic 0.

7.1.5 DSP56300 JTAG Restrictions

The control afforded by the output enable signals using the BSR and the EXTEST
instruction requires a compatible circuit-board test environment to avoid
device-destructive configurations. You must avoid situations in which the DSP56300
output drivers are enabled into actively driven networks. In addition, EXTEST can
execute only after power-up or regular hardware reset while EXTAL is provided. Wh
EXTEST executes, EXTAL can remain inactive.

Two constraints relate to the JTAG interface. First, theTCK input does not include an
internal pull-up resistor and should not be left unconnected. The second constraint i
ensure that the JTAG test logic is kept transparent to the system logic by forcing the
into the Test-Logic-Reset controller state, using either of two methods. During power
TRST must be externally asserted to force the TAP controller into this state. After
power-up finishes,TMS must be sampled as a logic 1 for five consecutiveTCK rising edges.
If TMS either remains unconnected or is connected to VCC, then the TAP controller cannot
leave the Test-Logic-Reset state, regardless of the state ofTCK.The DSP56300 core
features a low-power Stop mode, which is invoked using the STOP instruction. The
interaction of the JTAG interface with low-power Stop mode is as follows:

Figure 7-4. Bypass Register
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1. The TAP controller must be in the Test-Logic-Reset state to either enter or re
in the low-power Stop mode. Leaving the TAP controller Test-Logic-Reset sta
negates the ability to achieve low power, but does not otherwise affect device
functionality.

2. TheTCK input is not blocked in low-power Stop mode. To consume minimal
power, theTCK input should be externally pulled to VCC or GND.

3. TheTMS andTDI pins include on-chip pull-up resistors. In low-power Stop mode
these two pins should remain either unconnected or connected to VCC to achieve
minimal power consumption.

During Stop mode all DSP56300 core clocks are disabled, so the JTAG interface pro
the means for polling the device status (sampled in the Capture-IR state). For a DSP5
derivative that does not include theDE pin, the JTAG interface provides the
DEBUG_REQUEST instruction for entering Debug mode.

7.2 OnCE Module

The DSP56300 core On-Chip Emulation (OnCE) module interacts with the DSP56300
core and its peripherals non-intrusively so that you can examine registers, memory,
on-chip peripherals, thus facilitating hardware and software development on the
DSP56300 core processor. Special circuits and dedicated pins on the DSP56300 co
defined to avoid sacrificing any user-accessible on-chip resource.

The OnCE module controller functionality is accessed through the JTAG test access
(TAP). In addition to describing OnCE features and functionality, this section gives
examples of debugging procedures using the OnCE module. The OnCE module reso
can be accessed only after the JTAG ENABLE_ONCE executes instruction (these
resources are accessible even when the chip operates in Normal mode).Figure 7-5shows
the block diagram of the OnCE module.
Motorola Debugging Support 7-11
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The OnCE module controller functionality is accessed through the JTAG port. The JT
TCK, TDI, andTDO pins shift data and instructions in and out.

Figure 7-6. OnCE Multiprocessor Configuration

7.2.1 OnCE Controller

The OnCE Controller contains the following blocks: OnCE Command Register (OCR
OnCE Decoder, and the OnCE Status and Control Register (OSCR).Figure 7-7 shows a
block diagram of the OnCE controller.

Figure 7-5. OnCE Block Diagram
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Figure 7-7. OnCE Controller

7.2.1.1 OnCE Command Register (OCR)

The OnCE Command Register (OCR) is a shift register that receives its serial data 
theTDI pin. It holds the 8-bit commands to be used as input for the OnCE Decoder. T
OCR is shown inFigure 7-8.

Figure 7-8. OnCE Command Register (OCR) Format

Table 7-3. OnCE Command Register (OCR) Bit Definitions

Bit Number Bit Name Reset Value Description

7 R/W Read/Write Command
Specifies the direction of the data transfer.

R/W Action

0 Write the data associated with the
command into the register specified
by RS[4 – 0].

1 Read the data contained in the
register specified by RS[4 – 0].

OnCE Command Register
TDI
TCK

Status and Control
Register TDO

Mode Select

OnCE Decoder
ISDEBUG

ISBKPT

ISSWDBG

ISDR
ISTRACE

Register WriteRegister Read

Update

OCR
OnCE Command

Register
Reset = $00

Write Only

R/W GO EX RS4 RS3 RS2 RS1 RS0

7 6 5 4 3 2 1 0
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6 GO Go Command
If the GO bit is set, executes the instruction that resides in the OnCE PIL
register. To execute the instruction, the core leaves Debug mode. The
core returns to the Debug mode immediately after executing the
instruction if the EX bit is cleared. The core continues normal operation
if the EX bit is set. The GO command executes only if the operation is a
write to the OnCE Program Data Bus Register (OPDBR) or a read/write
to No Register Selected. Otherwise, the GO bit is ignored.

5 EX Exit Command
If the EX bit is set, the core exits Debug mode and resumes normal
operation. The EXIT command executes only if the GO command is
issued, and the operation writes to OPDBR or reads/writes to No
Register Selected. Otherwise, the EX bit is ignored.

Table 7-3. OnCE Command Register (OCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
7-14 DSP56300 Family Manual Motorola
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7.2.1.2 OnCE Decoder (ODEC)

The OnCE Decoder (ODEC) supervises the entire OnCE module activity. It receives
input the 8-bit command from the OCR, a signal from the JTAG Controller (indicatin
that 8/24 bits have been received and that the selected data register must be update
a signal indicating that the core halted. The ODEC generates all the strobes require
reading and writing the selected OnCE registers.

4 – 0 RS Register Select
Defines which register is the source/destination for the read/write
operation. Following is the OnCe Register Select Encoding:

RS[4 – 0] Register Selected

00000 OnCE Status and Control Register (OSCR)

00001 OnCE Memory Breakpoint Counter (OMBC)

00010 OnCE Breakpoint Control Register (OBCR)

00011 Reserved

00100 Reserved

00101 OnCE Memory Limit Register 0 (OMLR0)

00110 OnCE Memory Limit Register 1 (OMLR1)

00111 Reserved

01000 Reserved

01001 OnCE GDB Register (OGDBR)

01010 OnCE PDB Register (OPDBR)

01011 OnCE PIL Register (OPILR)

01100 PDB GO-TO Register (for GO TO command)

01101 OnCE Trace Counter (OTC)

01110 Reserved

01111 OnCE PAB Register for Fetch (OPABFR)

10000 OnCE PAB Register for Decode (OPABDR)

10001 OnCE PAB Register for Execute (OPABEX)

10010 Trace Buffer and Increment Pointer

10011 Reserved

101xx Reserved

11xx0 Reserved

11x0x Reserved

110xx Reserved

11111 No Register Selected

Table 7-3. OnCE Command Register (OCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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7.2.1.3 OnCE Status and Control Register (OSCR)

The OnCE Status and Control Register (OSCR) enables the Trace mode of operatio
indicates the reason for entering Debug mode. The control bits are read/write, and t
status bits are read-only. The OSCR bits are cleared by hardware reset. The OSCR
shown inFigure 7-9.

Figure 7-9. OnCE Status and Control Register (OSCR)

Table 7-4. OnCE Status and Control Register (OSCR) Bit Definitions

Bit Number Bit Name Reset Value Description

23 – 0 0 Reserved. Write to zero for future compatibility.

7 – 6 OS 0 Core Status
Read-only status bits that provide core status information. Examining
the status bits, you can determine whether the chip has entered Debug
mode. To find the reason for entering Debug mode, consult the OSCR
SWO, MBO, and TO bits. You can also examine these bits to determine
why the chip has not entered the Debug mode after debug event
assertion (DE) or execution of the JTAG Debug Request instruction
(core waiting for the bus, STOP or WAIT instruction, etc.). The OS bits
are also reflected in the JTAG instruction shift register, which allows the
polling of the core status information at the JTAG level so that you can
read the OSCR after the DSP56300 core executes the STOP
instruction (and therefore there are no clocks).

OS1 OS0 Description

0 0 DSP56300 core is executing instructions

0 1 DSP56300 core is in Wait or Stop mode

1 0 DSP56300 core is waiting for bus

1 1 DSP56300 core is in Debug mode

5 HIT 0 Cache Hit
A read-only status bit that is set when a cache hit occurs in Cache
mode in the Debug mode of operation. In PRAM mode, this bit reads as
one.

23 ..................... 8 7 6 5 4 3 2 1 0

........................... OS1 OS0 HIT TO MBO SWO IME TME

Reserved bit, read as zero, write to zero for future compatibility.
7-16 DSP56300 Family Manual Motorola
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7.2.2 OnCE Memory Breakpoint Logic

Memory breakpoints can be set on program memory or data memory locations. In
addition, the breakpoint does not have to be in a specific memory address, but withi
approximate address range of where the program may be executing. This significan
increases your ability to monitor what the program is doing in real-time. The breakpo
logic, shown inFigure 7-10., contains a latch for the addresses, registers that store th
upper and lower address limit, address comparators, and a breakpoint counter. Add
comparators are useful in determining where a program may be getting lost or when
is written where it should not be written. They are also useful in halting a program a
specific point to examine/change registers or memory. Using address comparators 
breakpoints enables you to set breakpoints in RAM or ROM in any operating mode.
Memory accesses are monitored according to the contents of the OBCR as specifie
Section 7.2.2.6, "OnCE Breakpoint Control Register (OBCR)," on page 7-19.

4 TO 0 Trace Occurrence
The Trace Occurrence (TO) bit is a read-only status bit that is set when
all the following occur:

■ Trace Counter = 0
■ Trace mode is enabled
■ Debug mode of operation is entered

This bit is cleared when the DSP leaves Debug mode.

3 MBO 0 Memory Breakpoint Occurrence
A read-only status bit that is set when the DSP enters Debug mode
because a memory breakpoint has been encountered. This bit is
cleared when the DSP leaves Debug mode.

2 SWO 0 Software Debug Occurrence
A read-only status bit that is set when the DSP enters Debug mode
because of the execution of the DEBUG or DEBUGcc instruction with
condition true. This bit is cleared when the DSP leaves Debug mode.

1 IME 0 Interrupt Mode Enable
When this control bit is set, the chip executes a vectored interrupt to the
address VBA:$06 instead of entering Debug mode.

0 TME 0 Trace Mode Enable
When set, this control bit enables the Trace mode of operation.

Table 7-4. OnCE Status and Control Register (OSCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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7.2.2.1 OnCE Memory Address Latch (OMAL)

The OnCE Memory Address Latch (OMAL) is a 24-bit register that latches the PAB,
XAB or YAB on every instruction cycle according to the MBS[1– 0] bits in the OBCR

7.2.2.2 OnCE Memory Limit Register 0 (OMLR0)

The OnCE Memory Limit Register 0 (OMLR0) is a 24-bit register that stores the mem
breakpoint limit. OMLR0 can be read or written through the JTAG port. Before enab
breakpoints, OMLR0 must be loaded by the external command controller.

7.2.2.3 OnCE Memory Address Comparator 0 (OMAC0)

The OnCE Memory Address Comparator 0 (OMAC0) compares the current memory
address (stored in OMAL) with the OMLR0 contents.

Figure 7-10. OnCE Memory Breakpoint Logic 0
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7.2.2.4 OnCE Memory Limit Register 1 (OMLR1)

The OnCE Memory Limit Register 1 (OMLR1) is a 24-bit register that stores the mem
breakpoint limit. OMLR1 can be read or written through the JTAG port. Before enab
breakpoints, OMLR1 must be loaded by the external command controller.

7.2.2.5 OnCE Memory Address Comparator 1 (OMAC1)

The OnCE Memory Address Comparator 1 (OMAC1) compares the current memory
address (stored in OMAL) with the OMLR1 contents.

7.2.2.6 OnCE Breakpoint Control Register (OBCR)

The OnCE Breakpoint Control Register (OBCR) defines the memory breakpoint eve
The OBCR can be read or written through the JTAG port. All OBCR bits are cleared
hardware reset.

Figure 7-11. OnCE Breakpoint Control Register (OBCR)

Table 7-5. OnCE Breakpoint Control Register (OBCR) Bit Definitions

Bit Number Bit Name Reset Value Description

23 – 12 0 Reserved. Write to zero for future compatibility.

11 – 10 BT 0 Breakpoint Event Bits
Define the sequence between breakpoints 0 and 1. If the condition
defined by BT[1 – 0] is met, then the Breakpoint Counter (OMBC) is
decremented.

BT[1 – 0] Description

00 Breakpoint 0 and Breakpoint 1

01 Breakpoint 0 or Breakpoint 1

10 Breakpoint 1 after Breakpoint 0

11 Breakpoint 0 after Breakpoint 1

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

BT1 BT0 CC11 CC10 RW11 RW10 CC01 CC00 RW01 RW00 MBS1 MBS0

Reserved, read as zero, should be written with zero for future compatibility.
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9 – 8 CC1 0 Breakpoint1 Condition Code
Define the condition of the comparison between the current memory
address (OMAL) and the OnCE Memory Limit Register 1 (OMLR1).

CC1[1 – 0] Description

00 Breakpoint on not equal

01 Breakpoint on equal

10 Breakpoint on less than

11 Breakpoint on greater than

7 – 6 RW1 0 Breakpoint 1 Read/Write
Define memory breakpoint 1 to occur when a memory address access
is performed for read, write or both.

RW1[1 – 0] Description

00 Breakpoint disabled

01 Breakpoint on write access

10 Breakpoint on read access

11 Breakpoint read or write access

4 – 5 CC0 0 Breakpoint 0 Condition Code
Define the condition of the comparison between the current Memory
Address (OMAL) and the Memory Limit Register 0 (OMLR0).

CC0[1 – 0] Description

00 Breakpoint on not equal

01 Breakpoint on equal

10 Breakpoint on less than

11 Breakpoint on greater than

3 – 2 RW0 0 Breakpoint 0 Read/Write
Define the memory breakpoint 0 to occur when a memory address
access is performed for read, write, or both.

RW0[1 – 0] Description

00 Breakpoint disabled

01 Breakpoint on write access

10 Breakpoint on read access

11 Breakpoint on read or write access

Table 7-5. OnCE Breakpoint Control Register (OBCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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7.2.2.7 OnCE Memory Breakpoint Counter (OMBC)

The OnCE Memory Breakpoint Counter is a 24-bit counter that is loaded with a valu
equal to the number of times minus one that a memory access event should occur be
memory breakpoint is declared. The memory access event is specified by the OBCR
by the memory limit registers. On each occurrence of the memory access event, the
breakpoint counter decrements. When the counter reaches 0 and a new event occu
chip enters Debug mode. The OMBC can be read or written through the JTAG port. E
time the limit register changes or a different breakpoint event is selected in the OBCR
breakpoint counter must be written afterwards. This ensures that the OnCE breakpo
logic is reset and that no previous events can affect the new breakpoint event selecte
breakpoint counter is cleared by hardware reset.

7.2.3 Cache Support

To keep track of the cache contents and status, the eight Tag values, Tag lock/unlo
status, and LRU status can be read via the OnCE module. Nine 24-bit registers are
implemented as a circular buffer with a 4-bit counter. All registers have the same add
but any access to the Tag buffer increments the counter, thus pointing to the next re
in the circular buffer. When Debug mode is exited, the counter is cleared, so when D
mode is re-entered, the first read from the Tag buffer address always starts from the
register of the nine (Tag number 0) and circles continuously among these nine regis
The register mapping in the circular Tag buffer is shown inFigure 7-12, "Circular Tags
Buffer (TAGB)," on page 7-22.

At any time, at least one LRU bit in the LRU/Lock Status Register is set, but multiple
LRU bits can be set at the same time because locked sectors can be the Least Rec
Used sector even though they cannot be replaced. Therefore, the next sector to be re
is the only sector whose LRU bit is set and whose lock bit is cleared. The one excepti
this rule occurs when all eight sectors are locked and LRU, in which case there is no

1 – 0 MBS 0 Memory Breakpoint
Enable memory breakpoints 0 and 1, allowing them to occur when a
memory access is performed on P, X, or Y memory.

MBS[1 – 0] Description

00 Reserved

01 Breakpoint on P access

10 Breakpoint on X access

11 Breakpoint on Y access

Table 7-5. OnCE Breakpoint Control Register (OBCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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sector to be replaced, because no sector can be replaced until at least one sector is
unlocked.

7.2.3.1 OnCE Trace Logic

The 24-bit OnCE Trace Counter (OTC) can be read or written through the JTAG port.
instructions are to be executed before Debug mode is entered, the Trace Counter sho
loaded with N – 1. The Trace Counter is cleared by hardware reset. When the OnCE T
Logic is used, instructions can execute in single or multiple steps. The OnCE Trace L
causes the chip to enter Debug mode after one or more instructions execute and to w
OnCE commands from the debug serial port. The OnCE Trace Logic block diagram
shown inFigure 7-13.

Figure 7-12. Circular Tags Buffer (TAGB)
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Figure 7-13. OnCE Trace Logic Block Diagram

Trace mode has an associated counter so that more than one instruction can be ex
before returning to Debug mode. The counter allows you to take multiple real-time
instruction steps before entering Debug mode. This feature helps you to debug sectio
code that do not have a normal flow or are hanging up in infinite loops. The Trace Cou
also enables you to count the number of instructions executed in a code segment.

To enable Trace mode, the counter is loaded with a value, the program counter is set
start location of the instruction(s) to be executed real-time, the TME bit is set in the OS
and the DSP56300 core exits Debug mode by executing the appropriate command 
by the external command controller.

When Debug mode is exited, the counter decrements after each execution of an
instruction. Interrupts are serviceable and all instructions executed—including fast
interrupt services and repeated instructions—decrement the Trace Counter. When i
decrements to 0, the DSP56300 core re-enters Debug mode, the Trace Occurrence
(TO) in the OSCR is set, the core Status bits OS[1 – 0] are set to 11, and theDE pin (if
provided) is asserted to indicate that the DSP56300 core has entered Debug mode 
requesting service.

7.2.4 Methods of Entering Debug Mode

The chip acknowledges entering Debug mode by setting the Core Status bits OS1 an
and asserting theDE line. This informs the external command controller that the chip is
Debug mode and awaiting commands. The DSP56300 core can disable the OnCE m
if the ROM Security option is implemented. If the ROM Security is implemented, the
OnCE module remains inactive until the DSP56300 core executes a write operation t
OGDBR.

TDI

TDO

TCK

Trace Counter
DEC

End of Instruction

Count = 0

ISTRACE
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Following is a list of ways to enter Debug mode:

■ External Debug Request DuringRESET Assertion: Holding theDE line asserted
during the assertion ofRESET causes the chip to enter the Debug mode. After
receiving the acknowledge, the external command controller must negate theDE

line before sending the first command. In this case, the chip does not execute
instruction before entering the Debug mode.

■ External Debug Request During Normal Activity: Holding theDE line asserted
during normal chip activity causes the chip to finish executing the current
instruction and then enter Debug mode. After receiving the acknowledge, the
external command controller must negate theDE line before sending the first
command. This process is the same for any newly fetched instruction, includi
instructions fetched by the interrupt processing or instructions that are aborte
the interrupt processing. In this case the chip finishes executing the current
instruction and stops after the newly fetched instruction enters the instruction la

■ Executing the JTAG DEBUG_REQUEST Instruction: Executing the JTAG
instruction DEBUG_REQUEST asserts an internal debug request signal. The
finishes executing the current instruction and stops after the newly fetched
instruction enters the instruction latch. After entering the Debug mode, the Co
Status bits OS1 and OS0 are set and theDE line is asserted, thus acknowledging th
external command controller that the Debug mode of operation has been ente

■ External Debug Request During Stop: Executing the JTAG instruction
DEBUG_REQUEST (or assertingDE) while the chip is in Stop state (i. e., has
executed a STOP instruction) causes the chip to exit the Stop state and enter D
mode. After receiving the acknowledge, the external command controller mus
negateDE before sending the first command. In this case, the chip finishes
executing the STOP instruction and halts after the next instruction enters the
instruction latch.

■ External Debug Request During Wait: Executing the JTAG instruction
DEBUG_REQUEST (or assertingDE) while the chip is in the Wait state (i. e., ha
executed a WAIT instruction) causes the chip to exit the Wait state and enter
Debug mode. After receiving the acknowledge, the external command contro
must negateDE before sending the first command. In this case, the chip comple
the execution of the WAIT instruction and halts after the next instruction enters
instruction latch.

■ Software Request During Normal Activity: Upon executing the DSP56300 cor
instruction DEBUG (or DEBUGcc when the specified condition is true), the ch
enters Debug mode after the instruction following the DEBUG instruction ente
the instruction latch.
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■ Enabling Trace Mode: When the Trace mode mechanism is enabled and the 
Counter is greater than 0, the Trace Counter decrements after each instructio
executes. Execution of an instruction when the Trace Counter = 0 causes the
to enter the Debug mode after completing the execution of the instruction. On
instructions actually executed cause the Trace Counter to decrement. An abo
instruction does not decrement the Trace Counter and does not cause the ch
enter Debug mode.

■ Enabling Memory Breakpoints: When the memory breakpoint mechanism is
enabled with a Breakpoint Counter value of 0, the chip enters Debug mode af
executing the instruction that caused the memory breakpoint to occur. For
breakpoints on executed Program memory fetches, the breakpoint is acknowle
immediately after the fetched instruction executes. For breakpoints on access
X, Y or P memory spaces by MOVE instructions, the breakpoint is acknowled
after execution of the instruction following the instruction that accessed the
specified address.

To restore the pipeline and to resume normal chip activity upon returning from the De
mode, a number of on-chip registers store the chip pipeline status.Figure 7-14shows the
block diagram of the Pipeline Information Registers with the exception of the PAB
registers, which are shown inFigure 7-15, "OnCE Trace Buffer Block Diagram," on page
7-28.

Figure 7-14. OnCE Pipeline Information and GDB Registers

■ OnCE PDB Register (OPDBR): A 24-bit latch that stores the value of the Progr
Data Bus generated by the last program memory access of the core before D
mode is entered. The OPDBR is read or written through the JTAG port. This
register is affected by the operations performed during the Debug mode and m
be restored by the external command controller when returning to Normal mo

PDB Register (OPDBR)

GDB Register (OGDBR)

TDI

TDO TCK

PIL Register (OPILR)

PIL

PDB

GDB
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■ OnCE PIL Register (OPILR): A 24-bit latch that stores the value of the Instruct
Latch before Debug mode is entered. OPILR can only be read through the JT
port. Since the Instruction Latch is affected by the operations performed durin
Debug mode, it must be restored by the external command controller when
returning to Normal mode. Since there is no direct write access to the Instruct
Latch, restoration is accomplished by writing to the OPDBR with no-GO and
no-EX. The data written on PDB is transferred into the Instruction Latch.

■ OnCE GDB Register (OGDBR): A 24-bit latch that can only be read through t
JTAG port. The OGDBR is not actually required for a pipeline status restore, bu
required for passing information between the chip and the external command
controller. The OGDBR is mapped on the X internal I/O space at address
$FFFFFC. When the external command controller needs the contents of a reg
or memory location, it forces the chip to execute an instruction that brings this
information to the OGDBR. Then the contents of the OGDBR are delivered seri
to the external command controller by the command READ GDB REGISTER

7.2.5 Trace Buffer

To ease debugging activity and keep track of program flow, the DSP56300 core pro
a number of on-chip dedicated resources. Three read-only PAB registers give pipeli
information when Debug mode is entered, and a Trace Buffer stores the address of th
instruction executed, as well as the addresses of the last eight change of flow instru

■ OnCE PAB Register for Fetch (OPABFR): A 24-bit register that stores the add
of the last instruction whose fetch started before Debug mode was entered. T
OPABFR can only be read through the JTAG port. This register is not affecte
the operations performed during Debug mode.

■ PAB Register for Decode (OPABDR): A 24-bit register that stores the address
the instruction currently on the PDB. This is the instruction whose fetch comple
before the chip entered Debug mode. The OPABDR can only be read through
JTAG port. This register is not affected by the operations performed during th
Debug mode.

■ PAB Register for Execute (OPABEX): A 24-bit register that stores the addres
the instruction currently in the Instruction Latch. This is the instruction that wo
have decoded and executed if the chip had not entered Debug mode. The OPA
register can only be read through the JTAG port. This register is not affected by
operations performed during Debug mode.

The Trace Buffer stores the addresses of the last twelve change of flow instructions
executed, as well as the address of the last executed instruction. It is implemented a
circular buffer containing twelve 25-bit registers and one 4-bit counter. All the registe
7-26 DSP56300 Family Manual Motorola
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have the same address, but any read access to the Trace Buffer address causes the
to increment, thus pointing to the next Trace Buffer register. The registers are serial
available to the external command controller through their common Trace Buffer add
Figure 7-15 shows the block diagram of the Trace Buffer. The Trace Buffer is not
affected by the operations performed during Debug mode except for the Trace Buffe
pointer increment when reading the Trace Buffer. When Debug mode is entered, the T
Buffer counter points to the Trace Buffer register containing the address of the last
executed instructions. The first Trace Buffer read obtains the oldest address and the
following Trace Buffer reads get the other addresses from the oldest to the newest, 
order of execution.

Note: To ensure Trace Buffer coherence, a complete set of twelve reads of the T
Buffer must be performed because each read increments the Trace Buffer
pointer, thus pointing to the next location. After twelve reads, the pointer
indicates the same location as before starting the read procedure.

Note: On any change of flow instruction, the Trace Buffer stores both the addres
the change of flow instruction, as well as the address of the target of the cha
of flow instruction. In the case of conditional change of flows, the address 
the change of flow instruction is always stored (regardless of the fact that t
change of flow is true or false), but if the conditional change of flow is false
(that is, not taken) the address of the target is not stored. In order to facilitate
program trace reconstruction, every Trace Buffer location has an additiona
invalid bit (the 25th bit). If a conditional change of flow instruction has a
condition false, the invalid bit is set, thus marking this instruction as not tak
Therefore, it is imperative to read twenty-five bits of data when reading the
twelve Trace Buffer registers. Since data is read LSB first, the invalid bit is
first bit to be read.

7.2.6 OnCE Commands and Serial Protocol

To permit an efficient means of communication between the external command contr
and the DSP56300 core chip, the following protocol is adopted. Before starting any
debugging activity, the external command controller must wait for an acknowledge on
DE line indicating that the chip has entered Debug mode (optionally the external comm
controller can poll the OS1 and OS0 bits in the JTAG instruction shift register). The
external command controller communicates with the chip by sending 8-bit commands
can be accompanied by 24 bits of data. Both commands and data are sent or receiv
Least Significant Bit first. After sending a command, the external command controlle
should wait for the DSP56300 core chip to acknowledge execution of the command
external command controller can send a new command only after the chip acknowle
execution of the previous command.
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The OnCE commands are classified as follows:

■ Read commands (when the chip delivers the required data)

■ Write commands (when the chip receives data and writes the data in one of th
OnCE registers)

■ Commands that do not have data transfers associated with them

The commands are 8 bits long and have the format shown inFigure 7-8, "OnCE
Command Register (OCR) Format," on page 7-13.

Figure 7-15. OnCE Trace Buffer Block Diagram

Fetch Address (OPABFR)

PAB

Decode Address (OPABDR)

Circular
Buffer
Pointer

Trace BUF Shift Register
TDO
TCK

Trace BUF Register 0

Trace BUF Register 1

Trace BUF Register 2

Trace BUF Register 7

Execute Address (OPABEX)

TDI
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7.2.7 OnCE Module Examples

The following examples of debugging procedures using the OnCE module assume th
DSP is the only device in the JTAG chain. If more than one device in the chain exist
(other DSPs or even other devices), the other devices can be forced to execute the 
BYPASS instruction so that their effect in the serial stream is one bit per additional
device. The events select-DR, select-IR, update-DR, shift-DR etc. refer to bringing t
JTAG TAP in the corresponding state.

7.2.7.1 Checking Whether the Chip Has Entered Debug Mode

There are two methods of verifying that the chip has entered Debug mode:

■ Every time the chip enters Debug mode, a pulse is generated on theDE line. A pulse
is also generated every time the chip acknowledges the execution of an instru
in Debug mode. An external command controller can connect theDE line to an
interrupt pin to sense the acknowledge.

■ An external command controller can poll the JTAG instruction shift register for
status bits OS1-OS0. When the chip is in Debug mode these bits are set to the
11.

In the following paragraphs, the ACK notation denotes the operation performed by t
command controller to check whether the chip has entered Debug mode (either by se
DE or by polling JTAG instruction shift register).

7.2.7.2 Polling the JTAG Instruction Register

To poll the core status bits in the JTAG Instruction Register, the following sequence m
be performed:

1. Select shift-IR. Passing through capture-IR loads the core status bits into the
instruction shift register.

2. Shift in ENABLE_ONCE. While shifting-in the new instruction the captured stat
information is shifted out. Pass through update-IR.

3. Return to Run-Test/Idle.

The external command controller can analyze the information shifted out and detect
whether the chip has entered Debug mode.

7.2.7.3 Saving Pipeline Information

The debugging activity is accomplished by DSP56300 core instructions supplied from
external command controller. Therefore the current state of the DSP56300 core pip
Motorola Debugging Support 7-29
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must be saved before the debug activity starts and the state must be restored befor
returning to the Normal Mode of operation. The following description of the saving
procedure assumes that ENABLE_ONCE has executed and Debug mode has been e
and verified as described inSection 7.2.7.1, "Checking Whether the Chip Has Entered
Debug Mode," on page 7-29:

1. Select shift-DR. Shift in the Read PDB. Pass through update-DR.

2. Select shift-DR. Shift out the 24-bit OPDB register. Pass through update-DR.

3. Select shift-DR. Shift in the Read PIL. Pass through update-DR.

4. Select shift-DR. Shift out the 24-bit OPILR register. Pass through update-DR.

You do not need to verify acknowledge between Steps 1 and 2 or between Steps 3 
because completion is guaranteed by design.

7.2.7.4 Reading the Trace Buffer

An optional step during debugging activity is reading the information associated with
Trace Buffer in order to enable an external program to reconstruct the full trace of th
executed program. In the following description of the read Trace Buffer procedure,
assume that all actions described inSection 7.2.7.3 have executed:

1. Select shift-DR. Shift in the Read PABFR. Pass through update-DR.

2. Select shift-DR. Shift out the 24-bit OPABFR register. Pass through update-D

3. Select shift-DR. Shift in the Read PABDR. Pass through update-DR.

4. Select shift-DR. Shift out the 24-bit OPABDR register. Pass through update-D

5. Select shift-DR. Shift in the Read PABEX. Pass through update-DR.

6. Select shift-DR. Shift out the 24-bit OPABEX register. Pass through update-D

7. Select shift-DR. Shift in the Read FIFO. Pass through update-DR.

8. Select shift-DR. Shift out the 25 bit FIFO register. Pass through update-DR.

9. Repeat Steps 7 and 8 for the entire FIFO (12 times).

You must read the entire FIFO since each read increments the FIFO pointer thus po
to the next FIFO location. At the end of this procedure the FIFO pointer points back to
beginning of the FIFO. The information read by the external command controller cont
the address of the newly fetched instruction, the address of the instruction currently o
PDB, the address of the instruction currently on the instruction latch, and the address
the last twelve instructions that have been executed. A user program can now recon
the flow of a full trace based on this information and on the original source code of t
currently running program.
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7.2.7.5 Displaying a Specified Register

The DSP56300 must be in Debug mode and all actions described inSection 7.2.7.3 must
have been executed:

1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-

2. Select shift-DR. Shift in the 24-bit opcode: MOVE reg, X:OGDB. Pass through
update-DR to actually write OPDBR and thus begin executing the MOVE
instruction.

3. Wait for DSP to reenter Debug mode (wait forDE or poll core status).

4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR
(this selects OGDBR as the data register for read).

5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. Wai
next command.

7.2.7.6 Displaying X Memory Area Starting at Address $xxxxxx

The DSP56300 must be in Debug mode and all actions described inSection 7.2.7.3 must
have been executed. Since R0 is used as pointer for the memory, R0 is saved first. 
sequence of actions is:

1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-

2. Select shift-DR. Shift in the 24-bit opcode: MOVE R0, X:OGDB. Pass through
update-DR to actually write OPDBR and thus begin executing the MOVE
instruction.

3. Wait for DSP to reenter Debug mode (wait forDE or poll core status).

4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR
(this selects OGDBR as the data register for read).

5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. R0
now saved.

6. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through
update-DR.

7. Select shift-DR. Shift in the 24-bit opcode: MOVE #$xxxxxx,R0. Pass through
update-DR to actually write OPDBR.

8. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-

9. Select shift-DR. Shift in the second word of the 24-bit opcode: MOVE
#$xxxxxx,R0 (the $xxxxxx field). Pass through update-DR to actually write
Motorola Debugging Support 7-31
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OPDBR and execute the instruction. R0 is loaded with the base address of th
memory block to be read.

10.Wait for DSP to reenter Debug mode (wait forDE or poll core status).

11.Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-

12.Select shift-DR. Shift in the 24-bit opcode: MOVE X:(R0)+, X:OGDB. Pass
through update-DR to actually write OPDBR and thus begin executing the MO
instruction.

13.Wait for DSP to reenter Debug mode (wait forDE or poll core status).

14.Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR
(this selects OGDBR as the data register for read).

15.Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. The
memory contents of address $xxxxxx has been read.

16.Select shift-DR. Shift in the NO SELECT with GO no-EX. Pass through
update-DR. This re-executes the same MOVE X:(R0)+, X:OGDB instruction.

17.Repeat from Step 14 to complete the reading of the entire block. When finishe
restore the original value of R0.

7.2.7.7 Returning From Debug Mode to Normal Mode to Current Program

When you have finished examining the current state of the machine, changed some
registers, and wish to return and continue execution of its program form the point whe
stopped, you must restore the machine pipeline and enable normal instruction exec
as follows:

1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through
update-DR.

2. Select shift-DR. Shift in the 24 bits of saved PIL (instruction latch value). Pass
through update-DR to actually write the Instruction Latch.

3. Select shift-DR. Shift in the Write PDB with GO and EX. Pass through update-D

4. Select shift-DR. Shift in the 24 bits of saved PDB. Pass through update-DR to
actually write the PDB. At the same time the internally saved value of the PAB
driven back from the PABFR register onto the PAB, the ODEC releases the c
from Debug mode and the normal flow of execution is continued.

7.2.7.8 Returning from Debug Mode to Normal Mode to a New Program

When you have finished examining the current state of the machine, changed some
registers and wish to start the execution of a new program (the GOTO command), y
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must force a change-of-flow to the starting address of the new program ($xxxxxx), a
follows:

1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through
update-DR.

2. Select shift-DR. Shift in the 24 bits of $0AF080 which is the opcode of the JU
instruction. Pass through update-DR to actually write the Instruction Latch.

3. Select shift-DR. Shift in the Write PDB-GO-TO with GO and EX. Pass through
update-DR.

4. Select shift-DR. Shift in the 24 bits of $xxxxxx. Pass through update-DR to
actually write the PDB. At this time the ODEC releases the chip from Debug mo
and the execution is started from the address $xxxxxx.

If Debug mode entry occurred during a DO LOOP, REP instruction, or other special
(that is, interrupt processing, STOP, WAIT, conditional branching, etc.), youmust reset
the DSP56300 before executing the new program.

7.3 Examples of JTAG-OnCE Interaction

This section presents the details of the JTAG-OnCE interaction by describing the TM
sequencing required to achieve the communication described inSection 7.2.7. The
external command controller can force the DSP56300 into Debug mode by executin
JTAG DEBUG_REQUEST instruction. To verify that the DSP56300 has entered De
mode, the external command controller must poll the status by reading the OS[1 – 0
in the JTAG Instruction Shift Register. The TMS sequencing is listed inTable 7-6.. The
sequencing for enabling the OnCE module is described inTable 7-7. After executing the
JTAG instructions DEBUG_REQUEST and ENABLE_ONCE and after the core statu
polled to verify that the chip is in Debug mode, the pipeline saving procedure must oc
The TMS sequencing for this procedure is listed inTable 7-8.

Table 7-6. TMS Sequencing for DEBUG_REQUEST and Poll the Status

Step TMS JTAG OnCE  Note

a 0 Run-Test/Idle Idle

b 1 Select-DR-Scan Idle

c 1 Select-IR-Scan Idle

d 0 Capture-IR Idle status is sampled in shifter
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In Step n the external command controller verifies that OS[1 – 0] = 11, indicating that
chip has entered the Debug mode. If the chip has not yet entered the Debug mode,
external command controller goes to Step b, Step c, and so forth, until the Debug mo
acknowledged.

e 0 Shift-IR Idle the 4 bits of the JTAG
DEBUG_REQUEST (0111)are
shifted in while status is shifted
out

..................................................................

e 0 Shift-IR Idle

f 1 Exit1-IR Idle

g 1 Update-IR Idle debug req is generated

h 1 Select-DR-Scan Idle

i 1 Select-IR-Scan Idle

j 0 Capture-IR Idle status is sampled in shifter

k 0 Shift-IR Idle the 4 bits of the JTAG
DEBUG_REQUEST (0111)are
shifted in while status is shifted
out

..................................................................

k 0 Shift-IR Idle

l 1 Exit1-IR Idle

m 1 Update-IR Idle

n 0 Run-Test/Idle Idle This step is repeated enabling an
external command controller to
poll the status................................................

n 0 Run-Test/Idle Idle

Table 7-7. TMS Sequencing for ENABLE_ONCE

Step TMS JTAG OnCE  Note

a 1 Test-Logic-Reset Idle

b 0 Run-Test/Idle Idle

c 1 Select-DR-Scan Idle

d 1 Select-IR-Scan Idle

e 0 Capture-IR Idle Capture core status bits

Table 7-6. TMS Sequencing for DEBUG_REQUEST and Poll the Status (Continued)

Step TMS JTAG OnCE  Note
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f 0 Shift-IR Idle the 4 bits of the JTAG
ENABLE_ONCE instruction (0110)
are shifted into the JTAG instruction
register while status is shifted out

g 0 Shift-IR Idle

h 0 Shift-IR Idle

i 0 Shift-IR Idle

j 1 Exit1-IR Idle

k 1 Update-IR Idle OnCE is enabled

l 0 Run-Test/Idle Idle This step can be repeated enabling
an external command controller to
poll the status................................................

l 0 Run-Test/Idle Idle

Table 7-8. TMS Sequencing for Reading Pipeline Register

Step TMS JTAG OnCE  Note

a 0 Run-Test/Idle Idle

b 1 Select-DR-Scan Idle

c 0 Capture-DR Idle

d 0 Shift-DR Idle the 8 bits of the OnCE
 “Read PIL” (10001011) are shifted
in..................................................................

d 0 Shift-DR Idle

e 1 Exit1-DR Idle

f 1 Update-DR Execute “Read PIL” PIL value is loaded in shifter

g 1 Select-DR-Scan Idle

h 0 Capture-DR Idle

i 0 Shift-DR Idle the 24 bits of the PIL are shifted out
(24 steps)

..................................................................

i 0 Shift-DR Idle

j 1 Exit1-DR Idle

k 1 Update-DR Idle

l 1 Select-DR-Scan Idle

Table 7-7. TMS Sequencing for ENABLE_ONCE (Continued)

Step TMS JTAG OnCE  Note
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During Step v, the external command controller stores the pipeline information and
afterwards it can proceed with the debug activities, as requested by the user.

7.3.1 Address Trace Mode

Address Trace mode allows you to determine the address of internal accesses. The
is disabled after reset and enabled by setting the ATE bit in the Operating Mode Re
(OMR). When the mode is enabled and there is no simultaneous external access, th
internal access is reflected on the external address lines. Use the status ofBR to determine
whether the access referenced by A[0 – 23]/A[0 – 17] is internal or external, when th
mode is enabled.BR is deasserted for internal accesses and asserted for external acc

m 0 Capture-DR Idle

n 0 Shift-DR Idle the 8 bit of the OnCE
 “Read PDB” (10001010)are shifted
in..................................................................

n 0 Shift-DR Idle

o 1 Exit1-DR Idle

p 1 Update-DR Execute “Read PDB” PDB value is loaded in shifter

q 1 Select-DR-Scan Idle

r 0 Capture-DR Idle

s 0 Shift-DR Idle The 24 bits of the PDB are shifted
out (24 steps)

..................................................................

s 0 Shift-DR Idle

t 1 Exit1-DR Idle

u 1 Update-DR Idle

v 0 Run-Test/Idle Idle This step can be repeated enabling
an external command controller to
analyze the information.................................................

v 0 Run-Test/Idle Idle

Table 7-8. TMS Sequencing for Reading Pipeline Register  (Continued)

Step TMS JTAG OnCE  Note
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Chapter 8
Instruction Cache

This chapter describes the structure and function of the Instruction Cache. The Instru
Cache acts as a buffer memory between external memory and the DSP core proces
When code executes, the code words at the locations requested by the instruction s
copied into the Instruction Cache for direct access by the core processor. If the same
is used frequently in a set of program instructions, storage of these instructions in th
cache yields an increase in throughput because external bus accesses are eliminated
DSP56300 instruction set are specific cache instructions that permit you to lock secto
the cache and to flush the cache contents under software control. The Instruction C
controls 1K of Instruction Cache memory, with the following features:

■ Software-controlled Cache Enable (CE) bit in the Extended Mode Register (EM
in the Status Register (SR)1

■ Eight-way, fully associative Instruction Cache with sectored placement policy

■ 1- to 4-word transfer granularity

■ Least Recently Used (LRU) sector replacement algorithm

■ Transparent operation (that is, no user management is required)

■ Individual sector locking/unlocking

■ Global cache flush controlled by software

■ Cache controller status observable via the JTAG/OnCE port

Note: Supported Instruction Cache size is device-dependent. Refer to the
device-specific technical data sheet to determine the Instruction Cache siz
a device.

1. For details on the Status Register (SR), seeSection 5.4.1.2, "Status Register (SR)."
Motorola DSP56300 Family Manual 8-1
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8.1 Instruction Cache Architecture

The Instruction Cache is composed of the following:

■ Memory Array: The actual memory space defined for use by the Cache Contro
is 1024 24-bit words and is logically divided into eight 128-word cache sectors
The sector placement algorithm is fully associative. Each word has an associ
source address to identify the cache contents. Since the Cache Controller tre
Program RAM as 128-word sectors, the 24-bit address is divided into the follow
two fields:

— VBIT field: 7 LSBs (for 1K cache) for the word displacement in the sector

— TAG field: 17 MSBs (for 1K cache) for the sector base address

■ Tag Register File: Contains the TAG fields of the base addresses of the memo
sectors currently mapped into the cache.

■ Valid Bit Array: Contains a set of valid bits for each possible address in a
referenced memory sector. There are valid bits arranged as eight banks of 12
each, one bank for every sector. A bit is set if the address location is already 
cache. If the bit is cleared, an external memory fetch is required. Notice that y
cannot directly access these valid bits. Processor hardware reset clears the val
to indicate that the Program RAM content is not initialized.

■ Cache Controller: When the Program Control Unit (PCU) initiates a program fetc
request, the Cache Controller compares the TAG field of the requested addre
tags in each of the eight Memory Array sectors. All eight sectors are searched
parallel using the eight comparators in the Cache Controller. Then the Cache
Controller determines whether the request is a cache hit or miss. For cache hit
address contents are transferred as directed by the PCU for execution. For ca
misses, the Cache Controller initiates a fetch in coordination with the Sector
Replacement Unit.

■ Sector Replacement Unit (SRU): When a sector miss occurs1, the SRU determines
which sector is flushed from the cache by monitoring requested addresses an
sector usage and replacing the least recently used (LRU) sector. The LRU sta
status is affected by instruction fetch operations and PFLUSH, PLOCK, and
PUNLOCK program cache instructions. Locked cache sectors continue to mov
and down the LRU stack, but when the LRU sector is picked, locked sectors a
skipped. When initialized by reset, the LRU stack default is from sector numb
(Most Recently Used) to sector number 7 (LRU).

1. If there is no match between the tag field and all sector tag registers, meaning that the memory sector c
taining the requested word is not present in the cache, the situation is called asector miss. A sector miss
is another form of a cache miss.
8-2 DSP56300 Family Manual Motorola



Cache Programming Model

us

en
f one

SR)
Figure 8-1 shows a block diagram of the Instruction Cache.

8.2 Cache Programming Model

The Instruction Cache is controlled by two control bits:

■ Cache Enable (CE) bit in the Extended Mode Register (EMR) part of the Stat
Register (SR Bit 19)

When CE is cleared, the Instruction Cache is disabled. When CE is set, the
Instruction Cache is enabled.

■ Burst Enable (BE) bit in the Extended Operating Mode (EOM) part of the
Operating Mode Register (OMR Bit 10)

When BE is cleared, the Instruction Cache transfer on a miss is one word. Wh
BE is set, the Instruction Cache transfer on a miss increases to a burst block o
to four words.

Note: To ensure proper operation, do not clear the Cache Enable mode (CE bit in
while Burst mode is enabled (BE bit in OMR is set). Refer to
Chapter 5, Program Control Unitfor details on the SR and OMR.

Figure 8-1. Instruction Cache Block Diagram

24-bit Program Address

Tag Register/Comparator 0

Hit/Miss

Instruction Word 0v0
Instruction Word 1v1

Instruction Word 127/255v127/255

TAG Field
17 MSBs (for 1K cache

VBIT Field
7 LSBs ( for 1K cache
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■ The instruction set supports the Instruction Cache via the following instruction

— PLOCK

— PLOCKR

— PUNLOCK

— PUNLOCKR

— PFREE

— PFLUSH

— PFLUSHUN

8.2.1 Cache Operation

When enabled, the cache is involved in every instruction fetch. Its actions depend o
several conditions, including whether the program address is (cache hit) or is not (c
miss) in the Instruction Cache and whether Burst mode is enabled or disabled. The
following paragraphs describe the conditions under which the Instruction Cache ope

8.2.1.1 Program Fetch

When the core generates an address for an instruction fetch, the cache controller com
its TAG field to the tag values currently stored in the Tag Register File.

8.2.1.2 Cache Hit

If a tag match (that is, sector hit) exists, then the valid bit of the corresponding word in
cache sector is checked using the VBIT field as an address to the Valid Bit Array. If 
valid bit is set, meaning the word in the cache is valid, then that word is fetched from
cache location corresponding to the desired address. This situation is called a cach
meaning that both corresponding sector and corresponding instruction word are pre
and valid in the Instruction Cache. The Sector Replacement Unit (SRU) flags the sec
the Most Recently Used (MRU).

8.2.1.3 Cache Word Miss When Burst Mode Is Disabled

If a tag match (that is, sector hit) exists, and Burst Mode is disabled, but the desired
is not flagged as valid (corresponding valid bit is cleared), then the cache initiates a
access to the external program memory, introducing wait states into the pipeline. Th
number of wait states is the number of wait states programmed into the Bus Contro
registers (BCRs) plus one, reflecting the type of memory used. The Sector Replace
Unit (SRU) flags the sector as the Most Recently Used (MRU), and the fetched instruc
is sent to the core and copied to the relevant sector location. Then the valid bit of that
is set.
8-4 DSP56300 Family Manual Motorola
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8.2.1.4 Cache Word Miss When Burst Mode Is Enabled

If a tag match (that is, sector hit) exists, and Burst Mode is enabled, but the desired wo
not flagged as valid (that is, the corresponding valid bit is cleared), then the cache init
a burst of up to four read accesses to the external program memory. The exact num
fetch requests depends on the value of the two LSBs of the address of the initiating
that was detected as a miss, as indicated inTable 8-1.

These external read accesses introduce wait states into the pipeline. The number o
states for each fetch is the number of wait states that are programmed into the bus c
registers (BCRs) plus one, reflecting the type of memory used. The Sector Replace
Unit (SRU) flags the sector as the Most Recently Used (MRU), and each of the fetch
instructions is copied to the relevant sector location. Then the valid bit of that word is

8.2.1.5 Sector Miss

If there is no match between the TAG field and all sector Tag registers, meaning tha
memory sector containing the requested word is not in the cache, the situation is ca
sector miss, which is another form of a cache miss. If a sector miss occurs, the SRU
selects the sector to be replaced. The cache controller then flushes the selected cac
sector by clearing all corresponding valid bits, loads the corresponding Tag register
the new TAG field, and simultaneously initiates an access to the external Program R
as described inSection 8.2.1.3 andSection 8.2.1.4. The sector is flagged as MRU, the
fetched instruction is sent to the core and copied to the relevant sector location, and
valid bit of that word is set.

Table 8-1. Determining the Number of Required Fetches in Burst Mode

Value of the 2
LSBs of the
Requested
Address

Number of Fetch Requests Initiated

00 Four requests are initiated

01 Three requests are initiated

10 Two requests are initiated

11 Only one request is initiated(that is, same as if the Burst mode is disabled)
Motorola Instruction Cache 8-5
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8.2.2 Default Mode After Hardware Reset

After hardware reset, the Instruction Cache is disabled. The cache is initialized as fol

■ All valid bits are cleared.

■ All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1K Cache
(17-bit Tag Register).

■ The LRU stack holds a default descending order of sectors (from seven to ze

■ All cache sectors are in the unlocked state.

8.3 Cache Locking

Cache locking is useful for locking some time-critical code parts in the cache memo
When a cache sector is locked, the Sector Replacement Unit (SRU) cannot replace
sector, even if it becomes the Least Recently Used (LRU) sector (bottom of LRU stack
sector can be locked by the instructions PLOCK or PLOCKR. The operand for these
instructions is an effective memory address (absolute or program counter-relative). 
cache sector to which this address belongs, if one exists, is locked. If the specified
effective address does not belong to one of the current cache sectors, a memory se
containing this address is allocated into the cache, thereby replacing the LRU cache
sector. This cache sector is locked, but empty. If all the cache sectors are already lo
this memory sector is not allocated into the cache, and the lock operation is not exe
The locked cache sector becomes MRU. Locking a cache sector already in the cache
not affect its contents, the value of its valid bits, or the corresponding Tag Register
contents.

Note: PLOCK and PLOCKR are detected as illegal opcodes when the Instruction
Cache is not enabled. Issuing these instructions when the cache is disable
initiates the Illegal Interrupt. A distance of at least 3 instruction cycles
(equivalent to three NOP instructions) should be maintained between an
instruction that changes the value of the Cache Enable bit (CE) and one o
instructions PLOCK and PLOCKR.

8.4 Cache Unlocking

A locked sector can be unlocked to allow sector replacement from that cache sector
Unlocking can be performed in three different ways.

■ A locked sector is unlocked by the PFREE, PUNLOCK, or PUNLOCKR
instructions. The operands of the PUNLOCK and PUNLOCKR instructions ar
effective memory addresses (absolute or program counter-relative). The mem
sector containing this address is allocated into a cache sector, if it is not already
8-6 DSP56300 Family Manual Motorola
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cache sector, and this cache sector is unlocked. If all the cache sectors are a
locked, this memory sector is not allocated into the cache, and the unlock oper
is not executed. The unlocked cache sector becomes MRU and is enabled fo
replacement by the LRU algorithm. Unlocking a locked cache sector using the
instructions does not affect its contents, its tag, or its valid bits.

■ All locked sectors are unlocked simultaneously using the instruction PFREE,
which allows you to reset the locking mechanism. Unlocking the sectors using
PFREE neither affects the sector contents (instructions already fetched into th
sector storage area), valid bits, tags, nor the LRU stack status.

■ The locked sectors are unlocked by the PFLUSH instruction. Unlocking the sec
via PFLUSH clears all the sectors’ valid bits and sets the LRU stack and Tag
registers to their default values.

Note: PFREE, PUNLOCK and PUNLOCKR are detected as illegal opcodes when
Instruction Cache is not enabled. Issuing these instructions when the cach
disabled initiates the Illegal Interrupt. A distance of at least three instructio
cycles (equivalent to three NOP instructions) should be maintained betwee
instruction that changes the value of the Cache Enable bit (CE) and one o
instructions PFREE, PUNLOCK and PUNLOCKR.

8.5 Flushing the Cache

Executing the PFLUSH or PFLUSHUN instructions flushes the cache. Executing
PFLUSH causes a global cache flush that brings the cache to the following hardware
initial condition:

■ All valid bits are cleared.

■ All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1K Cache
(17-bit Tag Register).

■ The LRU stack holds a default descending order of sectors (from 7 to 0).

■ All cache sectors are in the unlocked state.

Executing PFLUSHUN causes a flush only to the unlocked sectors and initializes th
cache as follows:

■ All valid bits of the unlocked sectors are cleared.

■ All Tag Registers of the unlocked sectors are initialized to ‘all ones,’ that is,
$1FFFF for a 1K Cache (17-bit Tag Register).

■ The LRU stack holds a default descending order of sectors (from 7 to 0).
Motorola Instruction Cache 8-7
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Note: Coherency between Program RAM mode and Cache mode is not supporte
the Instruction Cache Controller. It is not possible to fill the cache while in
Program RAM mode and use the contents after switching to Cache mode.
cache is automatically flushed when switching from Cache to Program RA
mode.

Note: PFLUSH and PFLUSHUN are detected as illegal opcodes when the Instruc
Cache is not enabled. Issuing these instructions when the cache is disable
initiates the Illegal Interrupt. At least three instruction cycles (equivalent to
three NOP instructions) should be maintained between an instruction that
changes the value of the Cache Enable bit (CE) and one of the instruction
PFLUSH and PFLUSHUN.

8.6 Data Transfers to/from Instruction Cache

Data transfers to/from the program memory can be accomplished by the DMA or by
software, using MOVE instructions. Only PMOVE instructions can transfer data to/fr
the Instruction Cache.

8.6.1 DMA Transfers

DMA transfers have no effect on the Tag Register File, Valid Bit Array and LRU Sta
even when the cache is enabled. When the cache is disabled, the Instruction Cache
memory space is considered part of the internal program memory space. DMA trans
to/from this space execute without any limitation. When the cache is enabled, the
Instruction Cache memory space is considered part of the external program memor
space. DMA transfers to/from this space execute through the external memory expa
port. Coherency between the external program memory and the contents of the Instru
Cache is not maintained.

8.6.2 Software-Controlled Transfers

The term “PMOVE” indicates use of a MOVE instruction to transfer data between th
program memory space and any other source/destination. PMOVE data transfers d
affect the Tag Register File and LRU Stack, even if the cache is enabled. The term
“PMOVEW” indicates a PMOVE transfer with the program memory space as the
destination. The term “PMOVER” indicates a PMOVE transfer with the program mem
space as the source.

When the cache is disabled, the Instruction Cache memory space is considered part
internal program memory space. PMOVER from this space or PMOVEW to this spa
8-8 DSP56300 Family Manual Motorola
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execute without any limitation. When the cache is enabled, the cache controller check
PMOVER transfers for a hit or miss:

■ If the cache controller generates a hit on the program memory space address
data is read from the cache memory array. Since PMOVE is not considered a
instruction fetch operation, the LRU state is not changed by this transfer.

■ If the cache controller generates a miss on the program memory space addres
data is read from the external program memory. The Cache state is not chang
this transfer. In Burst mode, no burst is initiated. Be aware that the core is del
by the number of wait states specified in the BCR.

When the cache is enabled, the cache controller checks the PMOVEW transfers for
or miss:

■ If the cache controller generates a sector hit on the program memory space ad
the data is written both to the cache memory array and to the external progra
memory. The valid bit of the word is set. The LRU stack is not changed by thi
transfer. Be aware that the core is delayed by the number of wait states specifi
the BCR.

■ If the cache controller generates a sector miss on the program memory space
address, the data is written only to the external program memory. The Cache
is not changed by this transfer. In Burst mode, no burst is initiated. Be aware 
the core is delayed by the number of wait states specified in the BCR.

Note: For proper operation, none of the three instructions before a PMOVE trans
should clear or set the Status Register CE bit.

8.7 Using the Instruction Cache in Real-Time Applications

The following tips help you to use the Instruction Cache in real-time applications:

■ Each sector (out of the 8, 128 words) can be individually locked.

■ Locking a sector prevents its replacement in case of a miss even if it would ha
been its turn to be replaced.

■ It is typical to lock the interrupt vector tables and routines to ensure the fastes
response. Furthermore, these routines can be loaded beforehand using PMOV
ensure a hit on the first access.

■ The cache can be globally flushed (for example, for task switching) with one
instruction.

■ The cache can be globally unlocked (that is any sector can be replaced in cas
miss) or any individual sector can be unlocked allowing its replacement.
Motorola Instruction Cache 8-9
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■ The penalty incurred for a cache miss is identical with the one for a regular
instruction fetch from external memory (1 wait state with 15 ns SRAM at 66 MH

■ The software simulator permits application tailoring since it provides clock exa
behavior.

■ In general, an algorithm that requires N clocks to execute and is repeated M ti
requires (WS is a number of wait states):

(N + N x WS)M = N x M(WS + 1) clocks.

■ In a cache environment, the same algorithm requires:

N(WS + 1) + N(M - 1) = N(M + WS) clocks.

8.8 Debugging Instruction Cache Operation

While the cache is enabled, full non-intrusive system debug capability in Debug mod
includes being able to observe:

■ What memory sectors are currently mapped into cache

■ Which cache sectors are locked

■ Which cache sector is the LRU

■ When cache hits occur

Debug mode allows you to read the Tag register contents, lock bits, LRU bits, and
hit-status serially from the OnCE module via the JTAG port. You can also read the v
bits of specific cache locations. To check whether an address with MSBs in a Tag reg
is in the cache, send the opcode of a MOVEM from this address. Bit 5 of the OnCE S
and Control register (OSCR) indicates the value of the valid bit. See
Chapter 7, Debugging Support  for more information.

Note: Each read of the cache status via the OnCE module should occur only whe
device is in the Debug mode and should access all nine registers, so that 
start with tag #0 every time.
8-10 DSP56300 Family Manual Motorola
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Chapter 9
External Memory Interface (Port A)

The external memory expansion port, Port A, can be used either for memory expansi
for memory-mapped I/O. External memory is easily and quickly retrieved through the
of DMA or simple MOVE commands. For more information on Port A programming 
application note AN1751D,DSP563xx Port A Programming. Several features make Port
A versatile and easy to use, resulting in a low part-count connection with fast or slow
static memories, dynamic memories, I/O devices and multiple bus master system. T
Port A data bus is 24 bits wide with a separate 18-bit or 24-bit address bus.

External memory is divided into three possible 16 M× 24-bit spaces: X data, Y data, and
program memory. Each space or all spaces can access a given external memory. A
type and attributes are under software control. See the memory map inChapter 11,
Operating Modes and Memory Spaces for memory space that is not accessible through
Port A. An internal wait state generator can be programmed to statically insert up to
wait states for access to slower memory or I/O devices. A Transfer Acknowledge (TA)
signal allows an external device to dynamically control the number of wait states inse
into a bus access operation. The bus arbitration allows multiple potential masters of
Port A bus. One DSP56300 processor can use the Port A bus to access external de
while other potential masters perform internal operations that do not require the Por
bus. See the memory map in the device-specific user’s manual for memory space th
not accessible.

Note: The AA lines can operate as memory-mapped chip selects or address line
external devices, depending upon the mode selected. Some DSP56300 fa
devices have eighteen address lines. For these processors, if all four Addr
Attribute (AA) lines are used as address lines, the total addressable extern
memory per space (X data, Y data, and program) is 4 M× 24-bit. If all four AA
lines are used, then the memory must always be selected, because no AA
are available for chip select. As a result, an external read or write outside t
4M range could still go to the external memory (depending on the settings 
the AA registers).
Motorola DSP56300 Family Manual 9-1
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9.1 Signal Description

Table 9-1throughTable 9-3show the signals that the external memory interface uses
controlling and transferring data.

l

Table 9-1 External Address Bus Signals

Signal Name Type
State During

Reset
Signal Description

A[0 – 17]/
A[0 – 23]

Output Tri-stated Address Bus —When the DSP is the bus master, A[0 – 17]/A[0
– 23] are active-high outputs that specify the address for
external program and data memory accesses. Otherwise, the
signals are tri-stated. To minimize power dissipation, A[0 –
17]/A[0 – 23] do not change state when external memory
spaces are not being accessed.

Note: The total number of address lines is device-specific.

Table 9-2 External Data Bus Signals

Signal Name Type
State During

Reset
Signal Description

D[0 – 23] Input/Output Tri-stated Data Bus —When the DSP is the bus master, D[0 – 23] are
active-high, bidirectional input/outputs that provide the
bidirectional data bus for external program and data memory
accesses. Otherwise, D[0 – 23] are tri-stated.

Table 9-3 External Bus Control Signals

Signal Name Type
State During

Reset
Signal Description

AA0–AA3

RAS[0 – 3]

Output Tri-stated Address Attribute —When defined as AA, these signals can be used
as chip selects or additional address lines. Unlike address lines,
these lines are deasserted between external accesses. For
information about asserting AA signals simultaneously, see Section
9.6.1, "Address Attribute Registers (AAR0–AAR3)," on page 9-15.

Row Address Strobe —When defined as RAS (using the BAT bits in
the corresponding AAR—see the BAT bits description in Section
9.6.1, "Address Attribute Registers (AAR0–AAR3)," on page 9-15),
these signals can be used as RAS for the Dynamic Random Access
Memory (DRAM) interface. These signals are tri-statable outputs with
programmable polarity.

RD Output Tri-stated Read Enable —When the DSP is the bus master, RD is an active-low
output that is asserted to read external memory on the data bus (D[0
– 23]). Otherwise, RD is tri-stated.
9-2 DSP56300 Family Manual Motorola



Signal Description
WR Output Tri-stated Write Enable —When the DSP is the bus master, WR is an
active-low output that is asserted to write external memory on the
data bus (D[0 – 23]). Otherwise, the signal is tri-stated.

BS Output Tri-stated Bus Strobe —When the DSP is the bus master, BS is asserted for
half a clock cycle at the start of a bus cycle to provide an “early bus
start” signal for a bus controller. If the external bus is not used during
an instruction cycle, BS remains deasserted until the next external
bus cycle.

NOTE: This signal is not implemented on all devices in the
DSP56300 family.

TA Input Ignored Input Transfer Acknowledge —If the DSP56300 family device is the bus
master and there is no external bus activity, or the DSP56300 family
device is not the bus master, the TA input is ignored. The TA input is
a Data Transfer Acknowledge (DTACK) function that can extend an
external bus cycle indefinitely. Any number of wait states (that is, 1,
2,..., infinity) may be added to the wait states inserted by the BCR by
keeping TA deasserted. In typical operation, TA is:

■ deasserted at the start of a bus cycle

■ asserted to enable completion of the bus cycle

■ deasserted before the next bus cycle

The current bus cycle completes one clock period after TA is
asserted synchronously to CLKOUT. The number of wait states is
determined by the TA input or by the Bus Control Register (BCR),
whichever is longer. The BCR can be used to set the minimum
number of wait states in external bus cycles. To use the TA
functionality, the BCR must be programmed to at least one wait state.
A zero wait state access cannot be extended by TA deassertion,
otherwise improper operation may result. TA can operate
synchronously or asynchronously depending on the setting of the
TAS bit in the Operating Mode Register (OMR).

NOTE: Do not use TA functionality while performing DRAM type
accesses; otherwise, improper operation may result.

When the DSP56300 family device is the bus master, but TA is not
used for external bus control, TA must be asserted low (pulled down).

Table 9-3 External Bus Control Signals (Continued)

Signal Name Type
State During

Reset
Signal Description
Motorola External Memory Interface (Port A) 9-3



Signal Description
BR Output Output
(deasserted)

Bus Request —An active-low output that is never tri-stated. BR is
asserted when the DSP requests bus mastership. BR is deasserted
when the DSP no longer needs the bus. BR may be asserted or
deasserted independent of whether the DSP56300 family device is a
bus master or not. Bus “parking” allows bus access without asserting
BR (see the descriptions of bus “parking” in Section 9.5.3.4  and
Section 9.5.3.6 ). The Bus Request Hold (BRH) bit in the Bus Control
Register (BCR) allows BR to be asserted under software control,
even though the DSP does not need the bus. BR is typically sent to
an external bus arbiter that controls the priority, parking, and tenure
of each master on the same external bus. BR is only affected by DSP
requests for the external bus, never for the internal bus. During
hardware reset, BR is deasserted; arbitration is reset to the bus slave
state.

BG Input Ignored Input Bus Grant —Asserted by an external bus arbitration circuit when the
DSP56300 family device becomes the next bus master. BG must be
asserted/deasserted synchronous to CLKOUT for proper operation.
When BG is asserted, the DSP56300 family device must wait until
BB is deasserted before taking bus mastership. When BG is
deasserted, bus mastership is typically given up at the end of the
current bus cycle. This may occur in the middle of an instruction that
requires more than one external bus cycle for execution.

BB Input/Out
put

Input Bus Busy —Indicates that the bus is active. BB must be asserted
and deasserted synchronous to CLKOUT. Only after BB is
deasserted can a pending bus master become the bus master (and
assert BB). Some designs allow a bus master to keep BB asserted
after ceasing bus activity. This is called “bus parking” and allows the
current bus master to reuse the bus without re-arbitration until
another device requires the bus (see Section 9.5.3.4  and Section
9.5.3.6). Deassertion of BB uses an “active pull-up” method (that is,
BB is driven high and then released and held high by an external
pull-up resistor).

BB requires an external pull-up resistor.

BL Output Driven high Bus Lock —Asserted at the start of an external divisible
read-modify-write bus cycle, remains asserted between the read and
write cycles, and is deasserted at the end of the write bus cycle. This
provides an “early bus start” signal for the bus controller. BL may be
used to “resource lock” an external multi-port memory for secure
semaphore updates. Early deassertion provides an “early bus end”
signal useful for external bus control. If the external bus is not used
during an instruction cycle, BL remains deasserted until the next
external indivisible read-modify-write cycle. The only instructions that
assert BL automatically are BSET, BCLR, and BCHG when the
access is to external memory. An operation can also assert BL by
setting the BLH bit in the BCR.

This signal is not implemented on all devices in the DSP56300
family.

Table 9-3 External Bus Control Signals (Continued)

Signal Name Type
State During

Reset
Signal Description
9-4 DSP56300 Family Manual Motorola
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9.2 Port Operation

External bus timing is defined by the operation of the Address Bus, Data Bus, and B
Control pins as described in the previous sections. The DSP56300 core external po
interface with a wide variety of memory and peripheral devices, high speed SRAMs
DRAMs, and slower memory devices. TheTA control signal and the Bus Control Registe
(BCR) described inSection 9.6.2 control the external bus timing. The BCR provides
constant bus access timing through the insertion of wait states.TA provides dynamic bus
access timing. The number of wait states for each external access is determined byTA

input or by the BCR, whichever specifies the longest time.

The external memory address is defined by the Address Bus (A[0 – 17]/A[0 – 23]) and
memory Address Attribute signals (AA[0 – 3]). The Address Attribute signals have th
same timing as the Address Bus and may be used as additional address lines. The A
Attribute signals are also used to generate Chip Select (CS) signals for the appropri
memory chips. These CS signals change the memory chips from low power Standby
to Active mode and begin the access time. This allows slower memories to be used
the Address Attribute signals are address-based rather than read or write enable-ba

9.2.1 SRAM Support

The DSP56300 core can interface easily with SRAMs. Because the address must re
stable during the entire bus cycle, however, at least one wait state must be inserted

CAS Output Tri-stated Column Address Strobe —When the DSP is the bus master, DRAM
uses CAS to strobe the column address. Otherwise, if the Bus
Mastership Enable (BME) bit in the DRAM Control Register (DCR) is
cleared, the signal is tri-stated.

BCLK Output Tri-stated Bus Clock —When the DSP is the bus master, BCLK is an
active-high output. BCLK is active as a sampling signal when the
program Address Trace Mode is enabled (by setting the ATE bit in
the OMR). When BCLK is active and synchronized to CLKOUT by
the internal PLL, BCLK precedes CLKOUT by one-fourth of a clock
cycle. The BCLK rising edge can be used to sample the internal
Program Memory access on the address lines.

NOTE: The address trace functionality described here is not practical
above 80 MHz, so it does not apply in DSP56300 chips with a clock
that runs above 80 MHz.

BCLK Output Tri-stated Bus Clock —When the DSP is the bus master, BCLK is an active-low
output that is the inverse of the BCLK signal. Otherwise, the signal is
tri-stated.

Table 9-3 External Bus Control Signals (Continued)

Signal Name Type
State During

Reset
Signal Description
Motorola External Memory Interface (Port A) 9-5
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regardless of the speed of the SRAM.Figure 9-1shows an SRAM access timing exampl
(for detailed timing information, see the specific technical data sheet for the device us
the design).Figure 9-2 shows a typical DSP56300 family device-to-SRAM connection

SRAM access consists of the following steps:

1. Address Bus (A[0 – 17]/A[0 – 23]), Address Attributes (AA[0 – 3), and Bus Stro
(BS) are asserted in the middle ofCLKOUT high phase.

2. Write enable (WR) is asserted with the falling edge ofCLKOUT (for a single wait
state access). Read enable (RD) is asserted in the middle ofCLKOUT low phase.

3. For a write operation, data is driven in the middle ofCLKOUT high phase. For a read
operation, data is sampled in the middle ofCLKOUT last low phase of the external
access.

For accessing slower memories, wait states (from the BCR or by theTA signal) postpone
the disappearance of the external address and increase memory access time. In an
SRAM access requires at least one wait state.

Figure 9-1. SRAM Access with One Wait State Example

CLKOUT

Address Bus

Data Out

(Data Sampled)

T0 T1 T0 Tw Tw T1

WS

BS

WR

RD

(A[0 – 23]/A17,
AA0–AA3)

Data In

(Write)

(Read)

(Data Driven)
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Note: The assertion ofWR depends on the number of wait states programmed in th
BCR. If one wait state is programmed,WR is asserted with the falling edge of
CLKOUT. If two or three wait states are programmed,WR assertion is delayed by
half a clock cycle (halfCLKOUT cycle). If four or more wait states are
programmed,WR assertion is delayed by a full clock cycle. This feature enab
the connection of slow external devices that require long address setup tim
before write assertion in order to prevent false writes.

9.2.2 DRAM Support

DRAMs are becoming the preferred external memory choice for many reasons, inclu

■ Low cost per bit due to dynamic storage cell density

■ Increasing packaging density due to multiplexed address and control pins

■ Improved price-performance relative to SRAMs due to Fast Access mode (Pa
mode)

■ Commodity pricing due to high-volume production

Port A bus control signals are an efficient interface to DRAM devices in both random
read/write cycles and Fast Access mode (Page mode). An on-chip DRAM controller
controls the page hit circuit, address multiplexing (row address and column address
control signal generation (CAS andRAS), and refresh access generation (CAS beforeRAS)
for a large variety of DRAM module sizes and different access times. The DRAM
controller operation and programming is described inSection 9.6.3,"DRAM Control
Register," on page 9-21.

External bus timing is controlled by the DRAM Control Register (DCR) described in
Section 9.6.3. The DCR controls insertion of wait states to provide constant bus acce
timing. The external memory address is defined by the Address Bus (A[0 – 23]/
A[0 – 17]). The “n” low order address bits are multiplexed inside the DSP56300 core,
the new 24-bit address is driven to the external bus. The address multiplexing enab

Figure 9-2. Example SRAM Connection Diagram
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glueless interface to DRAMs by simply connecting the “n” low order bits to the mem
address pins. When the BAT bits in the corresponding AAR are programmed, an Add
Attribute signal can function as a Row Address Strobe (RAS). An in-page access is
assumed, andRAS is therefore kept asserted until one of the following events occurs:

■ An out-of-page access is detected

■ An access to another bank of dynamic memory is attempted

■ A refresh access is attempted (CAS beforeRAS)

■ A write to one of the following registers is detected:

— BCR

— DCR

— AAR3

— AAR2

— AAR1

— AAR0

■ A loss of bus mastership is detected while the BME bit in the DCR register is
cleared

■ WAIT or STOP instruction is detected

■ Hardware or software reset is detected

Figure 9-3 andFigure 9-4 show DRAM in-page access timing examples. For detailed
timing information, see the technical data sheet for the device used in the design.Figure
9-5 shows a typical DSP56300 family device-to-DRAM connection.
9-8 DSP56300 Family Manual Motorola
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Figure 9-3. DRAM Read Access (In-Page) with Two Wait States

Figure 9-4. DRAM Write Access (In-Page) with Two Wait States Example
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9.2.2.1 DRAM In-Page Access

A DRAM in-page access consists of the following steps:

1. Column address (a subset of A[0 – 23]/A17, as determined by the BPS bits in
DCR) and Bus Strobe (BS) are asserted in the middle ofCLKOUT high phase.

2. Write (WR) or Read (RD) is asserted with theCLKOUT falling edge.

3. CAS assertion timing depends on the number of in-page wait states selected b
DCR[BCW] bits and on the access purpose (read or write). (SeeFigure 9-3 and
Figure 9-4 for examples of DRAM in-page read and write accesses using two w
states).

4. CAS is deasserted before the end of the external access in order to meet theCAS

precharge timing.

Note: In all cases, DRAM access requires at least one wait state.

9.2.2.2 DRAM Out-of-Page Access

An out-of-page access consists of the following steps:

1. Deassertion ofRAS

2. Assertion of the control signals (WR/RD)

3. After RAS precharge time, the assertion ofRAS. RAS assertion andCAS timing
depend on the number of out-of-page wait states selected by the BRW bits in
DCR.

Figure 9-5. Typical DRAM Connection Diagram
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9.3 Port A Disable

In applications sensitive to power consumption, Port A may not be required because
memory that is used resides in the processor. A special feature of the Port A contro
allows you to reduce the power consumption significantly by setting the EBD bit in th
Operating Mode Register (OMR) to disable the Port A controller. This causes the
DSP56300 device to release the bus (that is, deassertBR andBL, tri-stateBB, and ignore
BG). With the controller disabled, no external DMA accesses or refresh accesses ca
performed.

Note: To prevent improper operation when OMR[EBD] is set, do not access exte
memory, and always clear Refresh Enable (BREN—DCR[13]) to prevent a
external DRAM refresh attempts.

9.4 Bus Handshake and Arbitration

Bus transactions are governed by a single bus master. Bus arbitration determines w
device becomes the bus master. The arbitration logic implementation is system-depe
but must result in, at most, one device becoming the bus master (even if multiple de
request bus ownership). The arbitration signals permit simple implementation of a va
of bus arbitration schemes (for example, fairness, priority, etc.). The system designer
provide the external logic to implement the arbitration scheme.

9.5 Bus Arbitration Signals

There are three bus arbitration signals. Two of them (BR andBG) are local arbitration
signals between a potential bus master and the arbitration logic;BB is a system arbitration
signal:

■ Bus Request (BR)—Asserted by a device to request use of the bus; it is held
asserted until the device no longer needs the bus. This includes time when it 
bus master as well as when it is not the bus master.

■ Bus Grant (BG)—Asserted by the bus arbitration controller to signal the request
device that it is the bus master elect,BG is valid only when the bus is not busy (tha
is, BB is not asserted).

■ Bus Busy (BB)—This signal is driven by the current bus master and controls th
hand-over of bus ownership by the bus master at the end of bus possession.BB is an
active pull-up signal (that is, it is driven high before release and then held high
an external pull-up resistor).
Motorola External Memory Interface (Port A) 9-11
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9.5.1 The Arbitration Protocol

The bus is arbitrated by a central bus arbiter, using individual request/grant lines to 
bus master. The arbitration protocol can operate in parallel with bus transfer activity
that the bus can be handed over without much performance penalty. The arbitration
sequence occurs as follows:

1. Bus Requested by Device—All candidates for bus ownership assert their respe
BR signals as soon as they need the bus.

2. Bus Granted by Arbiter—The arbitration logic designates a bus master-elect b
asserting theBG signal for that device.

3. Bus Released by Current Master—The master-elect testsBB to ensure that the
previous master has relinquished the bus. IfBB is deasserted, then the master-ele
assertsBB, which designates the device as the new bus master. If a higher prio
bus request occurs before theBB signal is deasserted, then the arbitration logic ma
replace the current master-elect with the higher priority candidate. However, o
oneBG signal may be asserted at one time.

4. Bus Control Assumed by New Master—The new bus master begins its bus
transfers after assertingBB.

5. Bus Grant Withdrawn by Arbiter—The arbitration logic signals the new bus mas
to relinquish the bus by deassertingBG at any time.

6. Bus Released by Current Master—A DSP56300 core bus master releases its
ownership (drivesBB high and then releases the bus) after completing the curre
external bus access (except for the cases described in the following note). If a
instruction is executing a read-modify-write external access, a DSP56300 cor
master asserts theBL signal and only relinquishes the bus (and deassertsBL) after
completing the entire read-modify-write sequence. When the current bus mas
releasesBB, it first drives theBB signal high and then theBB signal is held by the
pull-up resistor. The next bus master-elect has received itsBG signal and is waiting
for BB to be deasserted before claiming ownership.

Note: The three packing accesses, the two accesses of a read-modify-write instru
(BSET, BCLR, BCHG), and the up-to-four fetch burst accesses are treated
one access from an arbitration point of view (that is, the bus mastership is
released during the execution of these accesses).

The DSP56300 core has two control bits (BRH and BLH) and one status bit (BBS), in
Bus Control Register (BCR) to permit software control of theBR andBL signals and to
verify whether the device is the bus master. SeeSection 9.6.2for more information about
the BCR.
9-12 DSP56300 Family Manual Motorola
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■ BRH Bit—If the BCR[BRH] bit is cleared, the DSP56300 core asserts itsBR signal
only as long as requests for bus transfers are pending or being attempted. If t
BCR[BRH] is set,BR remains asserted.

■ BLH Bit—If the BCR[BLH] bit is cleared, the DSP56300 core asserts itsBL signal
only during a read-modify-write bus access. If the BCR[BLH] is set,BL remains
asserted (even when not a bus master).

■ BBS Bit—This read-only bit in the BCR is set when the DSP is the bus master
cleared when it is not.

The DSP56300 core uses the OMR[BRT] bit control bit to enable Fast or Slow Bus
Release mode. In Fast Bus Release mode, all Port A pins are tri-stated in the same
In Slow Bus Release mode an extra cycle is added and all Port A pins exceptBB are
released first. Only in the next cycle isBB released. Therefore, in Slow Bus Release mod
BB is guaranteed to be the last pin that is tri-stated. This may be useful in systems wh
possibility for contention exists. A more detailed explanation (including timing diagram
is provided in the appropriate technical data sheet.

Note: During the execution of WAIT and STOP instructions, the DSP56300 relea
the bus (that is, deassertsBR andBB), and ignoresBG.

9.5.2 Arbitration Scheme

Bus arbitration is implementation-dependent.Figure 9-6 illustrates a common bus
arbitration scheme. The arbitration logic determines device priorities and assigns bu
ownership depending on those priorities. For example, an implementation may holdBG

asserted for the current bus owner if none of the other devices are requesting the bus
consequence, the current bus master may keepBB asserted after ceasing bus activity,
regardless of whetherBR is asserted or deasserted. This situation is called “bus parkin
and allows the current bus master to use the bus repeatedly without re-arbitration u
some other device requests the bus.

Figure 9-6. Example Bus Arbitration Scheme
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9.5.3 Bus Arbitration Example Cases

The following paragraphs describe various bus arbitration examples.

9.5.3.1 Case 1—Normal

TheBB signal is high, indicating that no device is controlling the bus (that is, the bus is
busy). A device requests mastership by assertingBR. The arbiter then asserts theBG signal
for the requesting devices. SinceBB is high, indicating that the bus is not busy, the
requesting device assertsBB and takes control of the bus.

9.5.3.2 Case 2—Bus Busy

TheBB signal is asserted indicating that a device is already the bus master. If a seco
device requests mastership by assertingBR, the arbiter responds by asserting theBG signal
for the requesting device. However, since the bus is busy (i.e,BB is already asserted by the
current master), the requesting device cannot assertBB until the current master drivesBB

high to release the bus. After the first master drivesBB high, the requesting device can
then assertBB and take control of the bus.

9.5.3.3 Case 3—Low Priority

If multiple devices assertBR at the same time, the arbiter grants the bus to the device w
the highest priority. The arbiter withholds the assertion ofBG for a lower priority device
until theBR for the higher priority device is deasserted. The lower device cannot take
control of the bus until the higher priority device deassertsBR, the arbiter assertsBG to the
lower priority device, and the current master deassertsBB.

9.5.3.4 Case 4—Default

The arbiter design may specify a default bus master. Such a design assertsBG for the
default device whenever no other device requests the bus. Thus, wheneverBB is deasserted
(that is, the bus is not busy), the default device can take control of the bus by assertinBB

without assertingBR first. As long as the bus arbiter leavesBG asserted because no other
requests are pending, then the default device continues to assertBB and maintain its bus
mastership. This condition is called bus parking and eliminates the need for the defa
bus master to rearbitrate for the bus during its next external access.

9.5.3.5 Case 5—Bus Lock during Read-Modify-Write Instructions

Typically, if a device assertsBR to request bus mastership and the arbiter then assertsBG

to the requesting device andBB is deasserted (that is, the bus is not busy), then the
requesting device assertsBB and takes control of the bus. If the master device execute
read-modify-write instruction that accesses external memory, thenBB remains asserted
9-14 DSP56300 Family Manual Motorola
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until the entire read-modify-write instruction completes execution, even if the bus ar
deassertsBG. After the execution is complete, the device then drivesBB high thereby
relinquishing the bus. In DSP56300 family devices in which it is implemented, theBL

signal can be used to ensure that a multiport memory can only be written by one mas
a time.

Note: During external read-modify-write instruction execution,BL is asserted.

9.5.3.6 Case 6—Bus Parking

As described inSection 9.5.3.4, bus parking is a strategy that permits a device to take
control of the bus without assertingBR. In addition to designs which use a default bus
master device, an arbiter design may allow the last bus master to retain control of th
until mastership is requested by another device. In such a design, a device assertsBR to
request bus mastership and the arbiter responds by assertingBG to the requesting device.
WhenBB is deasserted (that is, the bus is not busy), the requesting device assertsBB to
assume bus mastership. When the requesting device no longer requires the bus, it
deassertsBR, but if no other requests are pending, the bus arbiter leavesBG asserted andBB

remains asserted for that device (that is, the last device maintains its bus mastershi
Thus, the last device to control the bus is parked on the bus. This eliminates the nee
the last bus master to rearbitrate for the bus during its next external access.

9.6 Port A Control

Port A control consists of four Address Attribute Registers (AAR0–AAR3), the Bus
Control Register (BCR), and the DRAM Control Register (DCR).

9.6.1 Address Attribute Registers (AAR0–AAR3)

The four Address Attribute Registers (AAR0–AAR3) are 24-bit read/write registers t
control the activity of theAA[0 – 3]/RAS[0 – 3] pins. The associatedAAn/RASn pin is asserted
if the address defined by the BAC bits in the associated AAR matches the exact numb
external address bits defined by BNC bits, and the external address space (X data, Y
or program) is enabled by the AAR. All AARs are disabled (that is, all the AAR bits a
cleared) during hardware reset. The AAR bits are shown inFigure 9-7 and described in
this section. All AAR bits are read/write control bits.
Motorola External Memory Interface (Port A) 9-15
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Figure 9-7. Address Attribute Registers (AAR0–AAR3)

Table 9-4 AAR Bit Definitions

Bit Number Bit Name Reset Value Description

23 – 12 BAC 0 Bus Address to Compare
Defines the upper 12 bits of the 24-bit address with which to compare
the external address to decide whether to assert the corresponding
AA/RAS signal. This is also true when 16-bit compatibility mode is in
use. The BNC[3 – 0] bits define the number of address bits to compare.

11 – 8 BNC 0 Bus Number of Address Bits to Compare
Defines the number of bits (from the BAC bits) that are compared to the
external address. The BAC bits are always compared to the Most
Significant Portion of the external address (for example, if BNC[3 – 0] =
0011, then the BAC[11 – 9] bits are compared to the 3 MSBs of the
external address). If no bits are specified (that is, BNC[3 – 0] = 0000),
the AA signal is activated for the entire 16 M-word space identified by
the space enable bits (BPEN, BXEN, BYEN), but only when the
address is external to the internal memory map. The combinations
BNC[3 – 0] = 1111, 1110, 1101 are reserved.

Notes: 1. A priority mechanism exists among the four AAR control registers in order to resolve selection
conflicts. AAR3 has the highest priority and AAR0 has the lowest priority (for example if the
external address matches the address and the space that is specified is in both AAR1 and
AAR2, the external access type is selected according to AAR2). The priority mechanism
allows continuous partitioning of the external address space.

2. When a selection conflict occurs, that is the external address matches the address and the
space that is specified in more than one AAR, the assertion of the lower priority AA/RAS
pin(s) is programmable. When the OMR[APD] bit is cleared (see Chapter 6), only one
AA/RAS pin of higher priority is asserted. When the OMR[APD] bit is set, the lower priority
AA/RAS pin(s) are asserted in addition to the highe-priority AA/RAS pin. AAR of higher
priority defines the external memory access type (memory type, wait states, and so on). The
lower-priority AA/RAS pin(s) associated with DRAM memory type (BAT[1 – 0]) = 10) are not
activated. This allows glueless support of Long Move (move L:) instruction to/from external
memory as shown in Figure 9-8 .
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20 BPAC 0 Bus Packing Enable
Defines whether the internal packing/unpacking logic is enabled. When
the BPAC bit is set, packing is enabled. In this mode each DMA
external access initiates three external accesses to 8-bit wide external
memory (the addresses for these accesses are DAB, then DAB + 1 and
then DAB + 2). Packing to a 24-bit word (or unpacking from a 24-bit
word to three 8-bit words) is done automatically by the expansion port
control hardware. The external memory should reside in the eight Least
Significant Bits (LSBs) of the external data bus, and the packing (or
unpacking for external write accesses) is done in “Little Endian” order
(that is, the low byte is stored in the lowest of the three memory
locations and is transferred first; the middle byte is stored/transferred
next; and the high byte is stored/transferred last). When this bit is
cleared, the expansion port control logic assumes a 24-bit wide external
memory.

NOTE: The BPAC bit is used only for DMA accesses and not core
accesses. To ensure sequential external accesses, the DMA address
should advance three steps at a time in two-dimensional mode with a
row length of one and an offset size of three. Refer to Motorola
application note, APR23/D, Using the DSP56300 Direct Memory Access
Controller, for more information.

To prevent improper operation, DMA address + 1 and DMA
address + 2 should not cross the AAR bank borders.

Arbitration is not allowed during the packing access (that is, the three
accesses are treated as one access with respect to arbitration, and bus
mastership is not released during these accesses)

6 BAM 0 Bus Address Multiplexing
Defines whether the eight LSBs of the address appear on address lines
A0–A7 (Least Significant Portion of the external address bus) or on
address lines A16–A23 (Most Significant Portion of the external
address bus). When BAM is set, the eight LSBs appear on address
lines A16–A23. When BAM is cleared, the eight LSBs appear normally
on address lines A0–A7. This feature enables you to connect an
external peripheral to the MSBs of the address, thus decreasing the
load on the Least Significant Portion of the external address and
enabling a more efficient interface to external memories. BAM is
ignored during DRAM access (BAT[1 – 0] = 10).

NOTE: The BAM bit has no effect in DSP56300 core devices with only
eighteen address lines.

5 BYEN 0 Bus Y Data Memory Enable
Defines whether the AA/RAS pin and logic should be activated during
external Y data space accesses. When set, BYEN enables the
comparison of the external address to the BAC bits during external Y
data space accesses. If BYEN is cleared, no address comparison is
performed during external Y data space accesses.

Table 9-4 AAR Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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9.6.2 Bus Control Register

The Bus Control Register (BCR) is a 24-bit read/write register that controls the exte
bus activity and Bus Interface Unit operation. All BCR bits except bit 21, BBS, are
read/write bits. The BCR bits are shown inFigure 9-8.

4 BXEN 0 Bus X Data Memory Enable
Defines whether the AA/RAS pin and logic should be activated during
external X data space accesses. When set, BXEN enables the
comparison of the external address to the BAC bits during external X
data space accesses. If BXEN is cleared, no address comparison is
performed during external X data space accesses.

3 BPEN 0 Bus Program Memory Enable
Defines whether or not the AA/RAS pin and logic should be activated
during external program space accesses. When set, BPEN enables the
comparison of the external address to the BAC bits during external
program space accesses. If BPEN is cleared, no address comparison is
performed during external program space accesses.

2 BAAP 0 Bus Address Attribute Polarity
Defines whether the AA/RAS signal is active low or active high. When
BAAP is cleared, the AA/RAS signal is active low (useful for enabling
memory modules or for DRAM Row Address Strobe). If BAAP is set,
the appropriate AA/RAS signal is active high (useful as an additional
address bit).

1 – 0 BAT 0 Bus Access Type
Define the type of external memory (DRAM or SRAM) to access for the
area defined by the BAC[11 – 0],BYEN, BXEN, and BPEN bits. The
encoding of BAT[1 – 0] is:
00 = Reserved
01 = SRAM access
10 = DRAM access
11 = Reserved
When the external access type is defined as DRAM access (BAT[1 – 0]
= 10), AA/RAS acts as a Row Address Strobe (RAS) signal.
Otherwise, it acts as an Address Attribute signal. External accesses to
the default area are always executed as if BAT[1 – 0] = 01 (that is,
SRAM access).

NOTE: If Port A is used for external accesses, the BAT bits in AAR0 –
AAR3 must be initialized to the SRAM access type (that is, BAT = 01) or
to the DRAM access type (that is, BAT = 10). To ensure proper
operation of Port A, this initialization must occur even for an AAR
register that is not used during a Port A access. At reset the BAT bits
are initialized to 00.

Table 9-4 AAR Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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Figure 9-8. Bus Control Register (BCR)

Table 9-5 Bus Control Register (BCR) Bit Definitions

Bit Number Bit Name Reset Value Description

23 BRH 0 Bus Request Hold
Asserts the BR signal, even if no external access is needed. When
BRH is set, the BR signal is always asserted. If BRH is cleared, the BR
is asserted only if an external access is attempted or pending.

22 BLH 0 Bus Lock Hold
Asserts the BL signal, even if no read-modify-write access is occurring.
When BLH is set, the BL signal is always asserted. If BLH is cleared,
the BL signal is asserted only if a read-modify-write external access is
attempted.

21 BBS 0 Bus State
This read-only bit is set when the DSP is the bus master and is cleared
otherwise.

20 – 16 BDFW 11111
(31 wait
states)

Bus Default Area Wait State Control
Defines the number of wait states (one through 31) inserted into each
external access to an area that is not defined by any of the AAR
registers. The access type for this area is SRAM only. These bits
should not be programmed as zero since SRAM memory access
requires at least one wait state.

When four through seven wait states are selected, one additional wait
state is inserted at the end of the access. When selecting eight or more
wait states, two additional wait states are inserted at the end of the
access. These trailing wait states increase the data hold time and the
memory release time and do not increase the memory access time.
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15 – 13 BA3W 1 (7 wait
states)

Bus Area 3 Wait State Control
Defines the number of wait states (one through seven) inserted in each
external SRAM access to Area 3 (DRAM accesses are not affected by
these bits). Area 3 is the area defined by AAR3.

NOTE: Do not program the value of these bits as zero since SRAM
memory access requires at least one wait state.

When four through seven wait states are selected, one additional wait
state is inserted at the end of the access. This trailing wait state
increases the data hold time and the memory release time and does not
increase the memory access time.

12 – 10 BA2W 111 (7 wait
states)

Bus Area 2 Wait State Control
Defines the number of wait states (one  through seven) inserted into
each external SRAM access to Area 2 (DRAM accesses are not
affected by these bits). Area 2 is the area defined by AAR2.

NOTE: Do not program the value of these bits as zero, since SRAM
memory access requires at least one wait state.

When four through seven wait states are selected, one additional wait
state is inserted at the end of the access. This trailing wait state
increases the data hold time and the memory release time and does not
increase the memory access time.

9 – 5 BA1W 11111 (31
wait states)

Bus Area 1 Wait State Control
Defines the number of wait states (one  through 31) inserted into each
external SRAM access to Area 1 (DRAM accesses are not affected by
these bits). Area 1 is the area defined by AAR1.

NOTE: Do not program the value of these bits as zero, since SRAM
memory access requires at least one wait state.

When four through seven wait states are selected, one additional wait
state is inserted at the end of the access. When selecting eight or more
wait states, two additional wait states are inserted at the end of the
access. These trailing wait states increase the data hold time and the
memory release time and do not increase the memory access time.

4 – 0 BA0W 11111 (31
wait states)

Bus Area 0 Wait State Control
Defines the number of wait states (one  through 31) inserted in each
external SRAM access to Area 0 (DRAM accesses are not affected by
these bits). Area 0 is the area defined by AAR0.

NOTE: Do not program the value of these bits as zero, since SRAM
memory access requires at least one wait state.

When selecting four through seven wait states, one additional wait state
is inserted at the end of the access. When selecting eight or more wait
states, two additional wait states are inserted at the end of the access.
These trailing wait states increase the data hold time and the memory
release time and do not increase the memory access time.

Table 9-5 Bus Control Register (BCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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9.6.3 DRAM Control Register

The DRAM controller is an efficient interface to dynamic RAM devices in both rando
read/write cycles and Fast Access mode (Page mode). An on-chip DRAM controller
controls the page hit circuit, the address multiplexing (row address and column addr
the control signal generation (CAS andRAS) and the refresh access generation (CAS before
RAS) for a variety of DRAM module sizes and access times. The on-chip DRAM
controller configuration is determined by the DRAM Control Register (DCR). The
DRAM Control Register (DCR) is a 24-bit read/write register that controls and configu
the external DRAM accesses. The DCR bits are shown inFigure 9-9.

Note: To prevent improper device operation, you must guarantee that all the DCR
except BSTR are not changed during a DRAM access.

Figure 9-9. DRAM Control Register (DCR)
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Table 9-6 DRAM Control Register (DCR) Bit Definitions

Bit Number Bit Name Reset Value Description

23 BRP 0 Bus Refresh Prescaler
Controls a prescaler in series with the refresh clock divider. If BPR is
set, a divide-by-64 prescaler is connected in series with the refresh
clock divider. If BPR is cleared, the prescaler is bypassed. The refresh
request rate (in clock cycles) is the value written to BRF[7 – 0] bits + 1,
multiplied by 64 (if BRP is set) or by one (if BRP is cleared).

NOTE: Refresh requests are not accumulated and, therefore, in a fast
refresh request rate not all the refresh requests are served (for
example, the combination BRF[7 – 0] = $00 and BRP = 0 generates a
refresh request every clock cycle, but a refresh access takes at least
five clock cycles).

When programming the periodic refresh rate, you must consider the
RAS time-out period. Hardware support for the RAS time-out restriction

does not exist.

22 – 15 BRF 0 Bus Refresh Rate
Controls the refresh request rate. The BRF[7 – 0] bits specify a divide
rate of 1–256 (BRF[7 – 0] = $00–$FF). A refresh request is generated
each time the refresh counter reaches zero if the refresh counter is
enabled (BRE = 1).

14 BSTR 0 Bus Software Triggered Reset
Generates a software-triggered refresh request. When BSTR is set, a
refresh request is generated and a refresh access is executed to all
DRAM banks (the exact timing of the refresh access depends on the
pending external accesses and the status of the BME bit). After the
refresh access (CAS before RAS) is executed, the DRAM controller
hardware clears the BSTR bit. The refresh cycle length depends on the
BRW[1 – 0] bits (a refresh access is as long as the out-of-page access).

13 BREN 0 Bus Refresh Enable
Enables/disables the internal refresh counter. When BREN is set, the
refresh counter is enabled and a refresh request (CAS before RAS) is
generated each time the refresh counter reaches zero. A refresh cycle
occurs for all DRAM banks together (that is, all pins that are defined as
RAS are asserted together). When this bit is cleared, the refresh
counter is disabled and a refresh request may be software triggered by
using the BSTR bit.

In a system in which DSPs share the same DRAM, the DRAM controller
of more than one DSP may be active, but it is recommended that only
one DSP have its BREN bit set and that bus mastership is requested for
a refresh access.

If BREN is set and a WAIT instruction is executed, periodic refresh is
still generated each time the refresh counter reaches zero.

If BREN is set and a STOP instruction is executed, periodic refresh is
not generated and the refresh counter is disabled. The contents of the
DRAM are lost.
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12 BME 0 Bus Mastership Enable
Enables/disables interface to a local DRAM for the DSP. When BME is
cleared, the RAS and CAS pins are tri-stated when mastership is lost.
Therefore, you must connect an external pull-up resistor to these pins.
In this case (BME = 0), the DSP DRAM controller assumes a page fault
each time the mastership is lost. A DRAM refresh requires a bus
mastership. If the BME bit is set, the RAS and CAS pins are always
driven from the DSP. Therefore, DRAM refresh can be performed, even
if the DSP is not the bus master.

11 BPLE 0 Bus Page Logic Enable
Enables/disables the in-page identifying logic. When BPLE is set, it
enables the page logic (the page size is defined by BPS[1 – 0] bits).
Each in-page identification causes the DRAM controller to drive only
the column address (and the associated CAS signal). When BPLE is
cleared, the page logic is disabled, and the DRAM controller always
accesses the external DRAM in out-of-page accesses (for example,
row address with RAS assertion and then column address with CAS
assertion). This mode is useful for low power dissipation. Only one
in-page identifying logic exists. Therefore, during switches from one
DRAM external bank to another DRAM bank (the DRAM external banks
are defined by the access type bits in the AARs, different external
banks are accessed through different AA/RAS pins), a page fault
occurs.

10 0 Reserved. Write to zero for future compatibility.

9 – 8 BPS 0 Bus DRAM Page Size
Defines the size of the external DRAM page and thus the number of the
column address bits. The internal page mechanism works according to
these bits only if the page logic is enabled (by the BPLE bit). The four
combinations of BPS[1 – 0] enable the use of many DRAM sizes (1 M
bit, 4 M bit, 16 M bit, and 64 M bit). The encoding of BPS[1 – 0] is:

00 = 9-bit column width, 512
01 = 10-bit column width, 1 K
10 = 11-bit column width, 2 K
11 = 12-bit column width, 4 K

When the row address is driven, all 24 bits of the external address bus
are driven [for example, if BPS[1 – 0] = 01, when driving the row
address, the 14 MSBs of the internal address (XAB, YAB, PAB, or
DAB) are driven on address lines A0–A13, and the address lines A[14 –
23] are driven with the 10 MSBs of the internal address. This method
enables the use of different DRAMs with the same page size.

7 – 4 0 Reserved. Write to zero for future compatibility.

Table 9-6 DRAM Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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3 – 2 BRW 0 Bus Row Out-of-page Wait States
Defines the number of wait states that should be inserted into each
DRAM out-of-page access. The encoding of BRW[1 – 0] is:

00 = 4 wait states for each out-of-page access
01 = 8 wait states for each out-of-page access
10 = 11 wait states for each out-of-page access
11 = 15 wait states for each out-of-page access

1 – 0 BCW 0 Bus Column In-page Wait State
Defines the number of wait states to insert for each DRAM in-page
access. The encoding of BCW[1 – 0] is:

00 = 1 wait state for each in-page access
01 = 2 wait states for each in-page access
10 = 3 wait states for each in-page access
11 = 4 wait states for each in-page access

Table 9-6 DRAM Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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Chapter 10
DMA Controller

Direct Memory Access (DMA) is one of several methods for coordinating the timing 
data transfers between an input/output (I/O) device and the core processing unit or
memory in a computer. DMA is one of the faster types of synchronization mechanis
generally providing significant improvement over interrupts, in terms of both latency
throughput. An I/O device often operates at a much slower speed than the core.1 DMA
allows the I/O device to access the memory directly, without using the core. DMA ca
lead to a significant improvement in performance because data movement is one of
most common operations performed in processing applications. There are several
advantages of using DMA, rather than the core, in the DSP56300 family:

■ DMA saves core MIPS because the core can operate in parallel.

■ DMA saves power because it requires less circuitry than the core to move dat

■ DMA saves pointers because core AGU pointer registers are not needed.

■ DMA has no modulo block size restrictions, unlike the core AGU.

Traditionally, DMA uses the same internal address and data buses as the core.
Consequently, when DMA performs one or more word transfers, it can cause the co
temporarily halt activity for one or more cycles while DMA moves the data. With this
type of architecture, the core and DMA cannot both perform data moves in the same
clock cycle. To overcome data movement restrictions imposed by sharing resources
the core, the DMA system in the DSP56300 family contains its own dedicated intern
address and data buses. Internal memory is partitioned so that the Program Contro
(PCU) and DMA can both perform internal memory accesses in the same core clock
cycle, as long they are accessing different memory partitions. Also, if one of these tw
controllers (PCU or DMA) is accessing internal memory, the other controller can perf
an external memory access in the same core clock cycle.

1. The term “core” has a special meaning when described in the context of DMA. Technically, the
DSP56300 core contains all of the circuitry that is common to all devices in the DSP56300 family,
including the DMA controller and buses. However, when described in the context of DMA, the core
actions referred to are those caused by data movement instructions executed by the PCU, not data m
ment performed by DMA.
Motorola DSP56300 Family Manual 10-1
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In addition to data moves between I/O and internal or external memory, the DMA in
DSP56300 can perform memory-to-memory transfers (internal, external, or mixed).Table
10-1 summarizes by source/destination type the various types of data transfers that 
DMA Controller can perform.

The DMA unit contains the necessary counters, offset registers, and pointers to
transparently handle one-, two-, and three-dimensional data matrix transfers. These
registers can be given values that result in special addressing modes, for example, 
to circular buffers and linear buffers with non-unit stride. The data structure
dimensionality can be chosen independently for the source access versus the destin
access involved in the data move. The DSP56300 contains six DMA channels that s
buses and offset registers but are otherwise independent. Each DMA channel can b
triggered by interrupt pins, peripheral actions, or other DMA events, and assigned a
priority relative to other channels and relative to the core. Each of the six DMA chan
contains its own set of four operational registers, all of which are memory-mapped i
internal I/O memory space and all of which are 24-bit registers:

■ DMA Source Address Register (DSR): A read/write register that contains the sourc
address for the next DMA transfer for its channel. Each DMA channel has one
DSR: DSR0, DSR1, DSR2, DSR3, DSR4 and DSR5.

■ DMA Destination Address Register (DDR): A read/write register that contains the
destination address for the next DMA transfer for its channel. Each DMA chan
has one DDR: DDR0, DDR1, DDR2, DDR3, DDR4 and DDR5.

■ DMA Counter (DCO): A read/write register that contains the number of DMA da
transfers to be performed by its channel. The DCO has five modes of operatio
determined by the DMA channel Address Generation mode defined in the DM
channel’s Control Register. Each DMA channel has one DCO: DCO0, DCO1,
DCO2, DCO3, DCO4 and DCO5.

Table 10-1 DMA Controller Data Transfers

Type of Transfer Clock Cycles per Single Word Transfer 1

Internal Memory → Internal Memory 2

External Memory ↔ Internal Memory 2 + wait states

External Memory → External Memory2 2 + wait states

Internal Memory ↔ Internal I/O 2

External Memory ↔ Internal I/O 2 + wait states

Internal I/O → Internal I/O 2

NOTES:
1. Data transfer for one channel takes a minimum of two clock cycles per single word.
2. External memory includes external I/O.
10-2 DSP56300 Family Manual Motorola
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■ DMA Control Register (DCR): A read/write register that controls the operation of
DMA channel. Each DMA channel has one DCR: DCR0, DCR1, DCR2, DCR
DCR4 and DCR5.

The DMA Controller also has supporting 24-bit registers available to all the DMA
channels:

■ DMA Offset Register (DOR): Each DOR is a read/write register that contains the
offset value to be used in some of the DMA addressing modes. The DMA
controller has four common offset registers (DOR0, DOR1, DOR2 and DOR3)
can be used by all the channels according to their Address Generation mode.

■ DMA Status Register (DSTR): This read-only register reflects the overall operatin
status of all channels in the DMA Controller.

In summary, the DSP56300 DMA can perform I/O and memory accesses that are
independent of and frequently simultaneous with PCU operations. DMA can transfe
memory-to-memory and handle mixed multi-dimensional and special address mode
transfers. DMA contains six highly independent channels with separate priorities an
multiple trigger choices. These capabilities significantly enhance code performance.

10.1 DMA Operational Overview

The following subsections describe how the DSP56300 DMA operates. These subse
are organized by function, rather than by event sequence. The DMA register descrip
section contains detailed operational information.

10.1.1 Basic Address Modes

The DSP56300 DMA can deal with the following basic types of data structures:

■ Constant Addressing: This mode uses a single address throughout the data tra
Typically this is used by I/O devices that use a single address to transfer
information.

■ One-dimensional: A one-dimensional matrix consisting of one item or a “line” 
items located in consecutive memory locations.

■ Two-dimensional: A two-dimensional matrix or table that is stored in row-colu
order with equal spacing in memory between each row or line.

■ Three-dimensional: A three-dimensional matrix or collection of tables that are
equally spaced in memory.

The type of data structure is specified in the counter mode for the DMA channel. Th
counter mode divides a given 24-bit counter register into one or more sections, one
Motorola DMA Controller 10-3
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each dimension used. The appropriate counter fields either decrement or reload eac
the DMA transfers a data word. A counter field is reloaded with its initial value after 
field is decremented to zero. For details on counter operation, seeSection 10.5.3,"DMA
Counters (DCO[5 – 0])," on page 10-11. Once all fields in the counter are exhausted
or more data moves are performed and all words, lines, and tables are transferred. 
total collection of data moved is called the “block.” Exhaustion of the entire counter
results in a single “block transfer.” The automatic counter register updates are direc
performed on the user-visible counter register. In other words, the counter register is
for both the count load/reload function and the count decrement function.

10.1.2 Special Address Modes

The counter and offset registers can be loaded with special values to produce varia
the basic addressing modes. Some examples covered in more detail in later section
include:

■ Circular buffer: Use a two-dimensional counter and a negative offset that wra
back to the buffer start address.

■ Linear buffer with non-unit stride: Use a two-dimensional counter with one wo
per row. This method must be used with byte packing, which has a stride of th

■ A larger-than-normal field width in a two-dimensional counter: Concatenate tw
fields in a three-dimensional counter by specifying an offset value of one betw
them.

10.1.3 Unmatched Source and Destination Dimensions

The source and destination data structures can have different dimensions.2 The data
structure with the largest dimension is read or written once during the block transfer
data structure with the smaller dimension can be written or read repeatedly. For this
situation, a single counter register handles both sides of the transfer. The high-dime
(three-dimensional or two-dimensional) side of the transfer determines the counter m
and thus the number of available counter fields. Each “tick” of the counter counts on
word transfer; that is, one source read and one destination write.

The data structure on the low-dimension side of the transfer is fully described by a
right-justified subset of the counter—the number of counter fields being the same as
dimension (two-dimensional or one-dimensional). This data structure access is repe
(using the exact same addressing sequence) the number of times specified by the u

2. For an example, see the Motorola application report, APR/23,Using the DSP56300 Direct Memory
Access Controller.
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field(s) of the counter. The pointer wraparound back to the beginning of this data struc
is accomplished using a negative offset register value, similar to a circular buffer.

10.1.4 DMA Triggers (Request Sources)

Data movement in by a particular DMA channel is initiated by either a hardware or a
software trigger. Following is an example list of some of the hardware and software D
triggers, also known as DMA request sources. Peripheral triggers are device-depend
DMA channel can be configured for triggering by only one source at a time.

■ Hardware triggers

— External interrupt pins (IRQA - IRQD)

— DMA channel block transfer completion (by this or a different DMA channe

— Peripheral status bits

— Receiver has new datum to be read by DMA

— Transmitter needs new datum from DMA to send

— Timer compare event

■ Software triggers

— DMA Enable bit for this DMA channel

A peripheral status bit that triggers an enabled DMA transfer also typically can trigge
enabled peripheral interrupt. The DMA transfer is triggered by the status bit change
by the peripheral interrupt event, and the DMA transfer occurs whether or not the
peripheral interrupt is enabled. Furthermore, avoid triggering a DMA transfer and a
peripheral interrupt from the same event; this can result in a lack of coordination regar
resources and status bit changes.

10.1.5 Transfer Mode

When a DMA channel is enabled and receives a trigger from its configured trigger sou
it begins moving data as soon as the needed resources become available (for exam
internal DMA buses and memory locations). As a result of the trigger event, the cha
transfers either all or a subset of the block (this is configurable). The amount of data th
transferred in response to each trigger event is determined by the DMA transfer mo
Besides the trigger data structure, the transfer mode also selects either a hardware 
software trigger, and automatic block repeat enable. The available transfer modes a
single word, line, and block. Typically, a DMA channel used in conjunction with a
peripheral operates in a single word transfer mode (triggered by a receiver full or
transmitter empty condition).
Motorola DMA Controller 10-5
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10.2 Timing (Core Clock Cycles)

This section describes the timing of core and DMA data transfers in the context of inte
core clock cycle counts. When the needed resources are available, each word trans
performed by the DMA takes at least two core clock cycles:

■ Source read (at least one cycle)

■ Destination write (at least one cycle)

Any wait states incurred during external memory accesses are added to the DMA w
transfer time (for external source and/or destination).

Some peripherals (generally those using first-in-first-out (FIFO) for data transfer) may
as “fast DMA request sources.” These peripherals can trigger a new DMA request as
as every two core clock cycles, thereby using the DMA at its maximum throughput r
with zero overhead time.

10.2.1 Non-Overlap Between DMA Channels

Data movement can never be performed by more than one DMA channel within a g
core clock cycle. For example, it is not possible for Channel 1 to commence its sour
read before Channel 0 completes its destination write. This non-overlap limitation ex
for all situations, including the following cases:

■ One channel needs to read (write) from external memory, and another chann
needs to write (read) to internal memory.

■ One of the DMA channels is waiting on the Bus Interface Unit (BIU) for an
external access to complete, and the BIU is in turn waiting because of:

— Static wait states (determined by Bus Control Register)

— Dynamic wait states (controlled byTA pin)

— Byte packing

This limitation is necessary because there is only one internal DMA address bus an
internal DMA data bus. The internal DMA buses are in use by a DMA channel even
during the external memory access phase of the DMA word transfer. Although chan
overlap during DMA channel transfers cannot exist, zero overhead between two DM
channel transfers can exist. Once the word transfer performed by a DMA channel is
completed, another DMA channel can begin data movement in the very next core cl
cycle—if the second DMA channel has already been triggered and is not being delaye
contention or priority issues.
10-6 DSP56300 Family Manual Motorola
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10.2.2 Overlap between DMA Channel and Core

Since the core and DMA use separate address and data buses, both can perform d
movement in a given core clock cycle. This overlap of data movement can occur for
following cases:

■ The core is accessing internal memory while DMA is accessing a different inte
memory partition:

— RAM: 1/4 Kword partition size (this size is device-dependent)

— ROM: 2, 3, or 4 Kword device-specific partition size

If the core and DMA try to access the same internal memory partition, the core
priority and DMA is delayed.

■ The core is accessing internal (external) memory while DMA is accessing exte
(internal) memory

10.3 Channel Priority

DMA channel priority determines if and when a DMA channel can be interrupted durin
block transfer. An interruption occurs between word transfers. The current DMA wor
transfer is allowed to complete before the core or another DMA channel can take co
of the resource that is under contention. The DMA channel priority arbitration occurs
each DMA word transfer; only enabled and already triggered channels can take part i
arbitration.

10.3.1 Priority Between DMA Channels

Each DMA channel can be independently assigned one of four possible priority leve
The treatment of priorities is as follows:

■ Channels with different priorities

A higher-priority DMA channel can interrupt a lower-priority DMA channel and
complete its block transfer before control transfers back to the lower-priority
channel.

■ Channels with the same priority, one of two different modes can be selected:

— Continuous mode: A DMA channel cannot interrupt another DMA channel 
the same priority.

— Non-continuous mode: Control is transferred in a round-robin fashion betw
each channel of the same priority. Each channel transfers one word before
control transfers to the next channel in this group.
Motorola DMA Controller 10-7
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DMA channels cannot interrupt each other in the middle of word transfers, regardles
their relative priorities. A word transfer made by one DMA channel must finish befor
another DMA channel can commence a word transfer.

10.3.2 Priority Between a DMA Channel and the Core

If the core and a DMA channel are both contending for the same partition of interna
memory, but neither has begun the word transfer, the core always takes precedenc
DMA channel must wait until the core is not accessing this memory partition for at le
one core clock cycle before it can begin to access the partition.

If the DMA channel and the core are each attempting to access a different internal
memory partition in RAM or ROM, no contention exists. In this case, the accesses ca
made simultaneously (data movement can occur in both of these data paths in a give
clock cycle). If the core and a DMA channel are both contending to make an externa
memory access, the prioritizing between that channel and the core is performed acco
to one of two selectable modes:

■ Static DMA/Core Prioritizing mode — The core priority is configured to have a
constant fixed relationship with the DMA priority, regardless of which DMA
channel is considered. The core priority is set to be either lower, equal, or gre
than that of the DMA. The individual DMA channels have equal priority when
compared to the core, although they may still have unequal priorities when
compared to each other. This mode is set using bits CDP[1 – 0] of the Operat
Mode Register.

■ Dynamic DMA/Core Prioritizing mode — The priority of each DMA channel is
individually compared with that of the core. The DMA channel priority setting
used for comparison with other DMA channels is also used for comparison with
core. This mode is set using bits CP[1 – 0] of the Status Register.

Note: Even though DMA and the core have separate address and data buses, th
only one external address and data bus.

The core cannot interrupt a DMA channel in the middle of a word transfer to or from
contended resource (an internal memory partition, or external memory), regardless 
core/DMA relative priority. If the DMA channel is already performing an access to th
resource, the core must wait until the current DMA word transfer finishes accessing
resource before the core can access that resource. The core may have to wait for the
DMA word transfer to complete, or it may have to wait only for the DMA source read
complete. This depends on the destination address of the DMA channel. If the destin
of the DMA word transfer is not in the contended resource, then the core can proceed
its access to the resource while the DMA performs its destination write somewhere 
10-8 DSP56300 Family Manual Motorola
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10.4 Special Uses of DMA With the Bus Interface Unit

The following subsections describe Bus Interface Unit (BIU) operations that can onl
performed using DMA.

10.4.1 Byte Packing

Byte packing is used when the 24-bit data width DSP core interfaces with an 8-bit w
external memory device. Byte packing can be performed only in conjunction with a D
data move.3 When the DMA channel attempts to read a word from the external memor
expects a 24-bit value. In accordance with the DMA read, the BIU reads three consec
bytes from the memory, packs them into one 24-bit word, and then passes this word t
DMA. A reverse sequence occurs for a DMA write to the external memory. The BIU ta
the 24-bit word from the DMA channel, unpacks it, and writes it as three consecutive
bytes, to the external memory. For both read and write, the DMA views each 24-bit 
transfer as a single external access. However, the byte packing operation is not comp
transparent to the DMA. To read or write several 24-bit words to or from consecutive
locations in the 8-bit memory, the DMA must be programmed to either increase or
decrease its external memory address pointer by three for each 24-bit transfer.

10.4.1.1 DRAM In-Page Accesses using DMA

When a DMA channel handles several consecutive in-page DRAM word accesses, 
special situation can occur if an in-page access is interrupted by an external memor
access initiated either by the core or a different DMA channel. The interrupting opera
could be a higher-priority access to external SRAM. After the interrupting operation 
the BIU, the original DMA channel can resume reading or writing the DRAM without
losing in-page access. This can occur as long as all in-page access conditions (descr
Chapter 9, External Memory Interface (Port A)) remain satisfied.

10.4.1.2 End-of-Block-Transfer Interrupt

Upon completion of a block transfer by a DMA channel, an optional end-of-block-tran
DMA interrupt can be generated. The interrupt service routine (ISR) called by such 
interrupt can perform any functions needed at this time. For example, the ISR could
reconfigure the DMA channel for the next data block transfer or restart the DMA chan
(if it is used in a transfer mode for which no automatic restart is available). Do not con
an end-of-block-transfer DMA interrupt, also known as a “DMA interrupt,” with a
peripheral interrupt. A peripheral interrupt can be generated by the same event that
triggers the DMA channel to move part or all of the block.

3. For details, see the Port A Address Attribute Register description in Chapter 9 and the Motorola applic
tion report, APR23/D,Using the DSP56300 Direct Memory Access Controller.
Motorola DMA Controller 10-9
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10.5 DMA Controller Programming Model

Figure 10-1 shows the DMA Controller programming model. The following paragraph
describe the registers and how they are used. Since the six channels share identical
registers, each of the four registers in each set is described once.

10.5.1 DMA Source Address Registers (DSR0–DSR5)

The DSR stores the initial source address specified by and loaded from the DMA
requesting device. During the DMA transfer, the DSR contents increment as defined
the D3D and DAM bit settings (except in No Update mode). In two-dimensional mod
the specified DOR updates the DSR after the first set of data transfers completes. In
three-dimensional mode, the specified DORs update the DSR twice during the trans

Figure 10-1. DMA Controller Programming Model
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10.5.2 DMA Destination Address Registers (DDR[5 – 0])

The DDR stores the initial destination address specified by and loaded from the DM
requesting device. During the DMA transfer, the DDR contents increment as defined
the D3D and DAM bit settings (except in No Update mode). In two-dimensional mod
the specified DOR updates the DDR after the first set of data transfers completes. In
three-dimensional mode, the specified DORs update the DDR twice during the trans

10.5.3 DMA Counters (DCO[5 – 0])

During DMA operation, a Source Address Register (DSR) is associated with one of 
counter modes, and the Destination Address Register (DDR) can be associated with
another counter mode. The following examples use DSR as an example of the addr
register used, but the same example is valid for the DDR.

10.5.3.1 DMA Counter Mode A—Single Counter

Figure 10-2 shows that in DMA Counter Mode A, the DCO operates as a single coun

The number of transfers is equal to the value loaded into DCO plus one (DCO + 1). Be
each DMA transfer, the DCO is tested for zero, and the following actions occur base
the test result:

■ DCO > 0

A transfer is initiated with an address equal to the address register. Then DCO
decremented by one and the address register is updated according to the add
generation mode.

■ DCO = 0

The last transfer is initiated with an address equal to the address register, the
address register is updated according to the address generation mode, and D
loaded with its preloaded value.

For example, if the DCO is preloaded with the value 5, the DSR is loaded with the v
S, and the address generation mode is postincrement-by-1.Table 10-2 indicates the
changes in the DSR and the DCO during the DMA transfer.

Figure 10-2. DMA Counter Mode A Layout

23 0

DCO
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10.5.3.2 DMA Counter Mode B—Dual Counter

Figure 10-3 shows that in DMA Counter Mode B, which is useful for two-dimensiona
block transfers, the DCO is separated into two sections: DCOH[23 –12] and
DCOL[11– 0] bits.

Before each DMA transfer, DCOH and DCOL are tested for zero, and the following
actions occur based on the test results:

■ DCOH > 0 and DCOL > 0

A transfer is initiated with an address equal to the address register. Then DCO
decremented by one and the address register is incremented by one.

■ DCOH > 0 and DCOL = 0

A transfer is initiated with an address equal to the address register. The addre
register is incremented with the specified offset register, DCOH is decremente
one, and DCOL is loaded with its preloaded value.

■ DCOH = 0 and DCOL = 0

The last transfer is initiated with an address equal to the address register. The
address register is incremented with the specified offset register, and both DC
and DCOL are loaded with their preloaded values.

The number of transfers in this mode is equal to (DCOL + 1)× (DCOH + 1). For example,
assume DCOH is preloaded with the value 1, DCOL is preloaded with the value 2, DO

Table 10-2 Interaction Between the DSR and DCO in Mode A

Before the Transfer After the Transfer

DSR DCO DSR DCO

S 5 S + 1 4

S + 1 4 S + 2 3

S + 2 3 S + 3 2

S + 3 2 S + 4 1

S + 4 1 S + 5 0

S + 5 0 S + 6 5

Figure 10-3. DMA Counter Mode B Layout

23 12 11 0

DCOH DCOL
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preloaded with the value T, and DSR is loaded with the value S.Table 10-3 indicates the
changes in the DSR and the DCO during the DMA transfer.

10.5.3.3 Circular Buffer (Length Less Than or Equal to 4K)

In Dual Counter mode, a DMA channel can function as a circular buffer. A negative of
causes the buffer pointer to wrap back to the start of the buffer. Since the buffer poi
does not auto-increment after the last word in the buffer is transferred (that is, just a
DCOL decrements past zero), the distance for it to jump backwards is one less than
buffer size. Therefore, the offset register (DOR) value is -(BUFFER_SIZE - 1).

The 12-bit DCOL field is set to (BUFFER_SIZE - 1), providing a maximum buffer leng
of 4096 words. DCOH determines the number of buffer wraparounds that occur dur
single block transfer (a block transfer is complete when both DCOH and DCOL
decrement past zero). To allow for continuous circular operation of the buffer, after t
block transfer completes in DMA channel n, the DCRn (DE) bit either remains set
(according to DCRn(DTM2 – 0)), or it is set again (by an end-of-block-transfer DMA
interrupt). A circular buffer of length greater than 4096 words can be implemented u
Counter Mode E.

10.5.3.3.1   DMA Counter Modes C, D and E—Triple Counter

In DMA Counter Modes C, D, and E, which are useful for three-dimensional block
transfers, the DCO is separated into three sections: DCOH, DCOM and DCOL.Figure
10-4 shows that the size of each section varies depending on the selected mode. Th
transfers in this mode are equal to (DCOL + 1)× (DCOM + 1)× (DCOH + 1).

Table 10-3 Interaction Between the DSR and DCO in Mode B

Before the Transfer After the Transfer

DSR DCOH DCOL DSR DCOH DCOL

S 1 2 S + 1 1 1

S + 1 1 1 S + 2 1 0

S + 2 1 0 S + T + 2 0 2

S + T + 2 0 2 S + T + 3 0 1

S + T + 3 0 1 S + T + 4 0 0

S + T + 4 0 0 S + 2T + 4 1 2
Motorola DMA Controller 10-13
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Figure 10-4. DMA Counter Modes C, D, and E Layouts

Before each DMA transfer, DCOH, DCOM, and DCOL are tested for zero, and the
following actions occur based on the test results:

■ DCOH > 0, DCOM > 0, and DCOL > 0

A transfer is initiated with an address equal to the address register. Then DCO
decrements by one and the address register increments by one.

■ DCOH > 0, DCOM > 0, and DCOL = 0

A transfer is initiated with an address equal to the address register. Then the
address register increments with the first specified offset register, DCOM
decrements by one, and DCOL is loaded with its preloaded value.

■ DCOH > 0, DCOM = 0, and DCOL = 0

A transfer is initiated with an address equal to the address register. The addre
register then increments with the second specified offset register, DCOH
decrements by one, and both DCOM and DCOL are loaded with their preload
value.

■ DCOH = 0, DCOM = 0, and DCOL = 0

The last transfer is initiated with an address equal to the address register. The
address register then increments with the second specified offset register and
DCOH, DCOM, and DCOL are loaded with their preloaded values.

Assume that DCOH is preloaded with the value 1, DCOM is also preloaded with the v
1, DCOL is preloaded with the value 2, DOR0 is preloaded with the value T0, DOR1
preloaded with the value T1, and the DSR is loaded with the value S.Table 10-4indicates
the changes in the DSR and the DCO during the DMA transfer.

Mode C—DCOH (DCO[23:12]), DCOM (DCO[11 – 6]), and DCOL (DCO[5 – 0])

Mode D—DCOH (DCO[23 – 18]), DCOM (DCO[17 – 6]), and DCOL (DCO[5 – 0])
.

Mode E—DCOH (DCO[23 – 18]), DCOM (DCO[17 – 12]), and DCOL (DCO[11 – 0])

23 12 11 6 5 0

DCOH DCOM DCOL

23 18 17 6 5 0

DCOH DCOM DCOL

23 18 17 12 11 0

DCOH DCOM DCOL
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10.5.3.4 Circular Buffer (Length Greater Than 4K)

A circular buffer of length greater than 4096 words can be implemented using a DM
channel in Counter Mode E. The 12-bit DCOL and 6-bit DCOM fields are concatena
into one 18-bit counter field, allowing a buffer length of up to approximately 256 Kwor
(218 words). The counter field is concatenated using a primary offset of one (that is, D
= 0). The remainder of the setup is done the same way as for a circular buffer
implementation using Dual Counter mode (seeSection 10.5.3.2). In other words,
DCOM:DCOL = (BUFFER_SIZE - 1), and the secondary offset DORj =
-(BUFFER_SIZE - 1). For an even longer circular buffer (up to 224words), it is necessary
to use an end-of-block-transfer DMA interrupt to perform the buffer pointer wraparou
The interrupt service routine must explicitly modify the DMA source and/or destinati
address registers. For this case, Single-Counter mode is used.

Table 10-4 Interaction Between the DSR and DCO in Mode C, D, or E

Before the Transfer After the Transfer

DSR

D
C
O
H

D
C
O
M

D
C
O
L

DSR

D
C
O
H

D
C
O
M

D
C
O
L

S 1 1 2 S + 1 1 1 1

S + 1 1 1 1 S + 2 1 1 0

S + 2 1 1 0 S + T0 + 2 1 0 2

S + T0 + 2 1 0 2 S + T0 + 3 1 0 1

S + T0 + 3 1 0 1 S + T0 + 4 1 0 0

S + T0 + 4 1 0 0 S + T0 + T1 + 4 0 1 2

S + T0 + T1 + 4 0 1 2 S + T0 + T1 + 5 0 1 1

S + T0 + T1 + 5 0 1 1 S + T0 + T1 + 6 0 1 0

S + T0 + T1 + 6 0 1 0 S + 2T0 + T1 + 6 0 0 2

S + 2T0 + T1 + 6 0 0 2 S + 2T0 + T1 + 7 0 0 1

S + 2T0 + T1 + 7 0 0 1 S + 2T0 + T1 + 8 0 0 0

S + 2T0 + T1 + 8 0 0 0 S + 2T0 + 2T1 + 8 1 1 2
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10.5.3.5 DMA Control Registers (DCR[5 – 0])

The DMA Control Registers (DCR[5 – 0]) are read/write registers that control the DM
operation for each of their respective channels. All DCR bits are cleared during proce
reset.

Figure 10-5. DMA Control Register (DCR)

Table 10-5  DMA Control Register (DCR) Bit Definitions

Bit Number Bit Name Reset Value Description

23 DE 0 DMA Channel Enable
Enables the channel operation. Setting DE either triggers a single block DMA
transfer in the DMA transfer mode that uses DE as a trigger or enables a
single-block, single-line, or single-word DMA transfer in the transfer modes that
use a requesting device as a trigger. DE is cleared by the end of DMA transfer in
some of the transfer modes defined by the DTM bits. If software explicitly clears
DE during a DMA operation, the channel operation stops only after the current
DMA transfer completes (that is, the current word is stored into the destination).

22 DIE 0 DMA Interrupt Enable
Generates a DMA interrupt at the end of a DMA block transfer after the counter
is loaded with its preloaded value. A DMA interrupt is also generated when
software explicitly clears DE during a DMA operation. Once asserted, a DMA
interrupt request can be cleared only by the service of a DMA interrupt routine.
To ensure that a new interrupt request is not generated, clear DIE while the
DMA interrupt is serviced and before a new DMA request is generated at the
end of a DMA block transfer—that is, at the beginning of the DMA channel
interrupt service routine. When DIE is cleared, the DMA interrupt is disabled.

23 22 21 20 19 18 17 16 15 14 13 12

DE DIE DTM2 DTM1 DTM0 DPR1 DPR0 DCON DRS4 DRS3 DRS2 DRS1

11 10 9 8 7 6 5 4 3 2 1 0

DRS0 D3D DAM5 DAM4 DAM3 DAM2 DAM1 DAM0 DDS1 DDS0 DSS1 DSS0
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21 – 19 DTM 0 DMA Transfer Mode
Specify the operating modes of the DMA channel, as follows:

DTM[2 –0] Trigger
DE Cleared

After
Transfer Mode

000 request Yes Block Transfer
DE enabled and DMA request initiated. The
transfer is complete when the counter
decrements to zero and the DMA controller
reloads the counter with the original value.

001 request Yes Word Transfer
A word-by-word block transfer (length set by
the counter) that is DE enabled. The
transfer is complete when the counter
decrements to zero and the DMA controller
reloads the counter with the original value.

010 request Yes Line Transfer
A line by line block transfer (length set by
the counter) that is DE enabled. The
transfer is complete when the counter
decrements to zero and the DMA controller
reloads the counter with the original value.

011 DE Yes Block Transfer
The DE-initiated transfer is complete when
the counter decrements to zero and the
DMA controller reloads the counter with the
original value.

100 request No Block Transfer
The transfer is enabled by DE and initiated
by the first DMA request. The transfer is
completed when the counter decrements to
zero and reloads itself with the original
value. The DE bit is not cleared at the end of
the block, so the DMA channel waits for a
new request.

101 request No Word Transfer
The transfer is enabled by DE and initiated
by every DMA request. When the counter
decrements to zero, it is reloaded with its
original value. The DE bit is not
automatically cleared, so the DMA channel
waits for a new request.

110 Reserved

111 Reserved

NOTE: When DTM[2 – 0] = 001 or 101, some peripherals can generate a
second DMA request while the DMA controller is still processing the first request
(see the description of the DRS bits).

Table 10-5  DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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18 – 17 DPR DMA Channel Priority
Define the DMA channel priority relative to the other DMA channels and to the
core priority if an external bus access is required. For pending DMA transfers,
the DMA controller compares channel priority levels to determine which channel
can activate the next word transfer. This decision is required because all
channels use common resources, such as the DMA address generation logic,
buses, and so forth.

DPR[1 – 0] Channel Priority

00 Priority level 0 (lowest)

01 Priority level 1

10 Priority level 2

11 Priority level 3 (highest)

■ If all or some channels have the same priority, then channels are
activated in a round-robin fashion (that is, channel 0 is activated to
transfer one word, followed by channel 1, followed by channel 2, etc.).

■ If channels have different priorities, the highest priority channel executes
DMA transfers and continues for its pending DMA transfers.

■ If a lower-priority channel is executing DMA transfers when a higher
priority channel receives a transfer request, the lower-priority channel
finishes the current word transfer and arbitration starts again.

■ If some channels with the same priority are active in a round-robin fashion
and a new higher-priority channel receives a transfer request, the
higher-priority channel is granted transfer access after the current word
transfer is complete. After the higher-priority channel transfers are
complete, the round-robin transfers continue. The order of transfers in the
round-robin mode may change, but the algorithm remains the same.

■ The DPR bits also determine the DMA priority relative to the core priority
for external bus access. Arbitration uses the current active DMA priority,
the core priority defined by the SR bits CP[1 – 0], and the core-DMA
priority defined by the OMR bits CDP[1 – 0]. Priority of core accesses to
external memory is as follows:

OMR - CDP(1 – 0) CP(1 – 0) Core Priority

00 00 0 (lowest)

00 01 1

00 10 2

00 11 3 (highest)

01 xx DMA accesses have higher priority
than core accesses

10 xx DMA accesses have the same
priority as core accesses

11 xx DMA accesses have lower priority
than core accesses

Table 10-5  DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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18 – 17
cont.

DPR ■ If DMA priority > core priority (for example, if CDP = 01, or CDP = 00 and
DPR > CP), the DMA performs the external bus access first and the core
waits for the DMA channel to complete the current transfer.

■ If DMA priority = core priority (for example, if CDP = 10, or CDP = 00 and
DPR = CP), the core performs all its external accesses first and then the
DMA channel performs its access.

■ If DMA priority < core priority (for example, if CDP=11, or CDP = 00 and
DPR < CP), the core performs its external accesses and the DMA waits
for a free slot in which the core does not require the external bus.

■ In Dynamic Priority mode (CDP = 00), the DMA channel can be halted
before executing both the source and destination accesses if the core has
higher priority. If another higher-priority DMA channel requests access,
the halted channel finishes its previous access with a new higher priority
before the new requesting DMA channel is serviced.

16 DCON DMA Continuous Mode Enable
Enables/disables DMA Continuous mode. When DCON is set, the channel
enters the Continuous Transfer mode and cannot be interrupted during a
transfer by any other DMA channel of equal priority. DMA transfers in the
continuous mode of operation can be interrupted if a DMA channel of higher
priority is enabled after the continuous mode transfer starts. If the priority of the
DMA transfer in continuous mode (that is, DCON = 1) is higher than the core
priority (CDP = 01, or CDP = 00 and DPR > CP), and if the DMA requires an
external access, the DMA gets the external bus and the core is not able to use
the external bus in the next cycle after the DMA access even if the DMA does
not need the bus in this cycle. However, if a refresh cycle from the DRAM
controller is requested, the refresh cycle interrupts the DMA transfer. When
DCON is cleared, the priority algorithm operates as for the DPR bits.

Table 10-5  DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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15 – 11 DRS DMA Request Source
Encodes the source of DMA requests that trigger the DMA transfers. The DMA
request sources may be external devices requesting service through the IRQA,
IRQB, IRQC and IRQD pins, triggering by transfers done from a DMA channel,
or transfers from the internal peripherals. All the request sources behave as
edge-triggered synchronous inputs.

DRS(4 – 0) Requesting Device

00000 External (IRQA pin)

00001 External (IRQB pin)

00010 External (IRQC pin)

00011 External (IRQD pin)

00100 Transfer done from channel 0

00101 Transfer done from channel 1

00110 Transfer done from channel 2

00111 Transfer done from channel 3

01000 Transfer done from channel 4

01001 Transfer done from channel 5

01010 Peripheral request MDRQ0

... ...

11111 Peripheral request MDRQ21

Peripheral requests 18–21 (DRS[4 – 0] = 111xx) can serve as fast request
sources. Unlike a regular peripheral request in which the peripheral can not
generate a second request until the first one is served, a fast peripheral has a
full duplex handshake to the DMA, enabling a maximum throughput of a trigger
every two clock cycles. This mode is functional only in the Word Transfer mode
(that is, DTM = 001 or 101). In the Fast Request mode, the DMA sets an enable
line to the peripheral. If required, the peripheral can send the DMA a one cycle
triggering pulse. This pulse resets the enable line. If the DMA decides by the
priority algorithm that this trigger will be served in the next cycle, the enable line
is set again, even before the corresponding register in the peripheral is
accessed.

This is a default list of encodings. For a detailed listing of encodings for a
specific device, refer to the Core Configuration section in the device-specific
user’s manual.

10 D3D Three-Dimensional Mode
Indicates whether a DMA channel is currently using three-dimensional (D3D = 1)
or non-three-dimensional (D3D = 0) addressing modes. The addressing modes
are specified by the DAM bits.

9 – 4 DAM DMA Address Mode
Defines the address generation mode for the DMA transfer. These bits are
encoded in two different ways according to the D3D bit. See

Table 10-5  DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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10.5.3.5.1   Non-3D Addressing Modes (D3D = 0)

If D3D = 0, the DAM bits are separated into two groups as described inTable 10-6:

■ DAM[5 – 3]: Defines the destination address generation mode

■ DAM[2 – 0]: Defines the source address generation mode

Note: The destination and source address modes can be chosen independently,
they always use the same counter and, depending on the selected modes
can also use the same offset register.

3 – 2 DDS DMA Destination Space
Specify the memory space referenced as a destination by the DMA.

NOTE: In Cache mode, a DMA-to-Program memory space has some limitations
(as described in the chapter on the Instruction Cache Controller and the chapter
on Operating Modes and Memory Spaces).

DDS1 DDS0 DMA Destination Memory Space

0 0 X Memory Space

0 1 Y Memory Space

1 0 P Memory Space

1 1 Reserved

1 – 0 DSS DMA Source Space
Specify the memory space referenced as a source by the DMA.

NOTE: In Cache mode, a DMA-to-Program memory space has some limitations
(as described in the chapter on the Instruction Cache Controller and the chapter
on Operating Modes and Memory Spaces).

DSS1 DSS0 DMA Source Memory Space

0 0 X Memory Space

0 1 Y Memory Space

1 0 P Memory Space

1 1 Reserved

Table 10-5  DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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The address generation mode can be one of the following:

■ No Update mode: The DMA accesses a constant address for the entire transfe
This addressing mode is useful when accessing peripheral devices as well as
single address devices such as FIFOs.

■ Postincrement-by-1 mode: The DMA accesses consecutive addresses. This
addressing mode is useful when accessing data structures in memories in whic
data elements are placed in successive memory locations.

■ Two-dimensional mode: The DMA accesses data at consecutive addresses fo
given number of times (DCOL) and adds the contents of an offset register to t
generated address and repeats the entire process for another given number o
(DCOH). DCOL and DCOH are the two sections of the DCO counter. SeeSection
10.5.3 for a detailed description of the DCO operation. This addressing mode 
useful when accessing two-dimensional arrays of data.

10.5.3.5.2   3D Modes (D3D = 1)

When D3D = 1 (three-dimensional mode), the source addressing mode, the destina
addressing mode, or both are three-dimensional. In three-dimensional mode, a pair
offset registers (either DOR0/DOR1 or DOR2/DOR3) are used for a three-dimensio
source (or destination) access. The other side of the access—destination (or source
use the same or different offset registers. Specifically, the offset register pair in a
corresponding three-dimensional destination (or source) access can be the same re

Table 10-6  Address Generation Mode (D3D = 0)

Destination
DAM[5 – 3]

Source DAM[2
– 0]

Addressing Mode
Counter

Mode2
Offset Register

Selection

000 000 2D B DOR0

001 001 2D B DOR1

010 010 2D B DOR2

011 011 2D B DOR3

100 100 No Update A None

101 101 Postincrement-by-1 A None

110 110 Reserved

111 111 Reserved

1. If the destination address generation mode specifies a different counter mode than the source
address generation mode, then the counter mode is B.

2. In Mode A, the counter is a single 24-bit register (DCO). In Mode B, the counter is two 12-bit registers
(DCOH and DCOL, the upper and lower halves of DCO, respectively).
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5 – 0]
pair or a different register pair. Similarly, the offset register in a corresponding
two-dimensional destination (or source) access can be any one of the four offset regi
These offset register choices are indicated inTable 10-7 and inTable 10-8. In
three-dimensional mode, the address and counter modes are controlled by the DAM[
bits, which are separated into three groups:

■ DAM[5 – 3]: Defines the address generation mode (SeeTable 10-7)

■ DAM[2] : Defines the address mode select (SeeTable 10-8)

■ DAM[1 – 0]: Defines the DMA counter mode (SeeTable 10-9)

Table 10-7 Address Generation Mode (D3D = 1)

DAM[5 – 3] Addressing Mode Offset Select

000 Two-dimensional DOR0

001 Two-dimensional DOR1

010 Two-dimensional DOR2

011 Two-dimensional DOR3

100 No Update None

101 Postincrement-by-1 None

110 Three-dimensional DOR0: DOR1

111 Three-dimensional DOR2: DOR3

Table 10-8 Address Mode Select (D3D = 1)

DAM[2] Addressing Mode Offset Select

0 Source: Three-dimensional Source: DOR0: DOR1

Destination: Defined By DAM[5 – 3] Destination: Defined By DAM[5 – 3]

1 Source: Defined By DAM[5 – 3] Source: Defined By DAM[5 – 3]

Destination: 3D Destination: DOR2: DOR3

Table 10-9 Counter Mode (D3D = 1)

DAM[1 – 0] Counter Mode DCO Layout

00 Mode C DCOH bits (23–12) DCOM bits (11–6) DCOL bits (5–0)

01 Mode D DCOH bits
(23–18)

DCOM bits (17–6) DCOL bits (5–0)

10 Mode E DCOH bits
(23–18)

DCOM bits
(17–12)

DCOL bits (11–0)

11 — Reserved
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In Three-dimensional Address Generation mode, the DMA accesses data at consec
addresses for a given number of times (DCOL) and then adds the contents of an off
register to the generated address. This process repeats for another given number o
(DCOM) after which another offset is added to the generated address. The entire pr
repeats for a given number of times (DCOH). DCOL, DCOM, and DCOH are the thr
sections of the DCO counter. SeeSection 10.5.3,"DMA Counters (DCO[5 – 0])," on page
10-11 for details on the DCO operation. This addressing mode is useful when a numb
two-dimensional arrays of data are accessed. The Offset Select entries inTable 10-7 and
Table 10-8define the offset registers that are selected to increment the address regis
one side of the transfer uses two-dimensional mode, only one offset register is need
increment the address register for that side of the transfer. In three-dimensional mode
offset registers are needed.

10.5.3.6 DMA Offset Registers (DOR[3 – 0])

The DMA Offset Registers (DOR[3 – 0]) are four 24-bit read/write registers that store
offset values required by some DMA addressing modes. All two-dimensional transfers
one offset register. All three-dimensional transfers use two offset registers. Refer to
Section 10.5.3.5.1,"Non-3D Addressing Modes (D3D = 0)," on page 10-21 andSection
10.5.3.5.2,"3D Modes (D3D = 1)," on page 10-22 for details on how DORs are assig
and used. Examples of DOR usage are provided inSection 10.5.3,"DMA Counters
(DCO[5 – 0])," on page 10-11 as part of the discussion about the various counter mod
operation.

10.5.3.7 DMA Status Register (DSTR)

The DMA Status Register (DSTR) is a 24-bit read only register that reflects the statu
the DMA operation.

Figure 10-6. DMA Status Register (DSTR)

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

DCH2 DCH1 DCH0 DACT DTD5 DTD4 DTD3 DTD2 DTD1 DTD0

Reserved, read as zero.
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Table 10-10  DMA Status Register (DSTR) Bit Definitions

Bit Number Bit Name Reset Value Description

23 – 12 0 Reserved. Write to zero for future compatibility.

11 – 9 DCH 0 DMA Active Channel
Indicate the currently active channel. The value of the DCH bits is valid
only if Bit 8 DACT = 1.

DCH(2 – 0) Active Channel

000 DMA Channel 0

001 DMA Channel 1

010 DMA Channel 2

011 DMA Channel 3

100 DMA Channel 4

101 DMA Channel 5

110 Reserved

111 Reserved

NOTE: When activity passes from one DMA channel to another and the
DMA interface accesses external memory (which requires one or more
wait states), the DACT and DCH status bits in the DSTR may indicate
improper activity status for DMA Channel 0 (DACT = 1 and DCH[2 –
0] = 000). There is no workaround for this problem.

8 DACT 0 DMA Active
Set if the DMA is in the middle of a transfer. This bit is cleared if all the
DMA channels are disabled or are awaiting DMA requests. This bit
should be polled and tested for zero before entering a low power mode
by executing a STOP instruction.

NOTE: When activity passes from one DMA channel to another and the
DMA interface accesses external memory (which requires one or more
wait states), the DACT and DCH status bits in the DSTR may indicate
improper activity status for DMA Channel 0 (DACT = 1 and DCH[2 –
0] = 000). There is no workaround for this problem.

7 – 6 0 Reserved. Write to zero for future compatibility.
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10.6 DMA Restrictions

The following restrictions apply to the DMA operation:

1. Before executing the STOP instruction, poll the DACT status bit until it is read
zero. When the chip enters the Stop state, all previously latched DMA triggers
cleared.

2. The core exits the Wait state when a DMA channel accepts a trigger that is
programmed as the selected source trigger. The DMA prevents the core from
entering the Wait state if the DMA is active.

3. The DMA Controller can access only the Transmit/Receive Data registers of
peripheral interfaces when a source or destination is specified in internal I/O sp

4. If a DMA channel access to external memory is delayed due to bus arbitration
memory wait, the other DMA channels also stop, since the DMA mechanism 
not distinguish between the different channels.

5 – 0 DTD 1 DMA Transfer Done
Each DTD bit is assigned for its specific DMA channel (for example,
DTD[5] = DMA Channel 5). A DTD bit is set when the last word of a
single block transfer is stored in the destination, stopping channel
operation. At the same time, the DE bit in the related DCR register may
be cleared according to the transfer mode as defined by DTM[2 – 0].
The last transfer is defined as the one in which the DMA counter
reloads its initial value or when software explicitly clears DE. If the
related DCR[DIE] bit is set, then the assertion of the DTD bit causes a
DMA interrupt request. When the DMA Interrupt is disabled, the core
may verify the channel status by polling this bit. The DTD bit for a
channel is reset when software sets the DE bit in the corresponding
DCR.

NOTES:

■ Because of pipeline dependencies, after the DCR[DE] bit is set,
the corresponding DTDx bit is cleared only after an additional
three instruction cycles.

■ If the DMA channel is in a word transfer mode, clearing DE sets
the corresponding DTD bit only after a trigger previously
captured by the DMA is handled.

■ When any DMA channel is set in the infinitive transfer mode (DE
is not cleared at end of block) the DTD bit may never be set due
to continuous triggering of this channel. However, a DMA
interrupt is generated, as defined above, regardless of the DTD
bit value.

Table 10-10  DMA Status Register (DSTR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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5. The internal RAM is divided into 256/1024-word banks. If the core and DMA
access different banks they do not interfere with one another; each continues
operations at its maximum speed. If both the core and DMA access the same b
then the core has priority and the DMA is delayed until a free slot is available.

6. Write to the DMA Address Registers and the DMA Counter only when the chan
that uses them is disabled (DE = 0 and DTD = 1). The operation of the DMA
Controller cannot be guaranteed if one of these registers is written while the D
channel that uses it is busy.

7. A change in the request source should be initiated only when the correspondi
DMA channel is idle. If the channel is forced to enter the idle state by clearing
DMA Enable (DE) control bit, the corresponding DMA Transfer Done (DTD)
status bit should be polled until it is read as ‘1’.

8. If a DMA channel is programmed to perform accesses in the word transfer mo
the corresponding DTD status bit is set only after the current captured reques
serviced by an appropriate transfer. This ensures that the last captured request
lost.

Note: If the channel priority is low, the DTD is set only when it receives the priority
perform its accesses. In order to shorten this time, the channel priority may
raised before DE is cleared.

9. While a DMA channel is enabled (DE = 1), do not modify any of the channel DC
bits, except for the DE bit itself.

10.Due to pipelining, after the DE bit in DCRx is set, the corresponding DTDx bit
DSTR is not cleared until after three more instruction cycles.
Motorola DMA Controller 10-27
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Chapter 11
Operating Modes and Memory Spaces

The DSP56300 family core mode pins (MODA, MODB, MODC, and MODD) determi
the reset vector address that points to the start-up procedure when the device leave
Reset state. The mode pins are sampled as the device exits from Reset. The sampl
of these pins is subject to a mask-programmed look-up table that can be used as a fi
disable the user from entering some of the operating modes. This filtered state is writt
the MD, MC, MB, and MA bits in the Operating Mode Register (OMR). When the Re
state is exited, the mode pins become general-purpose interrupt pins,IRQA, IRQB, IRQC,
andIRQD. When the device is not in the Reset state, software can change the OMR m
bits (MA, MB, MC, and MD).Table 11-1 lists the mode assignments in the DSP56300
family core. The reset vector is chosen from device-specific addresses: RESET1,
RESET2, and RESET3. Each reset vector in a specific DSP56300 family device is
assigned one of two different values.Table 11-2shows typical values. These reset vecto
are implementation-specific.

Table 11-1. DSP Core Operating Modes

MOD[D:A] Mode Description Reset Vector

0000 0 Expanded Mode 0 RESET1

0001–0111 1–7 System Configuration Mode 1–7 RESET3

1000 8 Expanded Mode 8 RESET2

1001–1111 9–F System Configuration Mode 9–F RESET3

Table 11-2. DSP Core Reset Vectors, Possible Values

RESET1 RESET2 RESET3

$000000 $004000 $000000

$C00000 $008000 $FF0000
Motorola DSP56300 Family Manual 11-1
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In Expanded Modes 0 and 8, a hardware reset causes the DSP56300 family core to
to the mask-programmed external program memory location RESET1 or RESET2,
respectively, and execute the code fetched from this location. These locations are
implementation specific. See the appropriate user’s manual for more information.

In the System Configuration Modes 1–7 and 9–F, a hardware reset causes the DSP
family core to jump to the mask-programmed internal program memory (usually RO
location RESET3, and execute the code fetched from this location. These routines a
typically implementation-specific, and can be contained in the bootstrap code.

11.1 DSP56300 Family Core Memory Map

The memory space of the DSP56300 family core is partitioned into program memor
space (P), X data memory space, and Y data memory space. The data memory spa
divided into X data memory and Y data memory in order to work with the two Addre
Arithmetic Logic Units (Address ALUs) and to feed two operands simultaneously to 
Data ALU. Each memory space may include internal RAM, and/or internal ROM and
be expanded off-chip under software control.Figure 11-1 shows the three independent
memory spaces of the DSP56300 family core: X data, Y data, and program.

Figure 11-1. DSP56300 Core Memory Map

Bootstrap ROM

Program

$FFFFFF

$000000

Internal
P-Memory

External

X Data

$FFFFFF

$000000

External

X-Memory

Internal X-I/O

Y Data

$FFFFFF

$000000

External

Internal Y-I/O

I-Cache 1K2

$FFFF80 $FFFF80

P-Memory

P-Memory
X-Memory Y-Memory

Internal
Y-Memory

Internal

or External
Internal X-I/O

External Y-I/O

$FF0000

Reserved
for Internal

X-Memory
or External

Internal Y-I/O

Y-Memory
$FFF000 $FFF000

X-memory

Reserved
for internal

Y-Memory

Reserved
for Internal

$FF0000 $FF0000

$FF00C0
192-Word1

NOTE 1: In recent revisions of some DSP56300 family members, the size of the Bootstrap ROM is 3K, so the
Bootstrap ROM size measures $FF0000 – $FF0C00.

Not Addressable

NOTE 2: External program memory begins immediately after the internal program memory. The internal
memory modules that are mapped to the addresses up to $00C00 – $001000 are used as I-Cache space
when the I-Cache is enabled, and these addresses become part of the external P memory space.
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Note: Individual members of the DSP56300 family can have different amounts o
data, Y data, and program memory. Consult the appropriate user’s manua
technical data sheet for more information.

11.1.1 X Data Memory Space

The X data memory space is divided into five parts:

■ Internal X I/O space

■ Switchable internal or external X I/O memory space

■ Reserved space for X ROM or RAM

■ External X data memory

■ Internal X data RAM

11.1.2 Internal X I/O Space

The on-chip X I/O peripheral registers occupy the top 128 locations of the X data mem
space ($FF80 – $FFFF) and can be accessed by the MOVE and MOVEP instruction
well as by bit-oriented instructions, such as the BCHG, BCLR, BSET, BTST, BRCLR
BRSET, BSCLR, BSSET, JCLR, JSET, JSCLR, and JSSET. Some of the DSP5630
family core registers are mapped to the internal X I/O space as well, asTable 11-3shows.

Table 11-3. Internal X I/O Space Map

Register Block Address Register Name and Description

IPRC PIC $FFFFFF Interrupt Priority Register Core

IPRP $FFFFFE Interrupt Priority Register Peripheral

PCTL PLL $FFFFFD PLL Control Register

OGDB OnCE $FFFFFC OnCE GDB Register

BCR PORT A $FFFFFB Bus Control Register

DCR $FFFFFA DRAM Control Register

AAR0 $FFFFF9 Address Attribute Register 0

AAR1 $FFFFF8 Address Attribute Register 1

AAR2 $FFFFF7 Address Attribute Register 2

AAR3 $FFFFF6 Address Attribute Register 3

IDR $FFFFF5 ID Register
Motorola Operating Modes and Memory Spaces 11-3
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DSTR DMA $FFFFF4 DMA Status Register

DOR0 $FFFFF3 DMA Offset Register 0

DOR1 $FFFFF2 DMA Offset Register 1

DOR2 $FFFFF1 DMA Offset Register 2

DOR3 $FFFFF0 DMA Offset Register 3

DSR0 DMA Channel
0

$FFFFEF DMA Source Address Register

DDR0 $FFFFEE DMA Destination Address Register

DCO0 $FFFFED DMA Counter

DCR0 $FFFFEC DMA Control Register

DSR1 DMA Channel
1

$FFFFEB DMA Source Address Register

DDR1 $FFFFEA DMA Destination Address Register

DCO1 $FFFFE9 DMA Counter

DCR1 $FFFFE8 DMA Control Register

DSR2 DMA Channel
2

$FFFFE7 DMA Source Address Register

DDR2 $FFFFE6 DMA Destination Address Register

DCO2 $FFFFE5 DMA Counter

DCR2 $FFFFE4 DMA Control Register

DSR3 DMA Channel
3

$FFFFE3 DMA Source Address Register

DDR3 $FFFFE2 DMA Destination Address Register

DCO3 $FFFFE1 DMA Counter

DCR3 $FFFFE0 DMA Control Register

DSR4 DMA Channel
4

$FFFFDF DMA Source Address Register

DDR4 $FFFFDE DMA Destination Address Register

DCO4 $FFFFDD DMA Counter

DCR4 $FFFFDC DMA Control Register

DSR5 DMA Channel
5

$FFFFDB DMA Source Address Register

DDR5 $FFFFDA DMA Destination Address Register

DCO5 $FFFFD9 DMA Counter

DCR5 $FFFFD8 DMA Control Register

Table 11-3. Internal X I/O Space Map (Continued)

Register Block Address Register Name and Description
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11.1.3 Switchable Internal or External X I/O Memory

The X memory space $FFF000 – $FFFF7F is device-specific and is either external X
memory or internal X I/O space for on-chip memory-mapped peripheral registers.

11.1.3.1 Reserved Space for X ROM or RAM

The X memory space $FF0000 – $FFEFFF is reserved for inclusion of X data ROM
RAM modules (2048 locations each). The importance of modular organization of the
ROM/RAM becomes apparent in the case of a DMA access to the internal X memor
simultaneous with a core access to the same space. DMA and core accesses to diff
banks can be completed at full speed, while accesses to the same bank halt the DMA
a program memory slot is available.

11.1.3.2 External X Data Memory

The X memory space $000000 – $FEFFFF is for expanding to external X memory. 
starting address of the external X data memory space is device-dependent. Refer to
appropriate user’s manual to determine the actual address used in that device.

11.1.3.3 Internal X Memory

The X memory space $000000 – $00FFFF is for internal X RAM modules (256 locati
each). The last address of the internal X memory is device-dependent. Refer to the
appropriate user’s manual to determine the actual address used in that device. The
importance of modular organization of the X RAM becomes apparent during a DMA
access to the internal X memory simultaneous with a core access to the same space
and core accesses to different banks can be completed at full speed, while accesse
same bank halt the DMA until a program memory slot is available.

Reserved On-Chip
X-I/O mapped

Registers

$FFFFD7 Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

$FFFF80 Reserved for On-Chip X- I/O mapped Register

Table 11-3. Internal X I/O Space Map (Continued)

Register Block Address Register Name and Description
Motorola Operating Modes and Memory Spaces 11-5
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11.1.4 Y Data Memory Space

The Y data memory space is divided into five parts:

■ Internal/External Y I/O space

■ Switchable internal or external Y I/O memory space

■ Reserved space for Y ROM or RAM

■ External Y data memory

■ Internal Y data RAM

11.1.4.1 Internal/External Y I/O Space

The off-chip or on-chip Y I/O peripheral registers occupy the top 128 locations of the
data memory space ($FFFF80 – $FFFFFF) and can be accessed by MOVE and MO
instructions and by bit-oriented instructions (BCHG, BCLR, BSET, BTST, BRCLR,
BRSET, BSCLR, BSSET, JCLR, JSET, JSCLR and JSSET). This space is partitioned
eight equal parts (16 locations each). Each part is device-specific and is either exter
Y I/O or internal Y I/O space.

11.1.4.2 Switchable Internal or External Y I/O Memory

The Y memory space $FFF000 – $FFFF7F is device-specific and is either external Y
memory or internal Y I/O space for on-chip memory-mapped peripheral registers.

11.1.4.3 Reserved Space for Y ROM or RAM

The Y memory space $FF0000 – $FFEFFF is reserved for inclusion of Y data ROM
RAM modules (2048 locations each). The importance of modular organization of the
ROM/RAM becomes apparent in the case of a DMA access to the internal Y memor
simultaneous with a core access to the same space. DMA and core accesses to diff
banks can be completed at full speed, while accesses to the same bank halt the DMA
a program memory slot is available.

11.1.4.4 External Y Data Memory

The Y data memory space $000000 –$FEFFFF is for expanding to external Y data
memory. The starting address of the external Y data memory space is device-depen
Refer to the appropriate user’s manual to determine the actual address used in that

11.1.4.5 Internal Y Memory

The Y memory space $000000 – $00FFFF is for internal Y RAM modules (256 locati
each). The last address of the internal Y memory is device-dependent. Refer to the
11-6 DSP56300 Family Manual Motorola
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appropriate user’s manual to determine the actual address used in that device. The
importance of modular organization of the Y RAM becomes apparent in the case of 
DMA access to the internal Y memory simultaneous with a core access to the same s
DMA and core accesses to different banks can be completed at full speed, while ac
to the same bank halt the DMA until a program memory slot is available.

11.1.5 Program Memory

The Program memory space is divided into five parts:

■ Bootstrap ROM (192 words)

■ Reserved space for Program ROM

■ External program memory

■ Internal program memory

■ Internal instruction cache memory

11.1.5.1 Bootstrap ROM Space

The program memory space $FF0000 – $FF00BF is for the internal bootstrap ROM
ROM contains 192 words combining the bootstrap program for the specific DSP563
family device. The bootstrap ROM space cannot be accessed by DMA.

11.1.5.2 Reserved Space for Program ROM

The program memory space $FF00C0 – $FFFFFF is reserved for inclusion of Progr
ROM modules (2048 locations each). Program ROM may be used to contain some
operating system program or other application-specific pre-defined user programs. T
importance of modular organization of the Program ROM space is apparent in the ca
DMA access to the internal program memory simultaneous with core access to the 
space. DMA and core accesses to different banks can be completed at full speed, w
accesses to the same bank halt the DMA until a program memory slot is available.

11.1.5.3 External Program Memory

The program memory space $000000 – $FEFFFF is for expanding to external progr
memory. The starting address of the external program memory space is device-depe
and also depends on the amount of on-chip Program RAM and the Instruction Cache
Refer to the appropriate user’s manual to determine the actual address used in that d

11.1.5.4 Internal Program Memory

The program memory space $000000 – $00FFFF is for internal Program RAM mod
(256 locations for each RAM module). The last address of the internal program memo
Motorola Operating Modes and Memory Spaces 11-7
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device-dependent. Refer to the appropriate user’s manual to determine the actual a
used in that device. The importance of modular organization of the program memor
becomes apparent in the case of a DMA access to the internal program memory
simultaneous with a core access to the same space. DMA and core accesses to diff
banks can be completed at full speed, while accesses to the same bank halt the DMA
a program memory slot is available. The Program RAM provides a method of chang
the program dynamically, allowing efficient overlaying of DSP software algorithms.

11.1.5.5 Internal Instruction Cache RAM

The program memory space $000000 – $00FFFF is for internal Instruction Cache R
modules (256 locations each). The size of the Instruction Cache is 1024 words (four R
modules). The starting address of the Instruction Cache space is above the internal
Program RAM and is also device-dependent. The Instruction Cache can be disabled
clearing the Cache Enable (CE) bit in the chip Status Register (SR). If the CE bit is
cleared, the Instruction Cache RAM becomes the high part of the internal Program R
The Instruction Cache is used to minimize contention with accesses to external prog
memory space. A complete description of the Instruction Cache is provided inChapter 8,
Instruction Cache.

11.2 Sixteen-Bit Compatibility Mode

When the Sixteen Bit Compatibility (SC) mode bit is set, the memory map is change
allow easy access to memory mapped I/O, as described inFigure 11-2.

Figure 11-2. DSP56300 Core Memory Map (SC = 1)
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External

X-RAM

Internal X-I/O

Y Data
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11-8 DSP56300 Family Manual Motorola



Sixteen-Bit Compatibility Mode

see

sses

the
For details on this mode, how it affects AGU operations, and functional restrictions, 
Chapter 4, Address Generation Unit.

11.3   Memory Switch Mode

When the Memory Switch (MS) mode bit is set, some of the internal data memory
addresses (X, Y, or both) become part of the chip internal Program RAM. The addre
are in the higher part of the internal RAM that resides in the lower part of the data
memory. The amount of memory transferred is a multiple of 256/1K and is
device-dependent.

Due to pipelining, a change in the MS bit takes affect only after the four consecutive
instruction cycles. Inserting four NOP instructions after the instruction that changes 
value of the MS bit guarantees proper operation.
Motorola Operating Modes and Memory Spaces 11-9
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Chapter 12
Guide to the Instruction Set
This chapter presents the DSP56300 instruction format as well as partial encodings fo
in instruction encoding. The alphabetical instruction descriptions are presented in
Appendix B, Instruction Set. The complete range of instruction capabilities combined
with the flexible DSP56300 addressing modes provide a very powerful assembly lang
for implementing DSP algorithms. The instruction set allows efficient coding for DSP
high-level language compilers, such as the C Compiler. Hardware looping capabilitie
instruction pipeline, and parallel moves minimize execution time.

12.1 Instruction Formats and Syntax

The DSP56300 core instructions consist of one or two 24-bit words—an operation w
and an optional extension word. This extension word can be either an effective addr
extension word or an immediate data extension word. While the extension word occ
the full 24-bit width of the program memory, only the sixteen Least Significant Bits
(LSBs) are relevant for effective address extension or for immediate data. Therefore
extension word is effectively sixteen bits wide.Figure 12-1shows the general formats of
the instruction word. Most instructions specify data movement on the X Data Bus (XD
Y Data Bus (YDB), and Data ALU operations in the same operation word. The DSP56
core performs each of these operations in parallel.

Figure 12-1. General Formats of an Instruction Word

Optional Effective Address Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Immediate Data Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Effective Address Extension

23 0

Non-parallel Operation Code
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The Data Bus Movement field provides the operand reference type, which selects the
of memory or register reference to be made, the direction of transfer, and the effecti
address(es) for data movement on the XDB and/or YDB. This field may require additi
information to fully specify the operand for certain addressing modes. An extension w
following the operation word is used to provide immediate data, absolute address or
address displacement, if required. Examples of operations that may include the exte
word include move operation such as MOVE X:$100,X0.

The Opcode field of the operation word specifies the Data ALU operation or the Prog
Control Unit (PCU) operation to be performed.

The instruction syntax has two formats—parallel and non-parallel, asTable 12-1 and
Table 12-2show. A parallel instruction is organized into five columns: opcode, operan
two optional parallel-move fields, and an optional condition field. The condition field
disables the execution of the opcode if the condition is not true, and it cannot be use
conjunction with the parallel move fields.

Assembly-language source codes for some typical one-word instructions are shown
Table 12-1. Because of the multiple bus structure and the parallelism of the DSP563
core, as many as three data transfers can be specified in the instruction word—one
XDB, one on the YDB, and one within the Data ALU. These transfers are explicitly
specified. A fourth data transfer is implied and occurs in the PCU (instruction word
prefetch, program looping control, etc.). The opcode column indicates the Data ALU
operation to be performed, but may be excluded if only a MOVE operation is needed.
operands column specifies the operands to be used by the opcode. The XDB and Y
columns specify optional data transfers over the XDB and YDB and the associated
addressing modes. The address space qualifiers (X:, Y:, and L:) indicate which add
space is being referenced.

A non-parallel instruction is organized into two columns: opcode and operands.
Assembly-language source codes for some typical one-word instructions are shown
Table 12-2. Non-parallel instructions include all the program control, looping, and
peripherals read/write instructions. They also include some Data ALU instructions tha
impossible to encode in the Opcode field of the parallel format.

Table 12-1. Parallel Instruction Format

Opcode Operands XDB YDB Condition

Example 1 MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0
Example 2 MOVE X:-(R1),X1
Example 3 MAC X1,Y1,B
Example 4 MPY X0,Y0,A IFeq
12-2 DSP56300 Family Manual Motorola
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12.2 Operand Lengths

Operand lengths are defined as follows: a byte is 8 bits, a word is 16 bits, a long word
bits, and an accumulator is 56 bits, as shown inFigure 12-2. The operand size for each
instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation.

Figure 12-2. Operand Lengths

In Sixteen-Bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a w
is 16 bits, a long word is 32 bits, and an accumulator is 40 bits.

Figure 12-3. Operand Lengths in Sixteen-Bit Mode

Table 12-3 shows the operand lengths supported by the registers of the DSP56300 

Table 12-2. Non-Parallel Instruction Format

Opcode Operands

Example 1: JEQ (R5)
Example 2: MOVEP #data,X:ipr
Example 3: RTS

7
Byte

Word

Long Word

Accumulator

0

015

048

056

Byte

Word

Long Word

Accumulator

7 0

23 0

0

0

47

55
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12.2.1 Data ALU Registers

The eight main data registers are 24 bits wide. Word operands occupy one register;
long-word operands occupy two concatenated registers. The Least Significant Bit (LS
the right-most bit (Bit 0) and the Most Significant Bit (MSB) is the left-most bit (bit 23 fo
word operands and bit 47 for long-word operands). In Sixteen-Bit mode, the LSB is 
and bits 24 to 31 are ignored for long-word operands. The MSB is the leftmost bit.

The two accumulator extension registers are 8 bits wide. When an accumulator exte
register is a source operand, it occupies the low-order portion (bits 0–7) of the word
high-order portion (bits 8–23) is sign-extended (seeFigure 12-5). As a destination
operand, this register receives the low-order portion of the word, and the high-order
portion is not used. Accumulator operands occupy an entire group of three registers
A2:A1:A0 or B2:B1:B0). The LSB is the right-most bit (bit 0 in 24-bit mode and bit 8 fo
16-bit mode), and the MSB is the leftmost bit (bit 55).

When a 56-bit accumulator (A or B) is specified as asource operand S, the accumulator
value is optionally shifted according to the Scaling mode bits S0 and S1 in the Mode
Register (MR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value sto
the destination is limited to a maximum positive or negative saturation constant to
minimize truncation error. Limiting does not occur if an individual 24-bit accumulator
register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-b

Table 12-3. Register Operand Lengths

Registers
Number of
Registers

Operand Lengths Supported Sixteen-Bit Mode

ALU 10 8- or 24-bit data
With concatenation: 48- or 56-bit data

16-bit data
With concatenation: 32- or
40-bit data

AGU address
registers

8 24-bit address or data No

AGU offset registers 8 24-bit offsets or 24-bit address or data No

AGU modifier
registers

8 24-bit modifiers or 24-bit address or data No

Program Counter
(PC)

1 24-bit address No

Status Register (SR) 1 8- or 24-bit data 16-bit data

Operating Mode
Register (OMR)

1 8- or 24-bit data 16-bit data

Loop Counter (LC) 1 24-bit address No

Loop Address (LA) 1 24-bit address No
12-4 DSP56300 Family Manual Motorola
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accumulator (A or B). This limiting feature allows block floating-point operations to b
performed with error detection since the L bit in the Condition Code Register (CCR)
latched.

Figure 12-4. Reading and Writing the ALU Extension Registers

When a 56-bit accumulator (A or B) is specified as adestination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits b
sign-extending the MSB of the source operand (Bit 23) and appending the source op
with twenty-four 0s in the LSBs. For 24-bit source operands, both the automatic sign
extension and zeroing features can be disabled by specifying the destination register
one of the individual 24-bit accumulator registers (A1 or B1).

12.2.2 AGU Registers

The twenty-four 24-bit AGU registers can be accessed as word operands for addres
address offset, address modifier, and data storage. The Rn notation designates one
eight address registers, R0–R7. The Nn notation designates one of the eight address
registers, N0–N7. The Mn notation designates one of the eight address modifier regi
M0–M7.

12.2.3 Program Control Registers

Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM)
register occupies the low-order 8 bits, the Extended chip Operating Mode (EOM) reg
occupies the middle-order 8 bits, and the System Stack Control Status (SCS) regist
occupies the high-order 8 bits. The OMR and the Vector Base Address (VBA) are
accessed as word operands; however, not all of their bits are defined. Reserved bits
read as zero and should be written with zero for future compatibility.

Bus

Not used
LSB Of
word

A2/B2

15

Register A2, B2 used
as a destination

Register A2, B2
used as a source

Sign extension
of A2/B2

Contents
Of A2/b2

Not used

78 0

15 78 0

Register A2, B2

Bus

15 78 0
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Within the 24-bit SR, the user condition code register (CCR) occupies the low-order
bits, the system Mode Register (MR) occupies the middle-order 8 bits, and the Exte
Mode Register (EMR) occupies the high-order 8 bits. The SR can be accessed as a
operand. The MR and CCR can be accessed individually as word operands (seeFigure
12-5). The Loop Counter (LC), Loop Last Address (LA), stack Size (SZ), System Sta
High (SSH), and System Stack Low (SSL) registers are 24 bits wide and are access
word operands. The system Stack Pointer (SP) is a 24-bit register that is accessed 
word operand. The PC, a special 24-bit-wide Program Counter register, is generally
referenced implicitly as a word operand, but it can also be referenced explicitly (by a
PC-relative operation codes) as a word operand.(seeFigure 12-5).

Figure 12-5. Reading and Writing Control Registers

12.2.4 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction
extension words. The 48-bit System Stack (SS) can store the concatenated PC and
registers (PC:SR) for subroutine calls, interrupts, and program looping. The SS also
supports the concatenated LA and LC registers (LA:LC) for program looping. The
16-bit-wide X and Y memories can store word and byte operands. Byte operands, w
usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign-extended on the XDB or YDB.

12.3 Instruction Groups

The instruction set is divided into the following groups:

■  Arithmetic

■  Logical

MR, CCR and COM
as a Destination

 as a Source
MR, CCR and COM

Bus

Not Used LSB

23 78 0

23 78 0

Bus

MR, CCR and COM

Zero Fill
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■  Bit Manipulation

■  Loop

■  Move

■  Program Control

Each instruction group is described in the following paragraphs.

12.3.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the Data A
These instructions may affect all of the CCR bits. Arithmetic instructions are
register-based (register direct addressing modes used for operands), so that the Dat
operation indicated by the instruction does not use the XDB, the YDB, or the Global D
Bus (GDB). Optional data transfers may be specified with most arithmetic instruction
which allows for parallel data movement over the XDB and YDB or over the GDB dur
a Data ALU operation. This parallel movement allows new data to be prefetched for u
subsequent instructions and results calculated in previous instructions to be stored.
move operation that can be specified in parallel to the instruction marked is one of t
parallel instructions listed inTable 12-8, “Move Instructions,” on page 12-12. Arithmetic
instructions can be executed conditionally, based on the condition codes generated
previous instructions. Conditional arithmetic instructions do not allow parallel data
movement over the various data buses.Table 12-4 lists the arithmetic instructions.

Table 12-4. Arithmetic Instructions

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

ABS Absolute Value √

ADC Add Long with Carry √

ADD Add √

ADD (imm.) Add (immediate operand)

ADDL Shift Left and Add √

ADDR Shift Right and Add √

ASL Arithmetic Shift Left √

ASL (mb.) Arithmetic Shift Left (multi-bit)

ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)
Motorola Guide to the Instruction Set 12-7
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ASR Arithmetic Shift Right √

ASR (mb.) Arithmetic Shift Right (multi-bit)

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear an Operand √

CMP Compare √

CMP (imm.) Compare (immediate operand)

CMPM Compare Magnitude √

CMPU Compare Unsigned

DEC Decrement Accumulator

DIV Divide Iteration

DMAC Double Precision Multiply-Accumulate

INC Increment Accumulator

MAC Signed Multiply-Accumulate √

MAC (su,uu) Mixed Multiply-Accumulate

MACI Signed Multiply-Accumulate (immediate operand)

MACR Signed Multiply-Accumulate and Round √

MACRI Signed Multiply-Accumulate and Round
(immediate operand)

MAX Transfer By Signed Value √

MAXM Transfer By Magnitude √

MPY Signed Multiply √

MPY (su,uu) Mixed Multiply

MPYI Signed Multiply (immediate operand)

MPYR Signed Multiply and Round √

MPYRI Signed Multiply and Round (immediate operand)

NEG Negate Accumulator √

NORMF Fast Accumulator Normalize

Table 12-4. Arithmetic Instructions  (Continued)

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
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12.3.2 Logical Instructions

The logical instructions execute in one instruction cycle and perform all logical operat
within the Data ALU (except ANDI and ORI). They can affect all of the CCR bits and
like the arithmetic instructions, are register-based. Optional data transfers can be spe
with most logical instructions, allowing parallel data movement over the XDB and YD
or over the GDB during a Data ALU operation. This parallel movement allows new d
to be prefetched for use in subsequent instructions and results calculated in previou
instructions to be stored.The move operation that can be specified in parallel to the
instruction marked is one of the parallel instructions listed inTable 12-8, “Move
Instructions,” on page 12-12.Table 12-5 lists the logical instructions.

RND Round √

SBC Subtract Long with Carry √

SUB Subtract √

SUB (imm.) Subtract (immediate operand)

SUBL Shift Left and Subtract √

SUBR Shift Right and Subtract √

Tcc Transfer Conditionally

TFR Transfer Data ALU Register √

TST Test an Operand √

Table 12-5. Logical Instructions

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

AND Logical AND √

AND (imm.) Logical AND (immediate operand)

ANDI AND Immediate to Control Register

CLB Count Leading Bits

Table 12-4. Arithmetic Instructions  (Continued)

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
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12.3.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location
then optionally set, clear, or invert the bit. The carry bit of the CCR contains the resu
the bit test.Table 12-6 lists the bit manipulation instructions.

EOR Logical Exclusive OR √

EOR (imm.) Logical Exclusive OR (immediate operand)

EXTRACT Extract Bit Field

EXTRACT (imm.) Extract Bit Field (immediate operand)

EXTRACTU Extract Unsigned Bit Field

EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)

INSERT INSERT Bit Field

INSERT (imm.) INSERT Bit Field  (immediate operand)

LSL Logical Shift Left √

LSL (mb.) Logical Shift Left (multi-bit )

LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)

LSR Logical Shift Right √

LSR (mb.) Logical Shift Right (multi-bit)

LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)

MERGE Merge Two Half Words

NOT Logical Complement √

OR Logical Inclusive OR √

OR (imm.) Logical Inclusive OR (immediate operand)

ORI OR Immediate to Control Register

ROL Rotate Left √

ROR Rotate Right √

Table 12-5. Logical Instructions (Continued)  (Continued)

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
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12.3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles—that is, it runs as fast as
straight-line code. Replacing straight-line code with DO loops can significantly reduc
program memory usage. The loop instructions control hardware looping either by
initiating a program loop and establishing looping parameters or by restoring the regi
by pulling the SS when terminating a loop. Initialization includes saving registers use
a program loop (LA and LC) on the SS so that program loops can nest The address
first instruction in a program loop is also saved to allow no-overhead looping. The
ENDDO instruction is not used for normal termination of a DO loop; it terminates a D
loop before the LC is decremented to 1.Table 12-7 lists the loop instructions.

12.3.5 Move Instructions

The move instructions perform data movement over the XDB and YDB or over the G
Move instructions, most of which allow Data ALU opcode in parallel, do not affect th
CCR, except the limit bit L, if limiting is performed when reading a Data ALU
accumulator register.Table 12-8 lists the move instructions.

Table 12-6. Bit Manipulation Instructions

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BCHG Bit Test and Change

BCLR Bit Test and Clear

BSET Bit Test and Set

BTST Bit Test

Table 12-7. Loop Instructions

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BRKcc Conditionally Break the current Hardware Loop

DO Start Hardware Loop

DO FOREVER Start Forever Hardware Loop

ENDDO Abort and Exit from Hardware Loop
Motorola Guide to the Instruction Set 12-11



Instruction Groups

ions
12.3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instruct
affecting the PC and SS. Program control instructions may affect the CCR bits as
specified in the instruction. Optional data transfers over the XDB and YDB may be
specified in some of the program control instructions.Table 12-9lists the program control
instructions.

Table 12-8. Move Instructions

Mnemonic Description Parallel Instruction

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

LUA Load Updated Address

LRA Load PC-Relative Address

MOVE Move Data Register √

MOVEC Move Control Register

MOVEM Move Program Memory

MOVEP Move Peripheral Data

U MOVE Update Move √

VSL Viterbi Shift Left

Table 12-9. Program Control Instructions

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

IFcc.U Execute Conditionally and Update CCR

IFcc Execute Conditionally

Bcc Branch Conditionally

BRA Branch Always

BScc Branch to Subroutine Conditionally

BSR Branch to Subroutine Always

DEBUGcc Enter into the Debug Mode Conditionally

DEBUG Enter into the Debug Mode Always
12-12 DSP56300 Family Manual Motorola
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12.4 Guide to Instruction Descriptions

The following information is included in each instruction description:

■ Name and Mnemonic: Highlighted inbold type for easy reference.

■ Assembler Syntax and Operation:The syntax line for each instruction symbolically
describes the corresponding operation. If several operations are indicated on
single line in the operation field, those operations may not occur in the order
shown, but are generally assumed to occur in parallel. Any parallel data move
indicated in parentheses in both the assembler syntax and operation fields. A
optional letter in the mnemonic appears in parentheses in the assembler synt
field.

Jcc Jump Conditionally

JMP Jump Always

JCLR Jump if Bit Clear

JSET Jump if Bit Set

JScc Jump to Subroutine Conditionally

JSR Jump to Subroutine Always

JSCLR Jump to Subroutine if Bit Clear

JSSET Jump to Subroutine if Bit Set

NOP No Operation

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low-Power Standby)

TRAPcc Trap Conditionally

TRAP Trap Always

WAIT Wait for Interrupt (Low-Power Standby)

Table 12-9. Program Control Instructions  (Continued)

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
Motorola Guide to the Instruction Set 12-13



Guide to Instruction Descriptions

its
bits

f the

n
r.
■ Description: Includes any special cases and/or condition code anomalies.

■ Condition Codes:The Status Register (SR) is depicted with the condition code b
that can be affected by the instruction. Not all bits in the SR are used. Reserved
are indicated with gray boxes.

■ Instruction Format:The instruction fields, the instruction opcode, and the
instruction extension word are specified in the instruction syntax. Optional
extension words are so indicated. The values that can be assumed by each o
variables in the various instruction fields are shown under the instruction field
heading.

12.4.1 Notation

Each instruction description contains symbols to abbreviate certain operands and
operations.Table 12-10 lists the symbols and their respective meanings. Depending o
the context, registers refer either to the register itself or to the contents of the registe

Table 12-10. Instruction Description Notation

Symbol Meaning

Data ALU Registers Operands

Xn Input Register X1 or X0 (24 bits)

Yn Input Register Y1 or Y0 (24 bits)

An Accumulator Registers A2, A1, A0 (A2—8 bits, A1 and A0—24 bits)

Bn Accumulator Registers B2, B1, B0 (B2—8 bits, B1 and B0—24 bits)

X Input Register X = X1: X0 (48 bits)

Y Input Register Y = Y1: Y0 48 bits)

A Accumulator A = A2: A1: A0 (56 bits)

B Accumulator B = B2: B1: B0 (56 bits)

AB Accumulators A and B = A1: B1 (48 bits)

BA Accumulators B and A = B1: A1 (48 bits)

A10 Accumulator A = A1: A0 (48 bits)

B10 Accumulator B = B1:B0 (48 bits)

Program Control Unit Registers Operands

PC Program Counter Register (24 bits)

MR Mode Register (8 bits)
12-14 DSP56300 Family Manual Motorola
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CCR Condition Code Register (8 bits)

SR Status Register = EMR:MR:CCR (24 bits)

EOM Extended Chip Operating Mode Register (8 bits)

COM Chip Operating Mode Register (8 bits)

OMR Operating Mode Register = EOM:COM (24 bits)

SZ System Stack Size Register (24 bits)

SC System Stack Counter Register (5 bits)

VBA Vector Base Address (24 bits, eight set to 0)

LA Hardware Loop Address Register (24 bits)

LC Hardware Loop Counter Register (24 bits)

SP System Stack Pointer Register (24 bits)

SSH Upper Portion of the Current Top of the Stack (24 bits)

SSL Lower Portion of the Current Top of the Stack (24 bits)

SS System Stack RAM = SSH: SSL (16 locations by 32 bits)

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxxxx Absolute or Long Displacement Address (24 bits)

xxx Short or Short Displacement Jump Address (12 bits)

xxx Short Displacement Jump Address (9 bits)

aaa Short Displacement Address (7 bits, sign-extended)

aa Absolute Short Address (6 bits, zero-extended)

pp High I/O Short Address (6 bits, ones-extended)

qq Low I/O Short Address (6 bits)

<. . .> Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

Table 12-10. Instruction Description Notation  (Continued)

Symbol Meaning
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L: Long Memory Reference = X Concatenated with Y

P: Program Memory Reference

Miscellaneous Operands

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 bits)

#xx Immediate Short Data (8 bits)

#xxx Immediate Short Data (12 bits)

#xxxxxx Immediate Data (24 bits)

r Rounding Constant

#bbbbb Operand Bit Select (5 bits)

Unary Operands

– Negation Operator

— Logical NOT Operator (Overbar)

PUSH Push Specified Value onto the System Stack (SS) Operator

PULL Pull Specified Value from the SS Operator

READ Read the Top of the SS Operator

PURGE Delete the Top Value on the SS Operator

|| Absolute Value Operator

Binary Operands

+ Addition Operator

– Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

⊕ Logical Exclusive OR Operator

Table 12-10. Instruction Description Notation  (Continued)

Symbol Meaning
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⇒ “Is Transferred To” Operator

: Concatenation Operator

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

# Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop is in Progress

DM Double-Precision Multiply bit indicating whether the chip is in Double-Precision Multiply
mode

SB Sixteen-Bit Arithmetic Mode

RM Rounding Mode

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of Data ALU result is in Use

U Unnormalized Bit Indicating if the Data ALU Result is Unnormalized

N Negative Bit Indicating if Bit 55 of the Data ALU Result is Set

Z Zero Bit Indicating if the Data ALU  Result Equals Zero

V Overflow Bit Indicating whether Arithmetic Overflow occurred in Data ALU

C Carry Bit Indicating if a Carry or Borrow occurred in Data ALU  Result

( ) Optional Letter, Operand, or Operation

(…) Any Arithmetic or Logical Instruction that Allows Parallel Moves

Table 12-10. Instruction Description Notation  (Continued)

Symbol Meaning
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12.4.2 Condition Code Computation

The Condition Code Register (CCR) portion of the Status Register (SR) consists of 
bits (seeFigure 12-6). The E, U, N, Z, V, and C bits are true condition code bits that
reflect the condition of the result of a Data ALU operation. These condition code bits
not “sticky” and are not affected by Address ALU calculations or by data transfers o
the XDB, YDB, or GDB. The L bit is a “sticky” overflow bit that indicates an overflow in
the Data ALU or data limiting when the contents of the A and/or B accumulators are
moved. The S bit is a “sticky” bit used in block floating-point operations to indicate th
need to scale the number in A or B.

Figure 12-6. Condition Code Register (CCR)

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of a n Accumulator (A1 or B1)

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

Address ALU Registers Operands

Rn Address Registers R0–R7 (24 bits)

Nn Address Offset Registers N0–N7 (24 bits)

Mn Address Modifier Registers M0–M7 (24 bits)

Table 12-10. Instruction Description Notation  (Continued)

Symbol Meaning

CCR

S — Scaling bit
L — Limit bit
E — Extension bit
U — Unnormalized bit

N — Negative bit
Z — Zero bit
V — Overflow bit
C — Carry bit

CS L E U N VZ

07 6 5 4 3 12
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Every instruction contains an illustration showing how the instruction affects the vari
condition codes. An instruction can affect a condition code according to three differe
rules, as described inTable 12-11.

Table 12-11. Instruction Effect on Condition Code

Standard Mark Effect on the Condition Code

— This bit is unchanged by the instruction.

√ This bit is changed by the instruction, according to the standard definition of the condition
code.

* This bit is changed by the instruction, according to a special definition of the condition
code depicted as part of the instruction description.

Table 12-12.  Condition Code Register (CCR) Bit Definitions

Bit Number Bit Name Reset Value Description

7 S 0 Scaling
Computed, according to the logical equations shown here when an
instruction or a parallel move reads the contents of accumulator A or B
to XDB or YDB. The S bit is a “sticky” bit, cleared only by an instruction
that specifically clears it or by hardware reset.

S0 S1 Scaling Mode S Bit Equation

0 0 No scaling S = (A46 XOR A45) OR (B46 XOR
B45) OR S (previous)

0 1 Scale up S = (A47 XOR A46) OR (B47 XOR
B46) OR S (previous)

1 0 Scale down S = (A45 XOR A44) OR (B45 XOR
B44) OR S (previous)

1 1 Reserved S undefined

7 cont. S 0 Scaling cont.
The S bit detects data growth, which is required in Block Floating-Point
FFT operation. The S bit is set if the absolute value in the accumulator,
before scaling, is greater than or equal to 0.25 and smaller than 0.75.
Typically, the bit is tested after each pass of a radix 2
decimation-in-time FFT and, if it is set, the appropriate scaling mode
should be activated in the next pass. The Block Floating-Point FFT
algorithm is described in the Motorola application note APR4/D,
Implementation of Fast Fourier Transforms on Motorola’s
DSP56000/DSP56001 and DSP96002 Digital Signal Processors.
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6 L 0 Limit
Set if the Overflow bit (V) is set or if an instruction or a parallel move
causes the data shifter/limiters to perform a limiting operation while
reading the contents of accumulator A or B to the XDB or YDB bus. In
Arithmetic Saturation mode, the limit bit is also set when an arithmetic
saturation occurs in the Data ALU result. Not affected otherwise. The L
bit is “sticky” and must be cleared only by an instruction that specifically
clears it or by hardware reset.

5 E 0 Extension
Cleared if all the bits of the signed integer portion of the Data ALU
result are the same (i.e., the bit patterns are either 00. . . 00 or 11. . .
11). Otherwise, this bit is set. The signed integer portion is defined by
the scaling mode, as shown here.

S0 S1 Scaling Mode S Bit Equation

0 0 No scaling Bits 55, 54..............48, 47

0 1 Scale down Bits 55, 54..............49, 48

1 0 Scale up Bits 55, 54..............47.46

The signed integer portion of an accumulator is not necessarily the
same as its extension register portion. It consists of the most significant
8, 9, or 10 bits of that accumulator, depending on the scaling mode.
The extension register portion of an accumulator (A2 or B2) is always
the eight Most Significant Bits of that accumulator. The E bit refers to
the signed integer portion of an accumulator and not the extension
register portion of that accumulator. For example, if the current scaling
mode is set for no scaling (S1 = S0 = 0), the signed integer portion of
the A or B accumulator consists of bits 47 through 55. If the A
accumulator contained the signed 56-bit value $00:800000:000000 as
a result of a Data ALU operation, the E bit would be set (E = 1) since
the 9 Most Significant Bits of that accumulator are not all the same (i.e.,
neither 00...00 nor 11...11). Thus, data limiting occurs if that 56-bit
value is specified as a source operand in a move-type operation. This
limiting operation results in either a positive or negative 24-bit or 48-bit
saturation constant stored in the specified destination. The signed
integer portion of an accumulator and the extension register portion of
an accumulator are the same only in the “Scale Down” scaling mode
(i.e., S1 = 0 and S0 = 1).

Table 12-12.  Condition Code Register (CCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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4 U 0 Unnormalized
Set if the two Most Significant Bits of the Most Significant Portion
(MSP) of the Data ALU result are the same. This bit is cleared
otherwise. The MSP is defined by the scaling mode. The U bit is
computed as shown here. The result of calculating the U bit in this
fashion is that the definition of a positive normalized number p is 0.5 ≤
p < 1.0 and the definition of negative normalized number n is –1.0 ≤ n <
–0.5.

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

3 N 0 Negative
Set if the MS bit (Bit 55 in arithmetic instructions or Bit 47 in logical
instructions) of the Data ALU result is set. Otherwise, this bit is cleared.

2 Z 0 Zero
Set if the Data ALU result equals 0. Otherwise, this bit is cleared.

1 V 0 Overflow
Set if an arithmetic overflow occurs in the 56-bit Data ALU result.
Otherwise, this bit is cleared. This indicates that the result cannot be
represented in the 56-bit accumulator, so the accumulator overflows. In
Arithmetic Saturation mode, an arithmetic overflow occurs if the Data
ALU result is not representable in the accumulator without the
extension part (i.e., 48-bit accumulator; 32-bit in the Sixteen Bit mode).

0 C 0 Carry
Set if a carry is generated out of the MSB of the Data ALU result of an
addition or if a borrow is generated out of the MSB of the Data ALU
result of a subtraction. Otherwise, this bit is cleared. The carry or
borrow is generated out of Bit 55 of the Data ALU result. The C bit is
also affected by bit manipulation, rotate, shift, and compare
instructions. The C bit is not affected by Arithmetic Saturation mode.

Table 12-12.  Condition Code Register (CCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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12.5 Instruction Partial Encoding

This section gives the encodings for the following:

■ Various groupings of registers used in the instruction encodings

■ Condition Code combinations

■ Addressing

■ Addressing modes

The symbols used in decoding the various fields of an instruction are identical to tho
used in the Opcode section of the individual instruction descriptions.

12.5.1 Partial Encodings for Use in Instruction Encoding

Table 12-13. Partial Encodings for Use in Instruction Encoding

Destination Accumulator
Encoding

Data ALU Operands Encoding 1
Data ALU Source Operands

Encoding

D/S d/S/D S J S JJ

A 0 X 0 X0 00

B 1 Y 1 Y0 01

X1 10

Y1 11

Program Control Unit Register
Encoding

Data ALU Operands Encoding 2
Effective Addressing Mode

Encoding 1

Register EE S JJJ (Rn)–Nn 0 0 0 r r r

MR 00 B/A* 0 0 1 (Rn)+Nn 0 0 1 r r r

CCR 01 X 0 1 0 (Rn)– 0 1 0 r r r

COM 10 Y 0 1 1 (Rn)+ 0 1 1 r r r

EOM 11 X0 1 0 0 (Rn) 1 0 0 r r r

Y0 1 0 1 (Rn+Nn) 1 0 1 r r r

X1 1 1 0 –(Rn) 1 1 1 r r r

Y1 1 1 1 Absolute
address

1 1 0 0 0 0

* The source accumulator is B if the
destination accumulator (selected by
the d bit in the opcode) is A, or A if
the destination accumulator is B.

Immediate data 1 1 0 1 0 0

“r r r” refers to an address register
R0–R7
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Data ALU Operands Encoding 3

SSS/sss S,D qqq S,D ggg S,D

000 reserved 000 reserved 000 B/A*

001 reserved 001 reserved 001 reserved

010 A1 010 A0 010 reserved

011 B1 011 B0 011 reserved

100 X0 100 X0 100 X0

101 Y0 101 Y0 101 Y0

110 X1 110 X1 110 X1

111 Y1 111 Y1 111 Y1

* The selected accumulator is B if the source two accumulator (selected by the d bit in the opcode) is A, or A if the
source two accumulator is B.

Memory/Peripheral Space
Effective Addressing Mode

Encoding 2
Effective Addressing Mode

Encoding 3

Space S Mode MMMRRR Mode MMMRRR

X Memory 0 (Rn)–Nn 0 0 0 r r r (Rn)–Nn 0 0 0 r r r

Y Memory 1 (Rn)+Nn 0 0 1 r r r (Rn)+Nn 0 0 1 r r r

(Rn)– 0 1 0 r r r (Rn)– 0 1 0 r r r

(Rn)+ 0 1 1 r r r (Rn)+ 0 1 1 r r r

(Rn) 1 0 0 r r r (Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r (Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r –(Rn) 1 1 1 r r r

Absolute
address

1 10 0 0 0

“r r r” refers to an address register R0–R7

Effective Addressing Mode
Encoding 4

Six-Bit Encoding for All On-Chip Registers

Mode MMRRR Destination Register
D D D D D D /

d d d d d d

(Rn)–Nn 0 0 r r r 4 registers in Data ALU 0 0 0 1 D D

(Rn)+Nn 0 1 r r r 8 accumulators in Data ALU 0 0 1 D D D

(Rn)– 1 0 r r r 8 address registers in AGU 0 1 0 T T T

(Rn)+ 1 1 r r r 8 address offset registers in AGU 0 1 1 N N N

“r r r” refers to an address register
R0–R7

8 address modifier registers in AGU 1 0 0 F F F

1 address register in AGU 1 0 1 E E E

2 program controller register 1 1 0 V V V

8 program controller registers 1 1 1 G G G

See Table 12-14  for the specific encodings.

Table 12-13. Partial Encodings for Use in Instruction Encoding
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Instruction Partial Encoding
Table 12-14. Triple-Bit Register Encoding

Code 1DD DDD TTT NNN FFF EEE VVV GGG

000 — A0 R0 N0 M0 — VBA SZ

001 — B0 R1 N1 M1 — SC SR

010 — A2 R2 N2 M2 EP — OMR

011 — B2 R3 N3 M3 — — SP

100 X0 A1 R4 N4 M4 — — SSH

101 X1 B1 R5 N5 M5 — — SSL

110 Y0 A R6 N6 M6 — — LA

111 Y1 B R7 N7 M7 — — LC

Table 12-15. Long Move Register Encoding

S S1 S2
S

S/L
D D1 D2

D
Sign Ext

D
Zero

LLL

A10 A1 A0 no A10 A1 A0 no no 0 0 0

B10 B1 B0 no B10 B1 B0 no no 0 0 1

X X1 X0 no X X1 X0 no no 0 1 0

Y Y1 Y0 no Y Y1 Y0 no no 0 1 1

A A1 A0 yes A A1 A0 A2 no 1 0 0

B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0

BA B A yes BA B A B2,A2 B0,A0 1 1 1

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

Data ALU Source Registers
Encoding

AGU Address and Offset Registers Encoding

S JJJ Destination Address Register D dddd

B/A* 000 R0-R7 onnn

X0 100 N0-N7 1nnn

Y0 101

X1 110

Y1 111
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Instruction Partial Encoding
Data ALU Multiply Operands Encoding 1
Data ALU Multiply Operands

Encoding 2

S1 * S2 Q Q Q S1 * S2 Q Q Q S Q Q

X0,X0 0 0 0 X0,Y1 1 0 0 Y1 0 0

Y0,Y0 0 0 1 Y0,X0 1 0 1 X0 0 1

X1,X0 0 1 0 X1,Y0 1 1 0 Y0 1 0

Y1,Y0 0 1 1 Y1,X1 1 1 1 X1 1 1

NOTE: Only the indicated S1 * S2 combinations are valid. X1 * X1 and Y1 *
Y1 are not valid.

Data ALU Multiply Operands
Encoding 3

Data ALU Multiply Operands Encoding 4

S qq S1*S2 Q Q Q Q S1*S2 Q Q Q Q

X0 0 0 X0,X0 0 0 0 0 X0,Y1 0 1 0 0

Y0 0 1 Y0,Y0 0 0 0 1 Y0,X0 0 1 0 1

X1 1 0 X1,X0 0 0 1 0 X1,Y0 0 1 1 0

Y1 1 1 Y1,Y0 0 0 1 1 Y1,X1 0 1 1 1

Data ALU Multiply Sign Encoding X1,X1 1 0 0 0 Y1,X0 1 1 0 0

Sign k Y1,Y1 1 0 0 1 X0,Y0 1 1 0 1

+ 0 X0,X1 1 0 1 0 Y0,X1 1 1 1 0

– 1 Y0,Y1 1 0 1 1 X1,Y1 1 1 1 1

Five-Bit Register Encoding 1 Write Control Encoding

D/S ddddd / eeeee D/S ddddd / eeeee Operation W

X0 0 0 1 0 0 B2 0 1 0 1 1 Read Register or
Peripheral

0

X1 0 0 1 0 1 A1 0 1 1 0 0 Write Register or
Peripheral

1

Y0 0 0 1 1 0 B1 0 1 1 0 1 ALU Registers Encoding

Y1 0 0 1 1 1 A 0 1 1 1 0 Destination
Register

D D D D

A0 0 1 0 0 0 B 0 1 1 1 1 4 registers in
Data ALU

0 1 D D

B0 0 1 0 0 1 R0-R7 1 0 r r r 8 accumulators
in Data ALU

1 D D D

A2 0 1 0 1 0 N0-N7 1 1 n n n See Table 12-14 , “Triple-Bit
Register Encoding,” on page 12-24
for the specific encodings.

“r r r” = Rn number, “n n n” = Nn number

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2
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Instruction Partial Encoding
Immediate Data ALU Operand Encoding Write Control Encoding

n ssss constant Operation W

1 00001 010000000000000000000000 Read Register or
Peripheral

0

2 00010 001000000000000000000000 Write Register or
Peripheral

1

3 00011 000100000000000000000000 ALU Registers Encoding

4 00100 000010000000000000000000 Destination
Register

D D D D

5 00101 000001000000000000000000 4 registers in
Data ALU

0 1 D D

6 00110 000000100000000000000000 8 accumulators
in Data ALU

1 D D D

7 00111 000000010000000000000000 See Table 12-14  on page 12-24 for
the specific encodings.

8 01000 000000001000000000000000 X:Y: Move Operands Encoding

9 01001 000000000100000000000000 X Effective
Addressing

Mode
MMRRR

10 01010 000000000010000000000000 (Rn)+Nn 0 1 s s s

11 01011 000000000001000000000000 (Rn)– 1 0 s s s

12 01100 000000000000100000000000 (Rn)+ 1 1 s s s

13 01101 000000000000010000000000 (Rn) 0 0 s s s

14 01110 000000000000001000000000
Y Effective
Addressing

Mode
mmrr

15 01111 00000000000000010000000000 (Rn)+Nn 0 1 t t

16 10000 00000000000000001000000000 (Rn)– 1 0 t t

17 10001 000000000000000001000000 (Rn)+ 1 1 t t

18 10010 000000000000000000100000 (Rn) 0 0 t t

19 10011 000000000000000000010000 where the following apply:
“s s s” refers to an address register
R0–R7 and “t t” refers to an address
register R4–R7 or R0–R3 in the
opposite address register bank from
that used in the X effective address

20 10100 000000000000000000001000

21 10101 000000000000000000000100

22 10110 000000000000000000000010

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2
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Instruction Partial Encoding
X:R Operand Registers Encoding
Signed/Unsigned Partial

Encoding 1

S1,D1 f f D2 F ss/su/uu ss

X0 0 0 Y0 0 ss 00

X1 0 1 Y1 1 su 10

A 1 0 uu 11

B 1 1 (Reserved) 01

R:Y Operand Registers Encoding
Signed/Unsigned Partial

Encoding 2

D1 e S2,D2 f f su/uu s

X0 0 Y0 0 0 su 0

X1 1 Y1 0 1 uu 1

A 1 0

B 1 1

Single-Bit Special Register Encoding Five-Bit Register Encoding 2

d
X:R Class II

Opcode
R:Y Class II

Opcode
S1,D1 ddddd

0 A → X:<ea> , X0
→ A

Y0 → A , A →
Y:<ea>

M0-M7 00nnn

1 B → X:<ea> , X0
→ B

Y0 → B , B →
Y:<ea>

EP 01010

Move Operand Encoding VBA 10000

S1,D1 e e S2,D2 f f SC 10001

X0 0 0 Y0 0 0 SZ 11000

X1 0 1 Y1 0 1 SR 11001

A 1 0 A 1 0 OMR 11010

B 1 1 B 1 1 SP 11011

SSH 11100

SSL 11101

LA 11110

LC 11111

where “n n n” = Mn number (M0–M7)

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2
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Instruction Partial Encoding
Table 12-17. Condition Code Computation Equation

“cc” Mnemonic Condition

CC(HS) Carry Clear (higher or same) C = 0

CS(LO) Carry Set (lower) C = 1

EC Extension Clear E = 0

EQ Equal Z = 1

ES Extension Set E=1

GE Greater than or Equal N ⊕ V=0

GT Greater Than Z+(N ⊕ V)=0

LC Limit Clear L=0

LE Less than or Equal Z+(N ⊕ V)=1

LS Limit Set L=1

LT Less Than N ⊕ V=1

MI Minus N=1

NE Not Equal Z=0

NR Normalized Z+(U•E)=1

PL Plus N=0

NN Not Normalized Z+(U•E)=0

NOTES:
U denotes the logical complement of U.

+ denotes the logical OR operator.

• denotes the logical AND operator.

⊕ denotes the logical Exclusive OR operator.

Table 12-18. Condition Codes Encoding

Mnemonic   C C C C Mnemonic C C C C

CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

PL 0 0 1 1 MI 1 0 1 1
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12.5.2 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions that allow parallel moves is divided
the multiply and non-multiply instruction encodings shown in the following subsectio

12.5.2.1 Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has differe
fields than the non-multiply instruction operation code. The 8-bit operation code =1QQQ
dkkk  where

■ QQQ =selects the inputs to the multiplier (seeTable 12-17, “Condition Code
Computation Equation,” on page 12-28)

■ kkk = three unencoded bits k2, k1, k0

■ d = destination accumulator
d = 0→ A
d = 1→ B

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

The condition code computation equations are listed in Table 12-17.
on page 12-28.

Table 12-19. Operation Code K0–2 Decode

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round

Table 12-18. Condition Codes Encoding (Continued)

Mnemonic   C C C C Mnemonic C C C C
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12.5.2.2 Non-Multiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fie
defining which instruction the operation code represents and one bit defining the
destination accumulator register. The 8-bit operation code =0 J J J D k k k where

■ J J J = 1/2 instruction number

■ k k k = 1/2 instruction number

■ D = 0 → A
D = 1 → B

Table 12-20. Non-Multiply Instruction Encoding

J J J
D = 0
Src

Oper

D = 1
Src

Oper

k k k

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 B A MOVE1 TFR ADDR TST * CMP SUBR CMPM

0 0 1 B A ADD RND ADDL CLR SUB * SUBL NOT

0 1 0 B A — — ASR LSR — — ABS ROR

0 1 1 B A — — ASL LSL — — NEG ROL

0 1 0 X1 X0 X1 X0 ADD ADC — — SUB SBC — —

0 1 1 Y1 Y0 Y1 Y0 ADD ADC — — SUB SBC — —

1 0 0 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 0 1 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 0 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 1 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

NOTES:
1. Special case 1.
2. * = Reserved

Table 12-21. Special Case1

 O P E R C O D E Operation

 0 0 0 0 0 0 0 0 MOVE

 0 0 0 0 1 0 0 0 reserved
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Chapter 13
Instruction Set
This chapter describes each instruction in the DSP56300 (family) core instruction se
detail. Instructions that allow parallel moves are so noted in both theOperation and the
Assembler Syntax fields. The MOVE instruction is equivalent to a NOP with parallel
moves, so a description of each parallel move accompanies the MOVE instruction de
When an instruction uses an accumulator as both a destination operand for Data AL
operation and a source for a parallel move operation, the parallel move operation us
value in the accumulator before any Data ALU operation executes. UseTable 13-1 to
locate the page number of an instruction.

Table 13-1. DSP56300 Instruction Summary

Instruction Page Instruction Page

ABS
Absolute Value

page 13-5 ADC
Add Long With Carry

page 13-6

ADD
Add

page 13-7 ADDL
Shift Left and Add Accumulators

page 13-9

ADDR
Shift Right and Add Accumulators

page 13-10 AND
Logical AND

page 13-11

ANDI
AND Immediate With Control Register

page 13-13 ASL
Arithmetic Shift Accumulator Left

page 13-14

ASR
Arithmetic Shift Accumulator Right

page 13-16 Bcc
Branch Conditionally

page 13-18

BCHG
Bit Test and Change

page 13-19 BCLR
Bit Test and Clear

page 13-22

BRA
Branch Always

page 13-25 BRCLR
Branch if Bit Clear

page 13-26

BRKcc
Exit Current DO Loop Conditionally

page 13-28 BRSET
Branch if Bit Set

page 13-29

BScc
Branch to Subroutine Conditionally

page 13-31 BSCLR
Branch to Subroutine if Bit Clear

page 13-33

BSET
Bit Test and Set

page 13-35 BSR
Branch to Subroutine

page 13-38

BSSET
Branch to Subroutine if Bit Set

page 13-39 BTST
Bit Test

page 13-41

CLB
Count Leading Bits

page 13-43 CLR
Clear Accumulator

page 13-45
Motorola Instruction Set 13-1



CMP
Compare

page 13-46 CMPM
Compare Magnitude

page 13-48

CMPU
Compare Unsigned

page 13-49 DEBUG
Enter Debug Mode

page 13-50

DEBUGcc
Enter Debug Mode Conditionally

page 13-51 DEC
Decrement by One

page 13-52

DIV
Divide Iteration

page 13-53 DO
Start Hardware Loop

page 13-57

DMAC
Double (Multi) Precision Multiply
Accumulate With Right Shift

page 13-56 DOR
Start PC-Relative Hardware Loop

page 13-62

DO FOREVER
Start Infinite Loop

page 13-60 ENDDO
End Current DO Loop

page 13-67

DOR FOREVER
Start PC-Relative Infinite Loop

page 13-65 EXTRACT
Extract Bit Field

page 13-70

EOR
Logical Exclusive OR

page 13-68 IFcc.U
Execute Conditionally With CCR Update

page 13-74

EXTRACTU
Extract Unsigned Bit Field

page 13-72 INC
Increment by One

page 13-77

ILLEGAL
Illegal Instruction Interrupt

page 13-76 Jcc
JumpConditionally

page 13-80

INSERT
Insert Bit Field

page 13-78 JMP
Jump

page 13-83

JCLR
Jump if Bit Clear

page 13-81 JSCLR
Jump to Subroutine if Bit Clear

page 13-85

JScc
Jump to Subroutine Conditionally

page 13-84 JSR
Jump to Subroutine

page 13-89

JSET
Jump if Bit Set

page 13-87 LRA
Load PC-Relative Address

page 13-92

JSSET
Jump to Subroutine if Bit Set

page 13-90 LSR
Logical Shift Right

page 13-96

LSL
Logical Shift Left

page 13-93 MAC
Signed Multiply Accumulate

page 13-99

LUA
Load Updated Address

page 13-98 MAC (su, uu)
Mixed Multiply Accumulate

page 13-102

MACI
Signed Multiply Accumulate With
Immediate Operand

page 13-101 MACRI
Signed Multiply Accumulate and Round
With Immediate Operand

page 13-105

MACR
Signed Multiply Accumulate and Round

page 13-103 MAXM
Transfer by Magniture

page 13-107

MAX
Transfer by Signed Value

page 13-106 MOVE
Move Data

page 13-110

MERGE
Merge Two Half Words

page 13-108 No Parallel Data Move page 13-112

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
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R
Register-to-Register Data Move

page 13-115 Immediate Short Data Move page 13-113

X:
X Memory Data Move

page 13-118 U
Address Register Update

page 13-117

Y:
Y Memory Data Move

page 13-122 X:R
X Memory and Register Data Move

page 13-120

L:
Long Memory Data Move

page 13-126 R:Y
Register and Y Memory Data Move

page 13-124

MOVEC
Move Control Register

page 13-130 X:Y:
XY Memory Data Move

page 13-128

MOVEP
Move Peripheral Data

page 13-134 MOVEM
Move Program Memory

page 13-132

MPY (su, uu)
Mixed Multiply

page 13-139 MPY
Signed Multiply

page 13-137

MPYR
Signed Multiply and Round

page 13-141 MPYI
Signed Multiply With Immediate Operand

page 13-140

NEG
Negate Accumulator

page 13-144 MPYRI
Signed Multiply and Round With
Immediate Operand

page 13-143

NORM
Norm Accumulator Iteration

page 13-147 NOP
No Operation

page 13-145

NOT
Logical Complement

page 13-149 NORMF
Fast Accumulator Normalization

page 13-147

ORI
OR Immediate With Control Register

page 13-152 OR
Logical Inclusive OR

page 13-150

PFLUSHUN
Program cache Flush Unlocked Sectors

page 13-154 PFLUSH
Program Cache Flush

page 13-153

PLOCKR
Lock Instruction Cache Relative Sector

page 13-157 PFREE
Program Cache Global Unlock

page 13-155

PUNLOCKR
Unlock Instruction Cache Relative Sector

page 13-159 PUNLOCK
Unlock Instruction Cache Sector

page 13-158

RESET
Reset On-Chip Peripherals Devices

page 13-162 REP
Repeat Next Instruction

page 13-160

ROL
Rotate Left

page 13-165 RND
Round Accumulator

page 13-163

RTI
Return From Interrupt

page 13-168 ROR
Rotate Right

page 13-166

SBC
Subtract Long With Carry

page 13-169 RTS
Return From Subroutine

page 13-168

SUB
Subtract

page 13-172 STOP
Stop Instruction Processing

page 13-170

SUBR
Shift Right and Subtract Accumulators

page 13-175 SUBL
Shift Left and Subtract Accumulators

page 13-174

Tcc
Transfer Conditionally

page 13-176 TFR
Transfer Data ALU Register

page 13-178

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
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TRAP
Software Interrupt

page 13-179 TRAPcc
Conditional Software Interrupt

page 13-180

TST
Test Accumulator

page 13-181 VSL
Viterbi Shift Left

page 13-182

WAIT
Wait for Interrupt or DMA Request

page 13-183

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
13-4 DSP56300 Family Manual Motorola



lt in
ABS Absolute Value ABS

Instruction Fields

Description Take the absolute value of the destination operand D and store the resu
the destination accumulator.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

| D | → D (parallel move) ABS D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0

ABS D Data Bus Move Field 0 0 1 0 d 1 1 0

Optinal Effective Address Extension
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ADC Add Long With Carry ADC

Instruction Fields

Description Add the source operand S and the Carry bit (C) of the Condition Code
Register to the destination operand D and store the result in the destination accumu
Long words (48 bits) can be added to the 56-bit destination accumulator. Note that t
Carry bit is set correctly for multiple-precision arithmetic using long-word operands if
extension register of the destination accumulator (A2 or B2) is the sign extension of B
of the destination accumulator (A or B).

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S + C + D → D  (parallel move) ADC S,D  (parallel move)

{S} J Source register [X,Y] (seeTable 12-13 on page 12-22)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0

ADC S,D Data Bus Move Field 0 0 1 J d 0 0 1

Optional Effective Address Extension
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ult in
ord,

ix bits
 Note

it 47

 Bit 47.
ADD Add ADD

Instruction Fields

Description Add the source operand S to the destination operand D and store the res
the destination accumulator. The source can be a register (24-bit word, 48-bit long w
or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate. When 6-bit
immediate data is used, the data is interpreted as an unsigned integer. That is, the s
are right-aligned and the remaining bits are zeroed to form a 24-bit source operand.
that the Carry bit(C) is set correctly using word or long-word source operands if the
extension register of the destination accumulator (A2 or B2) is the sign extension of B
of the destination accumulator (A or B). Thus, the C bit is always set correctly using
accumulator source operands, but it can be set incorrectly if A1, B1, A10, B10 or
immediate operand are used as source operands and A2 and B2 are not replicas of

Condition Codes

Operation Assembler Syntax

S + D → D (parallel move) ADD S,D (parallel move)

#xx + D → D ADD #xx,D

#xxxx + D → D ADD #xxxx,D

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (seeTable 12-13
on page 12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13on page 12-22)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

— Unchanged by the instruction.
Motorola Instruction Set 13-7



ADD Add ADD
Instruction Formats and opcodes

23 16 15 8 7 0

ADD S,D Data Bus Move Field 0 J J J d 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0

ADD #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 0 0

23 16 15 8 7 0

ADD #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 0 0

Immediate Data Extension
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ADDL Shift Left and Add Accumulators ADDL

Instruction Fields

Description Add the source operand S to two times the destination operand D and st
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the left, and a 0 is shifted into the LSB of D prior to the addition
operation. The Carry bit (C) is set correctly if the source operand does not overflow 
result of the left shift operation. The Overflow bit (V) may be set as a result of either
shifting or addition operation (or both). This instruction is useful for efficient divide a
Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S + 2 ∗ D → D (parallel move) ADDL S,D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected

by thed bit in the opcode) is A, or A if the destination accumulator is
B.

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * √

CCR

V Set if overflow has occurred in A or B result or the MSB of the destination
operand is changed as a result of the instruction’s left shift.
Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0

ADDL S,D Data Bus Move Field 0 0 0 1 d 0 1 0
Optional Effective Address Extension
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ADDR Shift Right and Add Accumulators ADDR

Instruction Fields

Description Add the source operand S to one-half the destination operand D and stor
result in the destination accumulator. The destination operand D is arithmetically sh
one bit to the right while the MS bit of D is held constant prior to the addition operation
contrast to the ADDL instruction, the Carry bit (C) is always set correctly, and the
Overflow bit (V) can only be set by the addition operation and not by an overflow du
the initial shifting operation. This instruction is useful for efficient divide and
Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S + D / 2 → D (parallel move) ADDR S,D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected

by thed bit in the opcode) is A, or A if the destination accumulator is
B.

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

ADDR S,D Data Bus Move Field 0 0 0 0 d 0 1 0
Optional Effective Address Extension
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AND Logical AND AND

where • denotes the logical AND operator

Instruction Fields

Description Logically AND the source operand S with bits 47–24 of the destination
operand D and store the result in bits 47–24 of the destination accumulator. The sou
can be a 24-bit register, 6-bit short immediate, or 24-bit long immediate. This instruc
is a 24-bit operation. The remaining bits of the destination operand D are not affecte
When 6-bit immediate data is used, the data is interpreted as an unsigned integer. T
the six bits are right aligned and the remaining bits are zeroed to form a 24-bit sourc
operand.

Condition Codes

Operation Assembler Syntax

S • D[47:24] → D[47:24] (parallel move) AND S,D (parallel move)

#xx • D[47:24] → D[47:24] AND #xx,D

#xxxx • D[47:24] → D[47:24] AND #xxxx,D

{S} JJ Source input register [X0,X1,Y0,Y1] (seeTable 12-13on page
12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ — — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47-24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
Motorola Instruction Set 13-11



AND Logical AND AND
Instruction Formats and opcodes

23 16 15 8 7 0

AND S,D Data Bus Move Field 0 1 J J d 1 1 0
Optional Effective Address Extension

23 16 15 8 7 0

AND #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 1 0

23 16 15 8 7 0

AND #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 1 0
Immediate Data Extension
13-12 DSP56300 Family Manual Motorola
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ANDI AND Immediate With Control Register ANDI

Instruction Fields

Description Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. 
condition codes are affected only when the Condition Code Register (CCR) is specifie
the destination operand.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
#xx • D → D AND(I) #xx,D
where • denotes the logical AND operator

{D} EE Program Controller register [MR,CCR,COM,EOM] (seeTable 12-13
on page 12-22)

{#xx} iiiiiiii Immediate Short Data

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For CCR Operand
* S Cleared if Bit 7 of the immediate operand is cleared.
* L Cleared if Bit 6 of the immediate operand is cleared.
* E Cleared if Bit 5 of the immediate operand is cleared.
* U Cleared if Bit 4 of the immediate operand is cleared.
* N Cleared if Bit 3 of the immediate operand is cleared.
* Z Cleared if Bit 2 of the immediate operand is cleared.
* V Cleared if Bit 1 of the immediate operand is cleared.
* C Cleared if Bit 0 of the immediate operand is cleared.

For MR and OMR Operands

The condition codes are not affected using these operands.

23 16 15 8 7 0

AND(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E
Motorola Instruction Set 13-13
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ASL Arithmetic Shift Accumulator Left ASL
Operation

Assembler Syntax

ASL D (parallel move)
ASL D #ii,S2,D
ASL S1,S2,D

Instruction Fields

In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

Description

■ Single bit shift: Arithmetically shift the destination accumulator D one bit to the
left and store the result in the destination accumulator. The MSB of D prior to
instruction execution is shifted into the Carry bit (C) and a 0 isshifted into the LSB
of the destination accumulator D.

■ Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bi
Bits shifted out of position 55 are lost except for the last bit, which is latched in
C bit. The vacated positions on the right are zero-filled. The result is placed in
destination accumulator D. The number of bits to shift is determined by the 6-
immediate field in the instruction, or by the 6-bit unsigned integer located in the
LSBs of the control register S1. If a zero shift count is specified, the C bit is
cleared. The difference between ASL and LSL is that ASL operates on the entir
bits of the accumulator, and therefore, sets the Overflow bit (V) if the number
overflows.

This is a 56-bit operation.

{S2} S Source accumulator [A,B] ()

SeeTable 12-13 on page 12-22
{D} D Destination accumulator [A,B] ()
{S1} sss Control register

[X0,X1,Y0,Y1,A1,B1]
{#ii} iiiiii 6-bit unsigned integer [0–40]

denoting the shift amount

C

0

55 47 23 048 24
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ASL Arithmetic Shift Accumulator Left ASL
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * *

CCR

V Set if Bit 55 is changed any time during the shift operation, cleared
otherwise.

C Set if the last bit shifted out of the operand is set, cleared for a shift count of
0, and cleared otherwise.
Changed according to the standard definition.

23 8 7 0
ASL D Data Bus Move Field 0 0 1 1 d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0
ASL #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 S i i i i i i D

23 16 15 8 7 0
ASL S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 S s s s D

6
3
1

1

Shift left 7

0

0

C

1 0 1 0 1 0 0 0A

B

1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1

6
3
1

1
0

0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

ASL #7,A, B
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ASR Arithmetic Shift Accumulator Right ASR

Assembler Syntax

ASR D (parallel move)
ASR D #ii, S2,D
ASR S1,S2,D

Instruction Fields

In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

Description

■ Single bit shift: Arithmetically shift the destination operand D one bit to the righ
and store the result in the destination accumulator. The LSB of D prior to
instruction execution is shifted into the Carry bit (C), and the MSB of D is held
constant.

■ Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii b
Bits shifted out of position 0 are lost except for the last bit, which is latched in
C bit. Copies of the MSB are supplied to the vacated positions on the left. The
result is placed into destination accumulator D. The number of bits to shift is
determined by the 6-bit immediate field in the instruction, or by the 6-bit unsign
integer located in the six 6 LSBs of the control register S1. If a zero shift coun
specified, the C bit is cleared.

This is a 56- or 40-bit operation, depending on the SA bit value in the SR.

Note: If the number of shifts indicated by the 6 LSBs of the control register or by
immediate field exceeds the value of 55 (40 in Sixteen Bit Arithmetic mode
then the result is undefined.

{S2} S Source accumulator [A,B]
SeeTable 12-13 on page 12-22{D} D Destination accumulator [A,B]

{S1} sss Control register [X0,X1,Y0,Y1,A1,B1]
{#ii} iiiiii 6-bit unsigned integer [0-40] denoting

the shift amount

C

Operation:

55 47 23 048 24
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ASR Arithmetic Shift Accumulator Right ASR
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * *

CCR

V This bit is always cleared.
C This bit is set if the last bit shifted out of the operand is set, cleared for a shift

count of 0, and cleared otherwise.
Changed according to the standard definition.

23 8 7 0
ASR D Data Bus Move Field 0 0 1 0 d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0
ASR #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 S i i i i i i D

23 16 15 8 7 0
ASR S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 S s s s D

ASR X0,A,B

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

shift = 3

X0

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1

0

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

0

Shift right 3 Shift right 3

A

B 0

c

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

5
5

5
5

x x x x x x x x x x x x x x x x x x 0 0 0 0 1 1

0
2
3
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Bcc Branch Conditionally Bcc

Instruction Fields

Description If the specified condition is true, program execution continues at location
+ displacement. If the specified condition is false, the PC is incremented and progra
execution continues sequentially. The displacement is a two’s-complement 24-bit in
that represents the relative distance from the current PC to the destination PC. Sho
Displacement and Address Register PC Relative addressing modes can be used. Th
Displacement 9-bit data is sign-extended to form the PC relative displacement. The
conditions that the term “cc” can specify are listed onTable 12-17 on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then PC + xxxx → PC Bcc xxxx
else PC + 1 → PC

If cc, then PC + xxx → PC Bcc xxx
else PC + 1 → PC

If cc, then PC + Rn → PC Bcc  Rn
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-13on page 12-22)
(xxxx) 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0 – R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
Bcc xxxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a

PC Relative Placement
23 16 15 8 7 0

Bcc xxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a
23 16 15 8 7 0

Bcc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 1 0 0 C C C C
13-18 DSP56300 Family Manual Motorola
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BCHG Bit Test and Change BCHG

Instruction Fields

Description Test the nth bit of the destination operand D, complement it, and store the
result in the destination location. The state of the nth bit is stored in the Carry bit (C) of the
CCR register. The bit to be tested is selected by an immediate bit number from 0 – 
This instruction performs a read-modify-write operation on the destination location u
two destination accesses before releasing the bus. This instruction provides a
test-and-change capability, which is useful for synchronizing multiple processors us
shared memory. This instruction can use all memory alterable addressing modes.

Condition Codes

Operation Assembler Syntax

D[n] → C D[n] → D[n] BCHG #n,[XorY]:ea

D[n] fi C D[n] → D[n] BCHG #n,[XorY]:aa

D[n] → C D[n] → D[n] BCHG #n,[XorY]:pp

D[n] → C D[n] → D[n] BCHG #n,[XorY]:qq

D[n] → C D[n] → D[n] BCHG #n,D

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X /Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (seeTable 12-13on

page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
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BCHG Bit Test and Change BCHG
CCR Condition Codes

For destination operand SR:

* C Complemented if bit 0 is specified, unaffected otherwise.
* V Complemented if bit 1 is specified, unaffected otherwise.
* Z Complemented if bit 2 is specified, unaffected otherwise.
* N Complemented if bit 3 is specified, unaffected otherwise.
* U Complemented if bit 4 is specified, unaffected otherwise.
* E Complemented if bit 5 is specified, unaffected otherwise.
* L Complemented if bit 6 is specified, unaffected otherwise.
* S Complemented if bit 7 is specified, unaffected otherwise.

For other destination operands:
* C Set if bit tested is set, and cleared otherwise.
* V Not affected.
* Z Not affected.
* N Not affected.
* U Not affected.
* E Not affected.
* L Set according to the standard definition.
* S Set according to the standard definition.

MR Status Bits

For destination operand SR:
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

For other destination operands: MR status bits are not affected.
13-20 DSP56300 Family Manual Motorola



BCHG Bit Test and Change BCHG
Instruction Formats and opcodes

23 16 15 8 7 0
BCHG #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 0 0 b b b b

Optional Effective Address Extension

23 16 15 8 7 0
BCHG #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0
BCHG #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 0 b b b b

23 16 15 8 7 0
BCHG #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 0 b b b b b

23 16 15 8 7 0
BCHG #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 b b b b b
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BCLR Bit Test and Clear BCLR

Instruction Fields

Description Test the nth bit of the destination operand D, clear it and store the result in t
destination location. The state of the nth bit is stored in the Carry bit (C) of the CCR
register. The bit to be tested is selected by an immediate bit number from 0–23. Thi
instruction performs a read-modify-write operation on the destination location using 
destination accesses before releasing the bus. This instruction provides a test-and-c
capability, which is useful for synchronizing multiple processors using a shared mem
This instruction can use all memory alterable addressing modes.

Condition Codes

Operation Assembler Syntax

D[n] → C 0 → D[n] BCLR #n,[XorY]:ea

D[n] → C 0 → D[n] BCLR #n,[XorY]:aa

D[n] → C 0 → D[n] BCLR #n,[XorY]:pp

D[n] → C 0 → D[n] BCLR #n,[XorY]:qq

D[n] → C 0 → D[n] BCLR #n,D

{#n} bbbb Bit number [0-23]

SeeTable 12-13 on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip

registers]

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
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BCLR Bit Test and Clear BCLR
CCR Condition Codes

For destination operand SR:
* C Cleared if bit 0 is specified, unaffected otherwise.
* V Cleared if bit 1 is specified, unaffected otherwise.
* Z Cleared if bit 2 is specified, unaffected otherwise.
* N Cleared if bit 3 is specified, unaffected otherwise.
* U Cleared if bit 4 is specified, unaffected otherwise.
* E Cleared if bit 5 is specified, unaffected otherwise.
* L Cleared if bit 6 is specified, unaffected otherwise.
* S Cleared if bit 7 is specified, unaffected otherwise.

For other destination operands:
* C This bit is set if bit tested is set, and cleared otherwise.
* V Unaffected.
* Z Unaffected.
* N Unaffected.
* U Unaffected.
* E Unaffected.
* L This bit is set according to the standard definition.
* S This bit is set according to the standard definition.

MR Status Bits

For destination operand SR:
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.
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BCLR Bit Test and Clear BCLR
Instruction Formats and opcodes

23 16 15 8 7 0
BCLR #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 0 b b b b

Optional Effective Address Extension

23 16 15 8 7 0
BCLR #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0
BCLR #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 0 b b b b

23 16 15 8 7 0
BCLR #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 0 0 b b b b

23 16 15 8 7 0
BCLR #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 0 b b b b
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BRA Branch Always BRA

Instruction Fields

Description Program execution continues at location PC + displacement. The
displacement is a two’s-complement 24-bit integer that represents the relative distan
from the current PC to the destination PC. Short Displacement and Address Registe
Relative addressing modes may be used. The Short Displacement 9-bit data is
sign-extended to form the PC relative displacement.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

PC + xxxx → Pc BRA xxxx

PC + xxx → Pc BRA xxx

PC + Rn → Pc BRA Rn

{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
BRA xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
BRA xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 1 a a a a 0 a a a a a

23 16 15 8 7 0
BRA Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 1 0 0 0 0 0 0
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BRCLR Branch if Bit Clear BRCLR

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is cleared, prog
execution continues at location PC+displacement. If the tested bit is set, the PC is
incremented and program execution continues sequentially. However, the address re
specified in the effective address field is always updated independently of the condi
The displacement is a 2’s complement 24-bit integer that represents the relative dis
from the current PC to the destination PC. The 24-bit displacement is contained in t
extension word of the instruction. All memory alterable addressing modes may be us
reference the source operand. Absolute Short, I/O Short and Register Direct addres
modes may also be used. Note that if the specified source operand S is the SSH, th
pointer register will be decremented by one. The bit to be tested is selected by an
immediate bit number 0-23.

Operation Assembler Syntax

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,S,xxxx
else PC+ 1 ➞ PC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13 on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip

registers])
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BRCLR Branch if Bit Clear BRCLR
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0
BRCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 0 b b b b b

PC-Relative Displacement
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BRKcc Exit Current DO Loop Conditionally BRKcc

Instruction Fields

Description Exits conditionally the current hardware DO loop before the current Loop
Counter (LC) equals 1. It also terminates the DO FOREVER  loop. If the value of the
current DO LC is needed, it must be read before the execution of the BRKcc instruc
Initially, the PC is updated from the LA, the Loop Flag (LF) and the Forever flag (FV) a
restored and the remaining portion of the Status Register (SR) is purged from the sy
stack. The Loop Address (LA) and the LC registers are then restored from the syste
stack. The conditions that the term “cc” can specify are listed inTable 12-18
on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc LA + 1→ PC; SSL(LF,FV) → SR; SP – 1 → SP BRKcc
SSH → LA; SSL → LC; SP – 1 → SP

else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
BRKcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 C C C C
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BRSET Branch if Bit Set BRSET

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is set, program
execution continues at location PC+displacement. If the tested bit is cleared, the PC
incremented and program execution continues sequentially. However, the address re
specified in the effective address field is always updated independently of the condi
The displacement is a 2’s complement 24-bit integer that represents the relative dis
from the current PC to the destination PC. The 24-bit displacement is contained in t
extension word of the instruction. All memory alterable addressing modes may be us
reference the source operand. Absolute Short, I/O Short and Register Direct addres
modes may also be used. Note that if the specified source operand S is the SSH, th
pointer register will be decremented by one. The bit to be tested is selected by an
immediate bit number 0-23.

Operation Assembler Syntax

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,S,xxxx
else PC+ 1 ➞ PC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y] )
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip

registers]
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BRSET Branch if Bit Set BRSET
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0
BRSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 1 b b b b b

PC-Relative Displacement
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BScc Branch to Subroutine Conditionally BScc

Instruction Fields

Description If the specified condition is true, the address of the instruction immediate
following the BScc instruction and the SR are pushed onto the stack. Program exec
then continues at location PC + displacement. If the specified condition is false, the P
incremented and program execution continues sequentially. The displacement is a 2
complement 24-bit integer that represents the relative distance from the current PC 
destination PC. Short Displacement and Address Register PC Relative addressing m
may be used. The Short Displacement 9-bit data is sign extended to form the PC re
displacement. The conditions that the term “cc” can specify are listed onTable 12-18on
page 12-28.

Condition Codes

Operation Assembler Syntax

If cc, then PC fiSSH;SR fiSSL;PC+xxxx fiPC BScc xxxx
else PC+1fiPC

If cc, then PC → SSH;SR → SSL;PC + xxx → PC BScc xxx
else PC + 1 → PC

If cc, then PC → SSH;SR → SSL;PC + Rn → PC BScc Rn
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)
{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R0 – R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
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BScc Branch to Subroutine Conditionally BScc
Instruction Formats and opcodes

23 16 15 8 7 0
BScc xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 C C C C

PC-Relative Displacement

23 16 15 8 7 0
BScc xxx 0 0 0 0 0 1 0 1 C C C C 0 0 a a a a 0 a a a a a

23 16 15 8 7 0
BScc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 0 0 0 C C C C
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BSCLR Branch to Subroutine if Bit Clear BSCLR

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is cleared, the
address of the instruction immediately following the BSCLR instruction and the statu
register are pushed onto the stack. Program execution then continues at location
PC+displacement. If the tested bit is set, the PC is incremented and program execu
continues sequentially. However, the address register specified in the effective addr
field is always updated independently of the condition. The displacement is a two’s
complement 24-bit integer that represents the relative distance from the current PC 
destination PC. The 24-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes can reference the source opera
Absolute Short, I/O Short and Register Direct addressing modes can also be used. 
that if the specified source operand S is the SSH, the stack pointer register decreme

Operation Assembler Syntax

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:ea,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y],aa,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:pp,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:qq,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,S,xxxx
else PC+1fiPC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit Relative Long

Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip

registers]
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 SSH
BSCLR Branch to Subroutine if Bit Clear BSCLR

one; if the condition is true, the push operation writes over the stack level where the
value is taken. The bit to be tested is selected by an immediate bit number 0-23.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0
BSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 0 b b b b b

PC-Relative Displacement
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BSET Bit Set and Test BSET

Instruction Fields

Description Test the nth bit of the destination operand D, set it, and store the result in 
destination location. The state of the nth bit is stored in the Carry bit (C) of the CCR
register. The bit to be tested is selected by an immediate bit number from 0–23. Thi
instruction performs a read-modify-write operation on the destination location using 
destination accesses before releasing the bus. This instruction provides a test-and-s
capability that is useful for synchronizing multiple processors using a shared memor
This instruction can use all memory alterable addressing modes. When this instruct
performs a bit manipulation/test on either the A or B 56-bit accumulator, it optionally
shifts the accumulator value according to scaling mode bits S0 and S1 in the system S
Register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use, the instruction acts on the limited value (limited on the maximum
positive or negative saturation constant). The “L” flag in the SR is set accordingly.

Condition Codes

Operation Assembler Syntax

D[n] → C 1→ D[n] BSET #n,[XorY]:ea

D[n] → C 1 → D[n] BSET #n,[XorY]:aa

D[n] → C 1 → D[n] BSET #n,[XorY]:pp

D[n] → C 1 → D[n] BSET #n,[XorY]:qq

D[n] → C 1 → D[n] BSET #n,D

{#n} bbbb Bit number [0–23] SeeTable 12-13on page
12-22{ea} MMMRRR Effective Address

{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip registers]

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
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BSET Bit Set and Test BSET
CCR Condition Codes

For destination operand SR:
* C Set if bit 0 is specified, unaffected otherwise.
* V Set if bit 1 is specified, unaffected otherwise.
* Z Set if bit 2 is specified, unaffected otherwise.
* N Set if bit 3 is specified, unaffected otherwise.
* U Set if bit 4 is specified, unaffected otherwise.
* E Set if bit 5 is specified, unaffected otherwise.
* L Set if bit 6 is specified, unaffected otherwise.
* S Set if bit 7 is specified, unaffected otherwise.

For other destination operands:
* C Set if bit tested is set, and cleared otherwise.
* V Unaffected.
* Z Unaffected.
* N Unaffected.
* U Unaffected.
* E Unaffected.
* L Set according to the standard definition.
* S Set according to the standard definition.

MR Status Bits

For destination operand SR:
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

For other destination operands: MR status bits are not affected.
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BSET Bit Set and Test BSET
Instruction Formats and opcodes

23 16 15 8 7 0
BSET #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0
BSET #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0
BSET #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0
BSET #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0
BSET #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 0 b b b b
Motorola Instruction Set 13-37



n PC +
s the

ent
BSR Branch to Subroutine BSR

Instruction Fields

Description The address of the instruction immediately following the BSR instruction
and the SR are pushed onto the stack. Program execution then continues at locatio
displacement. The displacement is a twos-complement 24-bit integer that represent
relative distance from the current PC to the destination PC. Short Displacement and
Address Register PC-Relative addressing modes can be used. The Short Displacem
9-bit data is sign-extended to form the PC-Relative displacement.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

PC fiSSH;SR fiSSL;PC+xxxxfiPC BSR xxxx

PC → SSH;SR →SSL;PC + xxx → PC BSR xxx

PC → SSH;SR → SSL;PC + Rn → PC BSR Rn

{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
BSR xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
BSR xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 0 a a a a 0 a a a a a

23 16 15 8 7 0
BSR Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 0 0 0 0 0 0 0
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BSSET Branch to Subroutine if Bit Set BSSET

Instruction Fields

Description  The nth bit in the source operand is tested. If the tested bit is set, the add
of the instruction immediately following the BSSET instruction and the status registe
pushed onto the stack. Program execution then continues at location PC+displacem
the tested bit is cleared, the PC is incremented and program execution continues
sequentially. However, the address register specified in the effective address field is
always updated independently of the condition. The displacement is a two’s comple
24-bit integer that represents the relative distance from the current PC to the destina
PC. The 24-bit displacement is contained in the extension word of the instruction. A
memory alterable addressing modes can reference the source operand. Absolute Sh
Short and Register Direct addressing modes can also be used. Note that if the spec
source operand S is the SSH, the stack pointer register is decremented by one; if th
condition is true, the push operation writes over the stack level where the SSH value
taken. The bit to be tested is selected by an immediate bit number 0-23.

Operation Assembler Syntax

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:ea,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y],aa,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:pp,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:qq,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,S,xxxx
else PC+1⇒PC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13on page
12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip registers]
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BSSET Branch to Subroutine if Bit Set BSSET
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
BSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 1 b b b b b

PC-Relative Displacement
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BTST Bit Test BTST

Instruction Fields

Description Test the nth bit of the destination operand D. The state of the nth bit is stored
in the Carry bit (C) of the CCR. The bit to test is selected by an immediate bit numb
from 0–23. BTST is useful for performing serial-to-parallel conversion with appropria
rotate instructions. This instruction can use all memory alterable addressing modes.

Condition Codes

Operation Assembler Syntax

D[n] → C BTST #n,[XorY]:ea

D[n] → C BTST #n,[XorY]:aa

D[n] → C BTST #n,[XorY]:pp

D[n] → C BTST #n,[XorY]:qq

D[n] → C BTST #n,D

{#n} bbbb Bit number [0 – 23]

SeeTable 12-13on
page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip registers]

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C Set if bit tested is set, and cleared otherwise.
Changed according to the standard definition.

— Unchanged by the instruction.
SP—Stack Pointer

For destination operand SSH:SP, decrement the SP by 1.
For other destination operands, the SPis not affected.
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BTST Bit Test BTST
Instruction Formats and opcodes

23 16 15 8 7 0
BTST #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0
BTST #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0
BTST #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0
BTST #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0
BTST #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 0 b b b b
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CLB Count Leading Bits CLB

Instruction Fields

Description Count leading 0s or 1s according to Bit 55 of the source accumulator. S
bits 55–0 of the source accumulator starting from Bit 55. The MSP of the destination
accumulator is loaded with nine minus the number of consecutive leading 1s or 0s f
The result is a signed integer in MSP whose range of possible values is from +8 to –
This is a 56-bit operation. The LSP of the destination accumulator D is filled with 0s. T
EXP of the destination accumulator D is sign-extended.

Note:

1. If the source accumulator is all 0s, the result is 0.

2. In Sixteen-Bit Arithmetic mode, the count ignores the unused 8 Least Signific
Bits of the MSP and LSP of the source accumulator. Therefore, the result is a
signed integer whose range of possible values is from +8 to –31.

3. CLB can be used in conjunction with NORMF instruction to specify the shift
direction and amount needed for normalization.

Condition Codes

Operation Assembler Syntax

If S[39] = 0 then
9 – (Number of consecutive leading zeros in S[55:0]) → D[47:24]

CLB S,D

else
 9 – (Number of consecutive leading ones in S[55:0]) → D[47:24]

{D} D Destination accumulator [A,B]
SeeTable 12-13on page 12-22

{S} S Source accumulator [A,B]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N Set if bit 47 of the result is set, and cleared otherwise.
* Z Set if bits 47–24 of the result are all 0.
* V Always cleared.

— Unchanged by the instruction.
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CLB Count Leading Bits CLB
Example

Instruction Formats and opcode

23 16 15 8 7 0
CLB S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 S D

CLB B,A

5 Leading ones

Result in A is 9 - 5 = 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

4
4
7

2

1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

0

B

A

1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0
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CLR Clear Accumulator CLR

Instruction Fields

Description Clear the destination accumulator. This is a 56-bit clear instruction.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

0 → D (parallel move) CLR D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ * * * * * —

CCR

* E Always cleared.
* U Always set.
* N Always cleared.
* Z Always set.
* V Always cleared.
* √ Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0
CLR D Data Bus Move Field 0 0 0 1 d 0 1 1

Optional Effective Address Extension
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CMP Compare CMP

Instruction Fields

Description Subtract the source one operand from the source two accumulator, S2, a
update the CCR. The result of the subtraction operation is not stored. The source on
operand can be a register (24-bit word or 56-bit accumulator), 6-bit short immediate
24-bit long immediate. When using 6-bit immediate data, the data is interpreted as a
unsigned integer. That is, the six bits will be right-aligned and the remaining bits will
zeroed to form a 24-bit source operand.

This instruction subtracts 56-bit operands. When a word is specified as the source o
operand, it is sign-extended and zero-filled to form a valid 56-bit operand. For the car
be set correctly as a result of the subtraction, S2 must be properly sign-extended. S
be improperly sign-extended by writing A1 or B1 explicitly prior to executing the
compare so that A2 or B2, respectively, may not represent the correct sign extension
particularly applies to the case where it is extended to compare 24-bit operands, su
X0 with A1.

Condition Codes

Operation Assembler Syntax

S2 – S1 (parallel move) CMP S1, S2 (parallel move)

S2 – #xx CMP #xx, S2

S2 – #xxxxxx CMP #xxxxxx, S2

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (seeTable 12-16on page
12-24)

{S2} d Source two accumulator [A/B] (seeTable 12-13on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
13-46 DSP56300 Family Manual Motorola



CMP Compare CMP
Instruction Formats and opcodes

23 16 15 8 7 0
CMP S1, S2 Data Bus Move Field 0 J J J d 1 0 1

Optional Effective Address Extension

23 16 15 8 7 0
CMP #xx, S2 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 1

23 16 15 8 7 0
CMP #xxxx,S2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 1

Immediate Data Extension
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CMPM Compare Magnitude CMPM

Instruction Fields

Description Subtract the absolute value (magnitude) of the source one operand, S1,
the absolute value of the source two accumulator, S2, and update the CCR. The res
the subtraction operation is not stored. Note that this instruction subtracts 56-bit oper
When a word is specified as S1, it is sign-extended and zero-filled to form a valid 56
operand. For the carry to be set correctly as a result of the subtraction, S2 must be pro
sign-extended. S2 can be improperly sign-extended by writing A1 or B1 explicitly prio
executing the compare so that A2 or B2, respectively, may not represent the correc
extension. This applies especially when it is extended to compare 24-bit operands, su
X0 with A1.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

|S2| – |S1| (parallel move) CMPM S1, S2 (parallel move)

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (seeTable 12-16on page
12-24)

{S2} d Source two accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

23 16 15 8 7 0
CMPM S1, S2 Data Bus Move Field 0 J J J d 1 1 1

Optional Effective Address Extension
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CMPU Compare Unsigned CMPU

Instruction Fields

Description Subtract the source one operand, S1, from the source two accumulator, 
and update the CCR. The result of the subtraction operation is not stored. Note that
instruction subtracts a 24- or 48-bit unsigned operand from a 48-bit unsigned opera
When a 24-bit word is specified as S1, it is aligned to the left and zero-filled to form 
valid 48-bit operand. If an accumulator is specified as an operand, the value in the E
does not affect the operation.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S2 – S1 CMPU S1, S2

{S1} ggg Source one register [A,B,X0,Y0,X1,Y1] SeeTable 12-13on page
12-22{S2} d Source two accumulator [A,B]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — √ * * √

CCR

* V Always cleared.
* Z Set if bits 47–0 of the result are 0.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
CMPU S1, S2 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 g g g d
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DEBUG Enter Debug Mode DEBUG

Instruction Fields None

Description Enter the Debug mode and wait for OnCE commands.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

Enter the Debug mode DEBUG

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
DEBUG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
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DEBUGcc DEBUGcc
Enter Debug Mode Conditionally

Instruction Fields

Description If the specified condition is true, enter the Debug mode and wait for OnC
commands. If the specified condition is false, continue with the next instruction. The
conditions that the term “cc” can specify are listed onTable 12-18on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then enter the Debug mode DEBUGcc

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
DEBUGcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 C C C C
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DEC Decrement by One DEC

Instruction Fields

Description Decrement by one the specified operand and store the result in the destin
accumulator. One is subtracted from the LSB of D.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

D – 1 → D DEC D

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
DEC D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 d
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DIV Divide Iteration DIV

Instruction Fields

Description Divide the destination operand D by the source operand S and store the r
in the destination accumulator D. The 48-bit dividend must be a positive fraction tha
sign-extended to 56 bits and stored in the full 56-bit destination accumulator D. The 2
divisor is a signed fraction stored in the source operand S. Each DIV iteration calcul
one quotient bit using a nonrestoring fractional division algorithm. After the first DIV
instruction executes, the destination operand holds both the partial remainder and th
formed quotient. The partial remainder occupies the high-order portion of the destin
accumulator D and is a signed fraction. The formed quotient occupies the low-order
portion of the destination accumulator D (A0 or B0) and is a positive fraction. One b
the formed quotient is shifted into the LSB of the destination accumulator at the star
each DIV iteration. The formed quotient is the true quotient if the true quotient is posit
If the true quotient is negative, the formed quotient must be negated. Valid results a
obtained only when |D| < |S| and the operands are interpreted as fractions. This con
ensures that the magnitude of the quotient is less than 1 (i.e., a fractional quotient) a
precludes division by 0.

DIV calculates one quotient bit based on the divisor and the previous partial remain
To produce an N-bit quotient, the DIV instruction executes N times, where N is the
number of bits of precision desired in the quotient, 1≤ N ≤ 24. Thus, for a full-precision
(24-bit) quotient, sixteen DIV iterations are required. In general, executing the DIV
instruction N times produces an N-bit quotient and a 48-bit remainder that has (48 –
bits of precision and whose N MSBs are 0s. The partial remainder is not a true rema
and must be corrected due to the nonrestoring nature of the division algorithm befor
can be used. Therefore, once the divide is complete, it is necessary to reverse the las
operation and restore the remainder to obtain the true remainder.

Operation Assembler Syntax

IF D[39]⊕S[15] = 1 DIV S,D

then 2 ∗ D + C + S → D

else 2 ∗ D + C – S → D

where⊕ denotes the logical exclusive OR operator.

{S} JJ Source input register [X0,X1,Y0,Y1]
SeeTable 12-13on page 12-22

{D} d Destination accumulator [A,B]
Motorola Instruction Set 13-53
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DIV Divide Iteration DIV

DIV uses a nonrestoring fractional division algorithm that consists of the following
operations:

1. Compare the source and destination operand sign bits: An exclusive OR
operation is performed on Bit 55 of the destination operand D and Bit 23 of th
source operand S.

2. Shift the partial remainder and the quotient: The 39-bit destination accumulator
D is shifted one bit to the left. The Carry bit (C) is moved into the LSB (Bit 0) o
the accumulator.

3. Calculate the next quotient bit and the new partial remainder: The 24-bit
source operand S (signed divisor) is either added to or subtracted from the M
Significant Portion (MSP) of the destination accumulator (A1 or B1), and the re
is stored back into the MSP of that destination accumulator. If the result of the
exclusive OR operation previously described was 1 (i.e., the sign bits were
different), the source operand S is added to the accumulator. If the result of th
exclusive OR operation was 0 (i.e., the sign bits were the same), the source op
S is subtracted from the accumulator. Because of the automatic sign extensio
the 24-bit signed divisor, the addition or subtraction operation correctly sets th
bit with the next quotient bit.

For extended precision division (e.g., N-bit quotients where N > 24), the DIV instruc
is no longer applicable, and a user-defined N-bit division routine is required. For mo
information on division algorithms, see pages 524–530 ofTheory and Application of
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190–199 
Computer Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages
213–223 ofComputer Arithmetic: Principles, Architecture, and Design by Kai Hwang
(John Wiley and Sons, 1979), or other references as required.
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DIV Divide Iteration DIV
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— * — — — — * *

CCR

* L Set if the Overflow bit (V) is set.
* V Set if the MSB of the destination operand is changed as a result of the

instruction’s left shift operation.
* C Set if Bit 55 of the result is cleared.
— Unchanged by the instruction

23 16 15 8 7 0
DIV S,D 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0
Motorola Instruction Set 13-55
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DMAC DMAC
Double-Precision Multiply-Accumulate With Right Shift

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D, which has been previo
shifted 24 bits to the right. The multiplication can be performed on signed numbers (
unsigned numbers (uu), or mixed (unsigned∗ signed, (su)). The “–” sign option is used to
negate the specified product prior to accumulation. The default sign option is “+”. Th
instruction is optimized for multi-precision multiplication support.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

[D >> 16] ±S1 ∗ S2 → D
(S1 signed, S2 signed)

DMACss (±)S1,S2,D (no parallel move)

[D >> 16] ±S1 ∗ S2 → D
(S1 signed, S2 unsigned)

DMACsu (±)S1,S2,D (no parallel move)

[D >> 16] ±S1 ∗ S2 → D
(S1 unsigned, S2 unsigned)

DMACuu (±)S1,S2,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1]
(seeTable 12-16on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)
{±±} k Sign [+,–] (seeTable 12-16on page 12-24)
{ss,su,uu} ss [ss,su,uu] (seeTable 12-16on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

DMAC (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 s 1 s d k Q Q Q Q
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DO Start Hardware Loop DO

Instruction Fields

For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter
is the value of the Stack Pointer (SP) before the DO instruction executes, increment
1. Thus, if SP = 3, the execution of the DO SP,expr instruction loads the LC with the v
LC = 4. For the DO SSL, expr instruction, the LC is loaded with its previous value, wh
was saved on the stack by the DO instruction itself.

Description Begin a hardware DO loop that is to be repeated the number of times
specified in the instruction’s source operand and whose range of execution is termin
by the destination operand (previously shown as “expr”). No overhead other than th
execution of this DO instruction is required to set up this loop. DO loops can be nes
and the loop count can be passed as a parameter.

Operation Assembler Syntax

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:ea → LC DO [X or Y]:ea,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:aa → LC DO [X or Y]:aa,expr
SP+1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;#xxx → LC DO #xxx,expr
SP+1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;S → LC DO S,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

End of Loop:
SSL(LF) → SR;SP – 1 → SP
SSH → LA;SSL → LC;SP – 1 → SP

{ea} MMMRRR Effective Address

SeeTable 12-13on page
12-22

{X/Y} S Memory Space [X,Y]
{expr} 24-bit Absolute Address in 16-bit

extension word
{aa} aaaaaa Absolute Address [0–63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0–4095]
{S} DDDDDD Source register [all on-chip registers,

except SSH]
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DO Start Hardware Loop DO

During the first instruction cycle, the current contents of the Loop Address (LA) and 
Loop Counter (LC) registers are pushed onto the System Stack. The DO source ope
then loads into the LC register, which contains the remaining number of times the D
loop is to execute and can be accessed from inside the DO loop under certain restric
If the initial value of LC is 0 and the Sixteen-Bit Compatibility mode bit (bit 13, SC, in th
Chip Status Register) is cleared, the DO loop does not execute.If LC initial value is zero
but SC is set, the DO loop executes 65,536 times. All address register indirect addr
modes can be used to generate the effective address of the source operand. If imm
short data is specified, the twelve LSBs of the LC register are loaded with the 12-bit
immediate value, and the twelve MSBs of the LC register are cleared.

During the second instruction cycle, the current contents of the Program Counter (P
register and the Status Register (SR) are pushed onto the System Stack. The stack
the LA, LC, PC, and SR registers is the mechanism that permits the nesting of DO l
The DO destination operand (shown as “expr”) is then loaded into the LA register. T
24-bit operand is located in the instruction’s 24-bit absolute address extension word
shown in the opcode section. The value in the PC register pushed onto the system s
the address of the first instruction following the DO instruction (i.e., the first actual
instruction in the DO loop). This value is read (copied but not pulled) from the top of
system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated
comparison of PC with LA to determine whether the last instruction in the loop has b
fetched. If LA equals PC, the last instruction in the loop has been fetched and the LC
tested. If the LC is not equal to 1, it is decremented by one and SSH is loaded into th
to fetch the first instruction in the loop again. When LC = 1, the “end-of-loop” process
begins.

When a DO loop executes , the instructions are actually fetched each time through 
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When
loops are nested, the end-of-loop addresses must also be nested and are not allowe
equal. The assembler generates an error message when DO loops are improperly n

During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL)
the Stack Pointer is written into the SR, the contents of the LA register are restored 
the upper portion (SSH) of (SP – 1), the contents of LC are restored from the lower
portion (SSL) of (SP – 1), and the Stack Pointer is decremented by two. Instruction fet
continue at the address of the instruction following the last instruction in the DO loop
Note that LF is the only bit in the SR that is restored after a hardware DO loop is ex
13-58 DSP56300 Family Manual Motorola
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Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the
absolute address extension word) by evaluating the end-of-loop expression “e
and subtracting 1. This is done to accommodate the case where the last word
DO loop is a two-word instruction. Thus, the end-of-loop expression “expr” in 
source code must represent the address of the instruction AFTER the last
instruction in the loop.

2. The Loop Flag (LF) is cleared by a hardware reset.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * — — — — — —

CCR

* S Set if the instruction sends A/B accumulator contents to XDB or YDB.
* L Set if data limiting occurred [see Note].
— Unchanged by the instruction.

23 16 15 8 7 0
DO [X or Y]:ea, expr 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

Absolute Address Extension Word

23 16 15 8 7 0
DO [X or Y]:aa, expr 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

Absolute Address Extension Word

23 16 15 8 7 0
DO #xxx, expr 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

Absolute Address Extension Word

23 16 15 8 7 0
DO S, expr 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

Absolute Address Extension Word
Motorola Instruction Set 13-59
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DO FOREVER DO FOREVER
Start Infinite Loop

Instruction Fields

Description Begin a hardware DO loop that is to repeat forever with a range of execu
terminated by the destination operand ( “expr”). No overhead other than the executi
this DO FOREVER instruction is required to set up this loop. DO FOREVER loops c
nest with other types of instructions. During the first instruction cycle, the contents o
Loop Address (LA) and the Loop Counter (LC) registers are pushed onto the system
stack. The LC register is pushed onto the stack but is not updated by this instruction

During the second instruction cycle, the contents of the Program Counter (PC) regis
and the Status Register (SR) are pushed onto the system stack. Stacking the LA, LC
and SR registers permits nesting DO FOREVER loops. The DO FOREVER destina
operand (shown as “expr”) is then loaded into the LA register. This 24-bit operand res
in the instruction’s 24-bit absolute address extension word, as shown in the opcode
section. The value in the PC register pushed onto the system stack is the address o
first instruction following the DO FOREVER instruction (i.e., the first actual instructio
in the DO FOREVER loop). This value is read (copied, but not pulled) from the top of
system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. T
the PC is repeatedly compared with LA to determine whether the last instruction in t
loop has been fetched. When LA equals PC, the last instruction in the loop has bee
fetched and SSH is loaded into the PC to fetch the first instruction in the loop again.
LC register is then decremented by one without being tested. You can use this regis
count the number of loops already executed.

Because the instructions are fetched each time through the DO FOREVER loop, the
can be interrupted. DO FOREVER loops can also be nested. When DO FOREVER 
are nested, the end of loop addresses must also be nested and are not allowed to b
The assembler generates an error message when DO FOREVER loops are improp
nested.

Operation Assembler Syntax

SP + 1 → SP;LA → SSH;LC → SSL DO FOREVER,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF; 1 →FV

None
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DO FOREVER DO FOREVER
Start Infinite Loop

Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the
absolute address extension word) by evaluating the end-of-loop expression “e
and subtracting one. This is done to accommodate the case where the last w
the DO loop is a two-word instruction. Thus, the end-of-loop expression “expr
the source code must represent the address of the instruction AFTER the las
instruction in the loop.

2. The LC register is never tested by the DO FOREVER instruction, and the only w
of terminating the loop process is to use either the ENDDO or BRKcc instructio
LC is decremented every time PC = LA so that it can be used by the programm
keep track of the number of times the DO FOREVER loop has been executed
the programer wants to initialize LC to a particular value before the DO
FOREVER, care should be taken to save it before if the DO loop is nested. If 
LC should also be restored immediately after exiting the nested DO FOREVE
loop.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
DO FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

Absolute Address Extension Word
Motorola Instruction Set 13-61
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DOR Start PC-Relative Hardware Loop DOR

Instruction Fields

Description Initiates the beginning of a PC-relative hardware program loop. The loop
address (LA) and loop counter (LC) values are pushed onto the system stack. With p
system stack management, this allows unlimited nested hardware DO loops. The P
SR are pushed onto the system stack. The PC is added to the 24-bit address displa
extension word and the resulting address is loaded into the loop address register (LA
effective address specifies the address of the loop count that is loaded into the loop
counter (LC). The DO loop executes LC times. If the LC initial value is zero and the
16-Bit Compatibility mode bit (bit 13, SC, in the Status Register) is cleared, the DO 
is not executed. If LC initial value is zero but SC is set, the DO loop executes 65,53
times. All address register indirect addressing modes (less Long Displacement) can
used. Register Direct addressing mode can also be used. If immediate short data is
specified, the LC is loaded with the zero extended 12-bit immediate data.

During hardware loop operation, each instruction is fetched each time through the
program loop. Therefore, instructions executing in a hardware loop are interruptible 
can be nested. The value of the PC pushed onto the system stack is the location of th

Operation Assembler Syntax

SP+1 fi SP;LA fi SSH;LC fi SSL;[X or Y]:ea fi LC DOR [Xor Y]:ea,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

SP+1 fi SP;LA fi SSH;LC fi SSL;[X or Y]:ea fi LC DOR [Xor Y]:aa,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

SP+1 fi SP;LA fi SSH;LC fi SSL;#xxx fi LC DOR #xxx,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

SP+1 fi SP;LA fi SSH;LC fi SSL;S fi LC DOR S,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

{ea} MMMRRR Effective Address (seeTable 12-13on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13on page 12-22)
{label} 24-bit Address Displacement in 24-bit extension word
{aa} aaaaaa Absolute Address [0-63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0-4095]
{S} DDDDDD Source register [all on-chip registersexcept SSH] (seeTable 12-13

on page 12-22)
13-62 DSP56300 Family Manual Motorola
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DOR Start PC-Relative Hardware Loop DOR

instruction after the DOR instruction. This value is read from the top of the system s
to return to the start of the program loop. When DOR instructions are nested, the en
loop addresses must also be nested and are not allowed to be equal.

The assembler calculates the end of loop address LA (PC-relative address extension
xxxx) by evaluating the end of loop expression and subtracting one. Thus, the end o
loop expression in the source code represents the “next address” after the end of the
If a simple end of loop address label is used, it should be placed after the last instructi
the loop.

Since the end of loop comparison occurs at fetch time ahead of the end of loop execu
instructions that change program flow or the system stack cannot be used near the 
the loop without some restrictions. Proper hardware loop operation is guaranteed if 
instruction starting at address LA-2, LA-1 or LA specifies the program controller regis
SR, SP, SSL, LA, LC or (implicitly) PC as a destination register; or specifies SSH as
source or destination register. Also, SSH cannot be specified as a source register in
DOR instruction itself. The assembler generates a warning if the restricted instruction
found within their restricted boundaries.

Implementation Notes

DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP befor
DOR instruction incremented by one.

DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the D
instruction itself.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * — — — — — —

CCR

* S Set if the instruction sends A/B accumulator contents to XDB or YDB.
* L Set if data limiting occurred

— Unchanged by the instruction
Motorola Instruction Set 13-63



DOR Start PC-Relative Hardware Loop DOR
Instruction Formats and opcodes

23 16 15 8 7 0
DOR [X or Y]:ea,label 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 1 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
DOR [X or Y]:aa,label 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 1 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
DOR #xxx, label 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 1 h h h h

PC-Relative Displacement

23 16 15 8 7 0
DOR S, label 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 1 0 0 0 0

PC-Relative Displacement
13-64 DSP56300 Family Manual Motorola
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DOR FOREVER DOR FOREVER
Start PC-Relative Infinite Loops

Instruction Fields None.

Description Begin a hardware DO loop that is to repeat forever with a range of execu
terminated by the destination operand (“label”). No overhead other than the executio
this DOR FOREVER instruction is required to set up this loop. DOR FOREVER loop
can be nested. During the first instruction cycle, the contents of the Loop Address (L
and the Loop Counter (LC) registers are pushed onto the system stack. The loop co
(LC) register is pushed onto the stack but is not updated.

During the second instruction cycle, the contents of the Program Counter (PC) regis
and the Status Register (SR) are pushed onto the system stack. Stacking the LA, LC
and SR registers permits nesting DOR FOREVER loops. The DOR FOREVER
destination operand (shown as label) is then loaded into the Loop Address (LA) reg
after it is added to the PC. This 24-bit operand resides in the instruction’s 24-bit rela
address extension word as shown in the opcode section. The value in the Program C
(PC) register pushed onto the system stack is the address of the first instruction follo
the DOR FOREVER instruction (i.e., the first actual instruction in the DOR FOREVE
loop). This value is read (i.e., copied but not pulled) from the top of the system stack
return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. A
result, the PC is repeatedly compared with LA to determine whether the last instructio
the loop has been fetched. If LA equals PC, the last instruction in the loop has been
fetched and SSH is read (i.e copied but not pulled) into the PC to fetch the first instruc
in the loop again. The loop counter (LC) register is then decremented by one withou
being tested. You can use this register to count the number of loops already execut

When a DOR FOREVER loop executes, the instructions are fetched each time throug
loop. Therefore, a DOR FOREVER loop can be interrupted. DOR FOREVER loops 
also be nested. When DOR FOREVER loops are nested, the end of loop addresses
also be nested and cannot be equal. The assembler generates an error message wh
FOREVER loops are improperly nested.

Operation Assembler Syntax

SP+1 fi SP;LA fi SSH;LC fi SSL DOR FOREVER,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF; 1 fiFV
Motorola Instruction Set 13-65
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DOR FOREVER DOR FOREVER
Start PC-Relative Infinite Loops

Note: The assembler calculates the end of loop address LA (PC-relative address
extension word xxxx) by evaluating the end of loop expression and subtrac
one. Thus the end of loop expression in the source code represents the “n
address” after the end of the loop. If a simple end of loop address label is 
it should be placed after the last instruction in the loop.

The DOR FOREVER instruction never tests the loop counter (LC) register . The only
to terminate the loop process is to use either the ENDDO or BRKcc instruction. LC i
decremented every time PC=LA, so you can use it to keep track of the number of time
DOR FOREVER loop has executed. If you want to initialize LC to a particular value
before the DOR FOREVER, take care to save it before if the DO loop is nested. If so
should also be restored immediately after exiting the nested DOR FOREVER loop.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
DOR FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

PC-Relative Displacement
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ENDDO End Current DO Loop ENDDO

Instruction Fields

Description Terminate the current hardware DO loop before the current Loop Counte
(LC) equals one. If the value of the current DO LC is needed, it must be read before
execution of the ENDDO instruction. Initially, the Loop Flag (LF) is restored from the
system stack and the remaining portion of the Status Register (SR) and the Program
Counter (PC) are purged from the system stack. The Loop Address (LA) and the LC
registers are then restored from the system stack.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

SSL(LF) → SR;SP – 1 → SP ENDDO
SSH → LA; SSL → LC;SP – 1 → SP

None

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
ENDDO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
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Instruction Fields

Description Logically exclusive OR the source operand S with bits 47:24 of the
destination operand D and store the result in bits 47–24 of the destination accumula
The source can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. 
instruction is a 24-bit operation. The remaining bits of the destination operand D are
affected. When 6-bit immediate datais used, the data is interpreted as an unsigned in
That is, the 6 bits are right-aligned, and the remaining bits are zeroed to form a 24-b
source operand.

Condition Codes

Operation Assembler Syntax

S ⊕ D[47:24] → D[47:24] (parallel move) EOR S,D (parallel move)

#xx ⊕ D[47:24] → D[47:24] EOR #xx,D

#xxxx ⊕ D[47:24] → D[47:24] EOR #xxxx,D

where⊕ denotes the logical XOR operator.

{S} JJ Source register [X0,X1,Y0,Y1]

SeeTable 12-13on page
12-22

{D} d Destination accumulator [A/B]
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension

word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
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EOR Logical Exclusive OR EOR
Instruction Formats and opcodes

23 16 15 8 7 0
EOR S,D Data Bus Move Field 0 1 J J d 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0
EOR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 1

23 16 15 8 7 0
EOR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 1

Immediate Data Extension
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EXTRACT Extract Bit Field EXTRACT

Instruction Fields

Description Extract a bit-field from source accumulator S2. The bit-field width is
specified by bits 17–12 in the S1 register or in the immediate control word #CO. The
offset from the Least Significant Bit is specified by bits 5–0 in the S1 register or in th
immediate control word #CO. The extracted field is placed into destination accumula
D, aligned to the right. The control register can be constructed by the MERGE instruc
EXTRACT is a 56-bit operation. Bits outside the field are filled with sign extension
according to the Most Significant Bit of the extracted bit field.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the cont
register and the width field is located in bits 21-16 of the control register. Thes
fields corresponds to the definition of the fields in the MERGE instruction.

2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result w
be undefined.

3. If offset + width exceeds the value of 56, the result is undefined.

Operation Assembler Syntax

Offset = S1[5:0] EXTRACT S1,S2,D
Width = S1[17:12]

S2[(offset + width – 1):offset] → D[(width – 1):0]
S2[offset + width – 1] → D[39:width] (sign extension)

Offset = #CO[5:0]
Width = #CO[17:12]

EXTRACT #CO,S2,D

S2[(offset + width – 1):offset] → D[(width – 1):0]
S2[offset + width – 1] → D[39:width] (sign extension)

{S2} s Source accumulator [A,B]
SeeTable 12-13on page
12-22

{D} D Destination accumulator [A,B]
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1]
{#CO} Control word extension.
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EXTRACT Extract Bit Field EXTRACT
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
EXTRACT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 s S S S D

23 16 15 8 7 0
EXTRACT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 s 0 0 0 D

Control Word Extension

EXTRACT B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11Width = 5

x x x x x x x x 1 0 1 0 1 x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x

4
7 0

A1 A0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4
7 0

A1 A0

11 1 1 1 1 1 1 1

x x x x x x x x

5
5

5
5

5
1

1
1
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EXTRACTU EXTRACTU
Extract Unsigned Bit Field

Instruction Fields

Description Extract an unsigned bit-field from source accumulator S2. The bit-field wid
is specified by bits 17–12 in the S1 register or in the immediate control word #CO. T
offset from the LSB is specified by bits 5–0 in the S1 register or in the immediate co
word #CO. The extracted field is placed into destination accumulator D, aligned to th
right. The control register can be consructed using the MERGE instruction. EXTRAC
is a 56-bit operation. Bits outside the field are filled with 0s.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the cont
register and the width field is located in bits 21-16 of the control register. Thes
fields correspond to the definition of the fields in the MERGE instruction.

2. If offset + width exceeds the value of 56, the result is undefined.

Operation Assembler Syntax

Offset = S1[5:0] EXTRACTU S1,S2,D
Width = S1[17:12]

S2[(offset + width – 1):offset] → D[(width – 1):0]
zero → D[55:width]

Offset = #CO[5:0] EXTRACTU #CO,S2,D
Width = #CO[17:12]

S2[(offset + width – 1):offset] → D[(width – 1):0]
zero fi D[39:width]

{S2} s Source accumulator [A,B]
SeeTable 12-13on page
12-22

{D} D Destination accumulator [A,B]
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1]
{#CO} Control word extension
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EXTRACTU EXTRACTU
Extract Unsigned Bit Field

Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
EXTRACTU S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 s S S S D

23 16 15 8 7 0
EXTRACTU #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 s 0 0 0 D

Control Word Extension

EXTRACTU B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11width = 7

x x x x x x 1 1 1 0 1 0 1 x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x

4
7 0

A

A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4
7 0

A

A1 A0

00 0 0 0 0 0 0 0

x x x x x x x x

5
5

5
5
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IFcc Execute Conditionally Without CCR Update IFcc

Instruction Fields

Description If the specified condition is true, execute and store result of the specified D
ALU operation. If the specified condition is false, no destination is altered. The CCR
never updated with the condition codes generated by the Data ALU operation. The
instructions that can conditionally be executed using IFcc are the parallel arithmetic
logical instructions. SeeTable 12-4on page 12-7 andTable 12-5on page 12-9 for a list
of those instructions. The conditions specified by “cc” are listed inTable 12-18on page
12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
If cc, then opcode operation opcode-Operands IFcc

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
IFcc 0 0 1 0 0 0 0 0 0 0 1 0 C C C C Instruction opcode
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IFcc.U Execute Conditionally With CCR Update IFcc.U

Instruction Fields

If the specified condition is true, execute and store result of the specified Data ALU
operation and update the CCR with the status information generated by the Data AL
operation. If the specified condition is false, no destination is altered and the CCR is
affected. The instructions that can conditionally be executed using IFcc.U are the pa
arithmetic and logical instructions. SeeTable 12-4on page 12-7 andTable 12-5on page
12-9 for a list of these instructions. The conditions specified by “cc” are listed on
Table 12-18on page 12-28

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
If cc, then opcode operation opcode-Operands IFcc

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

* If the specified condition is true, changes are made according to the
instruction. Otherwise, it is not changed.

23 16 15 8 7 0
IFcc.U 0 0 1 0 0 0 0 0 0 0 1 1 C C C C Instruction opcode
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ILLEGAL Illegal Instruction Interrupt ILLEGAL

Instruction Fields

None

Description The ILLEGAL instruction executes as if it were a NOP instruction. Norma
instruction execution is suspended and illegal instruction exception processing is initi
The interrupt vector address is located at address P:$3E. The Interrupt Priority Leve
I0) is set to 3 in the Status Register if a long interrupt service routine is used. The pur
of the ILLEGAL instruction is to force the DSP into an illegal instruction exception fo
test purposes. Exiting an illegal instruction is a fatal error. A long exception routine sho
be used to indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is bein
interrupted, then LC is decremented twice due to the same mechanism that causes
be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP, a
other instructions at LA are restricted. Restrictions cannot be imposed on illegal
instructions. Since REP is uninterruptable, repeating an ILLEGAL instruction results
the interrupt not being initiated until after the REP completes. After the interrupt is
serviced, program control returns to the address of the second word following the
ILLEGAL instruction. Of course, the ILLEGAL interrupt service routine should abort
further processing, and the processor should be reinitialized.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
Begin Illegal Instruction exception processing ILLEGAL

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
ILLEGAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
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tion
INC Increment by One INC

Instruction Fields

Description Increment by one the specified operand and store the result in the destina
accumulator. One is added from the LSB of D.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

D + 1 → D INC D

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
INC D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 d
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INSERT Insert Bit Field INSERT

Instruction Fields

Description Insert a bit-field into the destination accumulator D. The bit-field whose
width is specified by bits 17–12 in S1 register begins at the LSB of the S2 register. T
bit-field is inserted in the destination accumulator D, with an offset according to bits 
in the S1 register. The S1 operand can be an immediate control word #CO. The wid
specified by S1 should not exceed a value of 24. The construction of the control reg
can be done by using the MERGE instruction. This is a 56-bit operation. Any bits out
the field remain unchanged.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the cont
register and the width field is located in bits 21-16 of the control register. Thes
fields corresponds to the definition of the fields in the MERGE instruction. Wid
specified by S1 should not exceed a value of 16.

2. In Sixteen-Bit Arithmetic mode, the offset value, located in the offset field, shou
be the needed offset you pre-incremented by a bias of 16.

3. If offset + width > 56, the result is undefined.

Operation Assembler Syntax

Offset = S1[5:0]
Width = S1[17:12]

INSERT S1,S2,D

S2[(width – 1):0] → D[(offset + width – 1):offset]

Offset = #CO[5:0]
Width = #CO[17:12]

INSERT #CO,S2,D

S2[(width-1):0] → D[(offset + width – 1):offset]

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-16

on page 12-24)
{S2} qqq Source register [X0,X1,Y0,Y1,A0,B0] (seeTable 12-16

on page 12-24)
{#CO} Control word extension
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INSERT Insert Bit Field INSERT
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
INSERT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 q q q S S S D

23 16 15 8 7 0
INSERT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 q q q 0 0 0 D

Control Word Extension

INSERT B1,X0,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

4
7

2
4

Offset =10width = 5

x x x x x x x x x x x x x x x x x x x 1 0 0 1 0

4
4
7

X0

2

x x x x x x x x x 1 0 0 1 0 x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x

4
7 0

A

A1 A0

x x x x x x x x
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Jcc Jump Conditionally Jcc

Instruction Fields

Description Jump to the location in program memory given by the instruction’s effect
address if the specified condition is true. If the specified condition is false, the Progr
Counter (PC) is incremented and the effective address is ignored. However, the add
register specified in the effective address field is always updated independently of th
specified condition. All memory-alterable addressing modes can be used for the effe
address. A Fast Short Jump addressing mode can also be used. The 12-bit data is
zero-extended to form the effective address. The conditions specified by “cc” are liste
Table 12-18 on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then 0xxx → PC Jcc xxx
else PC + 1 → PC

If cc, then ea → PC Jcc ea
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
Jcc xxx 0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0
Jcc ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

Optional Effective Address Extension
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JCLR Jump if Bit Clear JCLR

Instruction Fields

Description Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit t
be tested is selected by an immediate bit number from 0–23. If the specified memory
not clear, the Program Counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective ad
field is always updated independently of the state of the nth bit. All address register
indirect addressing modes can reference the source operand S. Absolute Short and
Short addressing modes can also be used.

Operation Assembler Syntax

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:ea,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y],aa,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:pp,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:qq,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,S,xxxx
else PC + 1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (seeTable 12-13

on page 12-22)
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JCLR Jump if Bit Clear JCLR
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 0 b b b b

Absolute Address Extension
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JMP Jump JMP

Instruction Fields

Description Jump to the location in program memory given by the instruction’s effecti
address. All memory-alterable addressing modes can be used for the effective addr
Fast Short Jump addressing mode can also be used. The 12-bit data is zero-extend
form the effective address.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

0xxx → Pc JMP xxx

ea → Pc JMP ea

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
JMP ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0
JMP xxx 0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a
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JScc Jump to Subroutine Conditionally JScc

Instruction Fields

Description Jump to the subroutine whose location in program memory is given by t
instruction’s effective address if the specified condition is true. If the specified condi
is true, the address of the instruction immediately following the JScc instruction (PC)
the SR are pushed onto the system stack. Program execution then continues at the
specified effective address in program memory. If the specified condition is false, th
is incremented, and any extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the speci
condition. All memory-alterable addressing modes can be used for the effective add
A fast short jump addressing mode can also be used. The 12-bit data is zero-extend
form the effective address. The conditions specified by “cc” are listed onTable 12-18
on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;0xxx → PC JScc xxx
else PC + 1 → PC

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;ea → PC JScc ea
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
JScc xxx 0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0
JScc ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

Optional Effective Address Extension
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JSCLR Jump to Subroutine if Bit Clear JSCLR

Instruction Fields

Description Jump to the subroutine at the 24-bit absolute address in program memo
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
clear. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of source operand S is clear, the address of the instruction immediately following th
JSCLR instruction (PC) and the SR are pushed onto the system stack. Program exe
then continues at the specified absolute address in the instruction’s 24-bit extension
If the specified memory bit is not clear, the PC is incremented and the extension wo
ignored. However, the address register specified in the effective address field is alw
updated independently of the state of the nth bit. All address register indirect addressing
modes can reference the source operand S. Absolute short and I/O short addressing
can also be used.

Operation Assembler Syntax

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:qq,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx fiPC

JSCLR #n,S,xxxx

else PC + 1 → PC

{#n} bbbb Bit number [0–23]

SeeTable 12-13
on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers]
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JSCLR Jump to Subroutine if Bit Clear JSCLR
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 0 b b b b

Absolute Address Extension
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JSET Jump if Bit Set JSET

Instruction Fields

Description Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit t
be tested is selected by an immediate bit number from 0–23. If the specified memory
not set, the Program Counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective ad
field is always updated independently of the state of the nth bit. All address register
indirect addressing modes can be used to reference the source operand S. Absolut
and I/O short addressing modes can also be used.

Operation Assembler Syntax

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:ea,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y],aa,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:pp,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:qq,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,S,xxxx
else PC  +  1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{xxxx} 24-bit Absolute Address in extension word
{aa} aaaaaa Absolute Address [0 – 63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (seeTable 12-13

on page 12-22)
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JSET Jump if Bit Set JSET
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 0 b b b b

Absolute Address Extension
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JSR Jump to Subroutine JSR

Instruction Fields

Description Jump to the subroutine whose location in program memory is given by t
instruction’s effective address. The address of the instruction immediately following 
JSR instruction (PC) and the system Status Register (SR) is pushed onto the system
Program execution then continues at the specified effective address in program me
All memory-alterable addressing modes can be used for the effective address. A fast
jump addressing mode can also be used. The 12-bit data is zero-extended to form t
effective address.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

SP  +  1 → SP; PC → SSH; SR → SSL; 0xxx → PC JSR xxx

SP  +  1 → SP; PC → SSH; SR → SSL; ea → PC JSR ea

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
JSR ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0
JSR xxx 0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a
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JSSET Jump to Subroutine if Bit Set JSSET

Instruction Fields

Description Jump to the subroutine at the 24-bit absolute address in program memo
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
set. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit of
the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system Status Register (SR) are pushed onto the s
stack. Program execution then continues at the specified absolute address in the
instruction’s 24-bit extension word. If the specified memory bit is not set, the Progra
Counter (PC) is incremented, and the extension word is ignored. However, the addr
register specified in the effective address field is always updated independently of th

Operation Assembler Syntax

If S{n} = 1 then SP  +  1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:qq,xxxx

else PC  +  1 → PC

If S{n}=1 then SP  +  1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,S,xxxx

else PC  +  1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{xxxx} 24-bit PC absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (seeTable 12-13

on page 12-22)
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JSSET Jump to Subroutine if Bit Set JSSET

state of the nth bit. All address register indirect addressing modes can be used to refer
the source operand S. Absolute short and I/O short addressing modes can also be u

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 1 0 b b b b

Absolute Address Extension
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LRA Load PC-Relative Address LRA

Instruction Fields

Description The PC is added to the specified displacement and the result is stored i
destination D. The displacement is a two’s-complement 24-bit integer that represen
relative distance from the current PC to the destination PC. Long Displacement and
Address Register PC-Relative addressing modes can be used. Note that if D is SSH
SP is pre-incremented by one.

Condition Codes

Instruction Formats and opcode

Operation Assembler Syntax

PC + Rn → D LRA Rn,D

PC + xxxx → D LRA xxxx,D

{Rn} RRR Address register [R0–R7]
{D} ddddd Destination address register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-16 on page 12-24)

{xxxx} 24-bit PC Long Displacement

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
LRA Rn,D 0 0 0 0 0 1 0 0 1 1 0 0 0 R R R 0 0 0 d d d d d

23 16 15 8 7 0
LRA xxxx,D 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 d d d d d

Long Displacement
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LSL Logical Shift Left LSL
Operation

Assembler Syntax

LSL D (parallel move)
LSL #ii,D
LSL S,D

Instruction Fields

Description

■ Single-bit shift: Logically shift Bits 47–24 of the destination operand D one bit
the left and store the result in the destination accumulator. Prior to instruction
execution, Bit 47 of D is shifted into the carry bit C, and a 0 isshifted into Bit 24 of
the destination accumulator D.

■ Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are
shifted left #ii bits. Bits shifted out of position 47 are lost, except for the last bit th
is latched in the Carry bit. Zeros are supplied to the vacated positions on the 
The result is placed into bits 47–24 of the destination accumulator D. The num
of bits to shift is determined by the 5-bit immediate field in the instruction, or b
the unsigned integer located in the control register S. If a zero shift count is
specified, the carry bit is cleared.

This is a 24-bit operation. The remaining bits of the destination accumulator are not
affected. The number of shifts should not exceed the value of 24.

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-13

on page 12-22)
{#ii} iiiii 5-bit unsigned integer [0–16] denoting the shift amount

0

16C 31
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LSL Logical Shift Left LSL
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if Bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
* C Set if the last bit shifted out of the operand is set, cleared for a shift count of

0, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 8 7 0
LSL D Data Bus Move Field 0 0 1 1 D 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0
LSL #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 i i i i i D

23 16 15 8 7 0
LSL S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 s s s D

LSL #7, A

A1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

A1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

4
4
7

2
Shift left 7

0
C
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LSR Logical Shift Right LSR
Operation

Assembler Syntax

LSR D (parallel move)
LSR #ii,D
LSR S,D

Instruction Fields

Description

■ Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit 
the right and store the result in the destination accumulator. Prior to instructio
execution, Bit 24 of D is shifted into the Carry bit (C), and a 0 is shifted into Bit 4
of the destination accumulator D.

■ Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are
shifted right #ii bits. Bits shifted out of position 16 are lost except for the last b
that is latched in the C bit. Zeroes are supplied to the vacated positions on the
The result is placed into bits 47–24 of the destination accumulator D. The num
of bits to shift is determined by the 5-bit immediate field in the instruction, or b
the unsigned integer located in the control register S. If a zero shift count is
specified, the C bit is cleared.

This is a 24-bit operation. The remaining bits of the destination register are not affec
The number of shifts should not exceed the value of 24.

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-13

on page 12-22)
{#ii} iiiii 5-bit unsigned integer [0–23] denoting the shift amount

0

24

C

47
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LSR Logical Shift Right LSR
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if Bit 47 of the result is set.
* Z Set if Bits 47–24 of the result are 0.
* V Always cleared.
* C Set if the last bit shifted out of the operand is set, cleared for a shift count o

zero, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 8 7 0
LSR D Data Bus Move Field 0 0 1 0 D 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0
LSR #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 i i i i i D

23 16 15 8 7 0
LSR S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 s s s D

LSR X0,B

B1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

B1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

x x x x x x x x x x x x x x x x x x x 0 0 0 1 1

0
2
3

SH field

X0

1

c

Shift right 3
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LUA Load Updated Address LUA

Instruction Fields

Note: RRR refers to a source address register (R0–R7), while dddd/ddddd refer 
destination address register (R0–R7 or N0–N7).

Description Load the updated address into the destination address register D. The s
address register and the update mode used to compute the updated address are spec
the effective address (ea). Only the following addressing modes can be used: Post 
Post – N, Post + 1, Post – 1. Note that the source address register specified in the eff
address is not updated. This is the only case where an address register is not upda
although stated otherwise in the effective address mode bits.

Condition Codes

Operation Assembler Syntax

ea → D (No update performed) LUA ea,D

Rn + aa → D LUA (Rn + aa),D

ea → D (No update performed) LEA ea,D

Rn + aa → D LEA (Rn + aa),D

{ea} MMRRR Effective address (seeTable 12-13 on page 12-22)
{D} ddddd Destination address register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-16 on page 12-24)

{D} dddd Destination address register [R0–R7,N0–N7] (seeTable 12-16
on page 12-24)

{aa} aaaaaaa 7-bit sign extended short displacement address
{Rn} RRR Source address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
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LUA Load Updated Address LUA
Instruction Formats and opcode

Note: LEA is a synonym for LUA. The simulator on-line disassembly translates th
opcodes into LUA.

23 16 15 8 7 0
LUA/LEA ea,D 0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 d d d d d

23 16 15 8 7 0
LUA/LEA (Rn + aa),D 0 0 0 0 0 1 0 0 0 0 a a a R R R a a a a d d d d
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MAC Signed Multiply Accumulate MAC

Instruction Formats and opcodes 1

Instruction Fields

Instruction Formats and opcode 2

Instruction Fields

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n) and add/subtract the
product to/from the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is

Operation Assembler Syntax

D ±S1 ∗ S2 → D (parallel move) MAC (±)S1,S2,D (parallel move)

D ±S1 ∗ S2 → D (parallel move) MAC (±)S2,S1,D (parallel move)

D ±(S1 ∗ 2-n) → D (no  parallel move) MAC (±)S,#n,D (no  parallel move)

23 16 15 8 7 0

MAC (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 1 0

MAC (±)S2,S1,D Optional Effective Address Extension

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
(seeTable 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-16 on page 12-24)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)

23 16 15 8 7 0
MAC  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 1 0

{S} QQ Source register [Y1,X0,Y0,X1]] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} ssss Immediate operand (seeTable 12-16 on page 12-24)
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MAC Signed Multiply Accumulate MAC

Note that when the processor is in the Double Precision Multiply mode, the following
instructions do not execute in the normal way and should only be used as part of the
double precision multiply algorithm:

MAC X1, Y0, AMAC X1, Y0, B

MAC X0, Y1, AMAC X0, Y1, B

MAC Y1, X1, AMAC Y1, X1, B

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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MACI MACI
Signed Multiply Accumulate With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S and add/subt
the product to/from the specified 56-bit destination accumulator D. The “–” sign optio
used to negate the specified product prior to accumulation. The default sign option i

Condition Codes

Instruction Formats and opcode

Operation Assembler Syntax

D ±#xxxx∗S → D MACI (±)#xxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
#xxxxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MACI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 0

Immediate Data Extension
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MAC(su,uu) MAC(su,uu)
Mixed Multiply Accumulate

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D. One or two of the so
operands can be unsigned. The “–” sign option is used to negate the specified prod
prior to accumulation. The default sign option is “+”.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

D ±S1 ∗ S2 → D (S1 unsigned, S2 unsigned) MACuu (±)S1,S2,D (no parallel move)

D ±S1 ∗ S2 → D (S1 signed, S2 unsigned) MACsu (±)S2,S1,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]

 (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{s} [ss,us] (seeTable 12-16 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

MACsu (±)S1,S2,D 23 16 15 8 7 0

MACuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 s d k Q Q Q Q
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MACR Signed Multiply Accumulate and Round MACR

Instruction Formats and opcodes 1

Instruction Fields

Instruction Formats and opcode 2

Instruction Fields

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), add/subtract the
product to/from the specified 56-bit destination accumulator D, and round the result u
either convergent or two’s-complement rounding. The rounded result is stored in
destination accumulator D. The “–” sign option negates the specified product prior to
accumulation. The default sign option is “+.” The LSB of the result is rounded into th
upper portion of the destination accumulator. Once rounding is complete, the LSBs 

Operation Assembler Syntax

D ±S1 ∗ S2 + r → D (parallel move) MACR (±)S1,S2,D (parallel move)

D ±S1 ∗ S2 + r → D (parallel move) MACR (±)S2,S1,D (parallel move)

D ±(S1 ∗ 2-n) + r → D (no  parallel move) MACR (±)S,#n,D (no  parallel move)

23 16 15 8 7 0

MACR (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 1 1

MACR (±)S2,S1,D Optional Effective Address Extension

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]

 (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)

23 16 15 8 7 0
MACR  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 3 s s s 1 1 Q Q d k 1 1

{S} QQ Source register [Y1,X0,Y0,X1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} ssss Immediate operand (seeTable 12-16 on page 12-24)
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MACR Signed Multiply Accumulate and Round MACR

destination accumulator D are loaded with 0s to maintain an unbiased accumulator 
that the next instruction can reuse. The upper portion of the accumulator contains th
rounded result that can be read out to the data buses. Refer to the RND instruction 
details on the rounding process.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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MACRI MACRI
Signed MAC and Round With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S, add/subtra
the product to/from the specified 56-bit destination accumulator D, and then round t
result using either convergent or two’s-complement rounding. The rounded result is s
in the destination accumulator D. The “–” sign option negates the specified product 
to accumulation. The default sign option is “+”. The contribution of the LSBs of the res
is rounded into the upper portion of the destination accumulator. Once rounding is
complete, the LSBs of the destination accumulator D are loaded with 0s to maintain
unbiased accumulator value that the next instruction can reuse. The upper portion o
accumulator contains the rounded result that can be read out to the data buses. Refe
RND instruction for details on the rounding process.

Condition Codes

Instruction Formats and opcode

Operation Assembler Syntax

D ±#xxxxxx ∗ S → D MACRI (±)#xxxxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,-] (seeTable 12-16 on page 12-24)
#xxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MACRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 1

Immediate Data Extension
Motorola 13-105



e of

ation
been

.

MAX Transfer by Signed Value MAX

Description Subtract the signed value of the source accumulator from the signed valu
the destination accumulator. If the difference is negative or 0, (A≥ B) then transfer the
source accumulator to destination accumulator. Otherwise, do not change the destin
accumulator. This is a 56-bit operation. Note that the Carry bit signifies a transfer has
performed.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If B – A ≤ 0 then A → B MAX  A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C This bit is cleared if the conditional transfer is performed, and set otherwise
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MAX A, B Data Bus Move Field 0 0 0 1 1 1 0 1

Optional Effective Address Extension
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MAXM Transfer by Magnitude MAXM

Description Subtract the absolute value (magnitude) of the source accumulator from
absolute value of the destination accumulator. If the difference is negative or 0
(|A| ≥ |B|), then transfer the source accumulator to the destination accumulator. Other
do not change the destination accumulator. This is a 56-bit operation. Note that the 
bit (C) signifies a transfer has been performed.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

If |B| – |A| ≤ 0 then A → B MAXM  A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C This bit is cleared if the conditional transfer was performed, and set
otherwise.

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MAXM A, B Data Bus Move Field 0 0 0 1 0 1 0 1

Optional Effective Address Extension
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MERGE Merge Two Half Words MERGE

Instruction Fields

Description The contents of bits 11–0 of the source register are concatenated to the
contents of bits 35–24 of the destination accumulator. The result is stored in the
destination accumulator. This instruction is a 24-bit operation. The remaining bits of
destination accumulator D are not affected.

Note:

1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to
concatenate width and offset fields into a control word.

2. In Sixteen-bit Arithmetic mode, the contents of bits 15-8 of the source register
concatenated with the contents of bits 39-32 of the destination accumulator. T
result is placed in bits 47-32 of the destination accumulator.

Condition Codes

Operation Assembler Syntax

{S[7:0],D[35:24]} → D[47:24] MERGE S,D

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} SSS Source register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-16

on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
— Unchanged by the instruction.
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MERGE Merge Two Half Words MERGE
Example

Instruction Formats and Opcodes

23 16 15 8 7 0
MERGE S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 S S S D

 MERGE X0,B

X0 x x x x x x x x x x x x 1 0 1 0 1 0 1 0 0 0 1 0

0
2
3

B1 x x x x x x x x x x x x 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

B1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2
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MOVE Move Data MOVE

The DSP56300 (family) core provides a set of MOVE instructions.Table 12-14lists these
instructions, which are fully described in the following pages.

Table 12-14. Move Instructions

Instruction Description Page

MOVE Move Data page 12-110

NO Parallel Data Move page 12-112

I Immediate Short Data Move page 12-113

R Register-to-Register Data Move page 12-116

U Address Register Update page 12-117

X: X Memory Data Move page 12-118

X: R X Memory and Register Data Move page 12-120

Y Y Memory Data Move page 12-122

R: Y Register and Y Memory Data Move page 12-124

L: Long Memory Data Move page 12-126

X: Y X Memory Data Move page 12-128
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MOVE Move Data MOVE

Description Move the contents of the specified data source S to the specified destin
D. This instruction is equivalent to a Data ALU NOP with a parallel data move.

Condition Codes

Instruction Formats and Opcodes

Instruction Fields/

Parallel Move Description Thirty of the sixty-two instructions allow an optional parallel
data bus movement over the X and/or Y data bus. This allows a Data ALU operation t
executed in parallel with up to two data bus moves during the instruction cycle. Ten ty
of parallel moves are permitted, including register-to-register moves, register-to-mem
moves, and memory-to-register moves. However, not all addressing modes are allo
for each type of memory reference. The following section contains detailed descript
about each type of parallel move operation.

Operation Assembler Syntax

S → D MOVE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MOVE S,D Data Bus Move Field 0 0 0 0 0 0 0 0

Optional Effective Address Extension
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NO Parallel Data Move

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Description Many instructions in the instruction set allow parallel moves. The paralle
moves have been divided into ten opcode categories. This category is a parallel mo
NOP and does not involve data bus move activity.

Condition Codes

Instruction Formats and Opcodes

Instruction Format (defined by instruction)

Operation Assembler Syntax

(. . .) (. . .)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
(. . .) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Instruction opcode
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I  Immediate Short Data Move I

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move the 8-bit immediate data value (#xx) into the destination operand D
the destination register D is A0, A1, A2, B0, B1, B2, R0–R7, or N0–N7, the 8-bit
immediate short operand is interpreted as anunsigned integerand is stored in the specified
destination register. That is, the 8-bit data is stored in the eight LSBs of the destinat
operand and the remaining bits of the destination operand D are zeroed. If the desti
register D is X0, X1, Y0, Y1, A, or B, the 8-bit immediate short operand is interpreted a
signed fraction and is stored in the specified destination register. That is, the 8-bit da
stored in the eight MSBs of the destination operand and the remaining bits of the
destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a give
destination accumulator, that same accumulator or portion of that accumulator cann
specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A0, 
A2, or A as its destination D. Similarly, if the opcode-operand portion of the instructi
specifies the 56-bit B accumulator as its destination, the parallel data bus move porti
the instruction cannot specify B0, B1, B2, or B as its destination D. That is, duplicate
destinations arenot allowed within the same instruction.

Condition Codes

Operation Assembler Syntax

( . . . ), #xx → D ( . . . ) #xx,D

{#xx} iiiiiiii 8-bit Immediate Short Data
{D} ddddd Destination register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (seeTable
12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
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I  Immediate Short Data Move I
Instruction Formats and Opcodes

23 16 15 8 7 0
( . . . ) #xx,D 0 0 1 d d d d d i i i i i i i i Instruction opcode
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R Register-to-Register Data Move R

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move the source register S to the destination register D. If the arithmetic
logical opcode-operand portion of the instruction specifies a given destination
accumulator, that same accumulator or portion of that accumulator cannot be specif
a destination D in the parallel data bus move operation. Thus, if the opcode-operand
portion of the instruction specifies the 56-bit A accumulator as its destination, the par
data bus move portion of the instruction cannot specify A0, A1, A2, or A as its destina
D. Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B
accumulator as its destination, the parallel data bus move portion of the instruction ca
specify B0, B1, B2, or B as its destination D. That is, duplicate destinations arenot
allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destinati
register, that same register or portion of that register can be used as a source S in t
parallel data bus move operation. This allows data to be moved in the same instruct
which a Data ALU operation is using it as a source operand. That is, duplicate source
allowed within the same instruction. Note that the MOVE A,B operation results in a 24
positive or negative saturation constant being stored in the B1 portion of the B
accumulator if the signed integer portion of the A accumulator is in use.

Operation Assembler Syntax

( . . . ); S → D ( . . . ) S,D

{S} eeeee Source register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,
B,R0–R7,N0–N7]

SeeTable 12-13 on page 12-22
{D} ddddd Destination register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,
B,R0–R7,N0–N7]
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R Register-to-Register Data Move R
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
( . . . ) S,D 0 0 1 0 0 0 e e e e e d d d d d Instruction opcode
13-116 DSP56300 Family Manual Motorola



U Address Register Update U

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Update the specified address register according to the specified effective
addressing mode. All update addressing modes can be used.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

( . . . ); eafiRn ( . . . ) ea

{ea} MMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
( . . . ) ea 0 0 1 0 0 0 0 0 0 1 0 M M R R R Instruction opcode
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X:  X Memory Data Move X:

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2

Operation Assembler Syntax

( . . . ); X:ea → D ( . . . ) X:ea,D

( . . . ); X:aa → D ( . . . ) X:aa,D

( . . . ); S → X:ea ( . . . ) S,X:ea

( . . . ); S → X:aa ( . . . ) S,X:aa

X:(Rn + xxx) → D MOVE X:(Rn + xxx),D

X:(Rn + xxxx) → D MOVE X:(Rn + xxxx),D

D → X:(Rn + xxx) MOVE D,X:(Rn + xxx)

D → X:(Rn + xxxx) MOVE D,X:(Rn + xxxx)

( . . . ) X:ea,D 23 16 15 8 7 0
( . . . ) S,X:ea 0 1 d d 0 d d d W 1 M M M R R R Instruction opcode
( . . . ) #xxxxxx,D Optional Effective Address Extension

( . . . ) X:aa,D 23 16 15 8 7 0
( . . . ) S,X:aa 0 1 d d 0 d d d W 0 a a a a a a Instruction opcode

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S / Write D bit (seeTable 12-16 on page 12-24)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-13 on page 12-22)

{aa} aaaaaa 6-bit Absolute Short Address

23 16 15 8 7 0
MOVE X:(Rn + xxxx),D 0 0 0 0 1 0 1 0 0 1 1 1 0 R R R 1 W D D D D D D
MOVE S,X:(Rn + xxxx) Rn Relative Displacement

MOVE X:(Rn + xxx),D 23 16 15 8 7 0
MOVE S,X:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 0 W D D D D
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4-bit
X:  X Memory Data Move X:
Instruction Fields

Description Move the specified word operand from/to X memory. All memory addressi
modes can be used, including absolute addressing and 24-bit immediate data. Abso
short addressing can also be used. If the arithmetic or logical opcode-operand portio
the instruction specifies a given destination accumulator, that same accumulator or po
of that accumulator cannot be specified as a destination D in the parallel data bus m
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit
accumulator as its destination, the parallel data bus move portion of the instruction ca
specify A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion
the instruction specifies the 56-bit B accumulator as its destination, the parallel data
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D. 
is, duplicate destinations arenot allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destinati
register, that same register or portion of that register can be used as a source S in t
parallel data bus move operation. This allows data to be moved in the same instruct
which it is being used as a source operand by a Data ALU operation. That is, duplic
sources are allowed within the same instruction. As a result of the MOVE A,X:ea
operation, a 24-bit positive or negative saturation constant is stored in the specified 2
X memory location if the signed integer portion of the A accumulator is in use.

Condition Codes

W Read S / Write D bit (seeTable 12-16 on page 12-24)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0–R7)
{D} DDDD Source/Destination registers

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (seeTable 12-16
on page 12-24)

{S,D} DDDDDD Source/Destination registers [all on-chip registers] (seeTable
12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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X:R X Memory and Register Data Move X:R

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Class I Instruction Formats and Opcodes

Instruction Fields

Class II Instruction Formats and Opcodes

Instruction Fields

Operation Assembler Syntax

Class I
( . . . ); X:ea → D1; S2 → D2 ( . . . ) X:ea,D1 S2,D2

( . . . ); S1 → X:ea; S2 → D2 ( . . . ) S1,X:ea S2,D2

( . . . ); #xxxxxx → D1; S2 → D2 ( . . . ) #xxxxxx,D1 S2,D2

Class II
( . . . ); A → X:ea; X0 → A ( . . . ) A,X:ea X0,A

( . . . ); B → X:ea; X0 → B ( . . . ) B,X:ea X0,B

( . . . ) X:ea,D1 S2,D2 23 16 15 8 7 0
( . . . ) S1,X:ea S2, D2 0 0 0 1 f f d F W 0 M M M R R R Instruction opcode
( . . . ) #xxxx,D1 S2,D2 Optional Effective Address Extension

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S1/Write D1 bit (seeTable 12-16 on page 12-24)

{S1,D1} ff S1/D1 register [X0,X1,A,B] (seeTable 12-16
on page 12-24)

{S2} d S2 accumulator [A,B] (seeTable 12-13 on page 12-22)
{D2} F D2 input register [Y0,Y1] (seeTable 12-16 on page 12-24)

23 16 15 8 7 0
( . . . ) A → X:ea X0 → A 0 0 0 0 1 0 0 d 0 0 M M M R R R Instruction opcode
( . . . ) B → X:ea X0 → B Optional Effective Address Extension

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
d Move opcode (seeTable 12-16 on page 12-24)
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X:R X Memory and Register Data Move X:R
Description

■ Class I: Move a one-word operand from/to X memory and move another word
operand from an accumulator (S2) to an input register (D2). All memory
addressing modes, including absolute addressing and 24-bit immediate data, c
used. The register-to-register move (S2,D2) allows a Data ALU accumulator t
moved to a Data ALU input register for use as a Data ALU operand in the
following instruction.

■ Class II: Move one-word operand from a Data ALU accumulator to X memory a
one-word operand from Data ALU register X0 to a Data ALU accumulator. On
effective address is specified. All memory addressing modes except long abs
addressing and long immediate data can be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator
same accumulator or portion of that accumulator cannot be specified as a destinatio
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 40-bit A accumulator as its destination, the parallel data bus m
portion of the instruction cannot specify A0, A1, A2, or A as its destination D1. Similar
if the opcode-operand portion of the instruction specifies the 56-bit B accumulator a
destination, the parallel data bus move portion of the instruction cannot specify B0, 
B2, or B as its destination D1. That is, duplicate destinations arenot allowed within the
same instruction. If the opcode-operand portion of the instruction specifies a given so
or destination register, that same register or portion of that register can be used as a s
S1 and/or S2 in the parallel data bus move operation. This allows data to be moved
same instruction in which a Data ALU operation is using it as a source operand. Tha
duplicate sources are allowed within the same instruction—S1 and S2 can specify t
same register.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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Y  Y Memory Data Move Y

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2

Operation Assembler Syntax

( . . . ); Y:ea → D ( . . . ) Y:ea,D

( . . . ); Y:aa → D ( . . . ) Y:aa,D

( . . . ); S → Y:ea ( . . . ) S,Y:ea

( . . . ); S → Y:aa ( . . . ) S,Y:aa

Y:(Rn + xxx) → D MOVE Y:(Rn + xxx),D

Y:(Rn + xxxx) → D MOVE Y:(Rn + xxxx),D

D → Y:(Rn + xxx) MOVE D,Y:(Rn + xxx)

D → Y:(Rn + xxxx) MOVE D,Y:(Rn + xxxx)

( . . . ) Y:ea,D 23 16 15 8 7 0
( . . . ) S,Y:ea 0 1 d d 1 d d d W 1 M M M R R R Instruction opcode
( . . . ) #xxxx,D Optional Effective Address Extension

( . . . ) Y:aa,D 23 16 15 8 7 0
( . . . ) S,Y:aa 0 1 d d 1 d d d W 0 a a a a a a Instruction opcode

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S/Write D bit (seeTable 12-16 on page 12-24)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-13 on page 12-22)

{aa} aaaaaa Absolute Short Address

23 16 15 8 7 0
MOVE Y:(Rn + xxxx),D 0 0 0 0 1 0 1 1 0 1 1 1 0 R R R 1 W D D D D D D
MOVE D,Y:(Rn + xxxx) Rn Relative Displacement

MOVE Y:(Rn + xxx),D 23 16 15 8 7 0
MOVE D,Y:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 1 W D D D D
13-122 DSP56300 Family Manual Motorola



essing,

on of
e
 A
nnot
 of

 bus
That

ister,
el data
Data
d
tive
 the
Y  Y Memory Data Move Y
Instruction Fields

Description Move the specified word operand from/to Y memory. All memory
addressing modes can be used, including absolute addressing, absolute short addr
and 24-bit immediate data. If the arithmetic or logical opcode-operand portion of the
instruction specifies a given destination accumulator, that same accumulator or porti
that accumulator cannot be specified as a destination D in the parallel data bus mov
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit
accumulator as its destination, the parallel data bus move portion of the instruction ca
specify A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion
the instruction specifies the 56-bit B accumulator as its destination, the parallel data
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D. 
is, duplicate destinations arenot allowed within the same instruction. If the
opcode-operand portion of the instruction specifies a given source or destination reg
that same register or portion of that register can be used as a source S in the parall
bus move operation. This allows data to be moved in the same instruction in which a
ALU operation is using it as a source operand. That is, duplicate sources are allowe
within the same instruction. As a result of the MOVE A,Y:ea operation, a 24-bit posi
or negative saturation constant is stored in the specified 24-bit Y memory location if
signed integer portion of the A accumulator is in use.

Condition Codes

W Read S/Write D bit (seeTable 12-16 on page 12-24)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0–R7)
{D} DDDD Source/Destination registers

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (seeTable 12-16
on page 12-24)

{S,D} DDDDDD Source/Destination registers [all on-chip registers] (seeTable
12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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R:Y Register and Y Memory Data Move R:Y

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Class I Instruction Formats and Opcodes

Instruction Fields

Class II Instruction Formats and opcodes

Instruction Fields

Operation Assembler Syntax

Class I
( . . . ); S1 → D1; Y:ea → D2 ( . . . ) S1,D1 Y:ea,D2

( . . . ); S1 → D1; S2 → Y:ea ( . . . ) S1,D1 S2,Y:ea

( . . . ); S1 → D1; #xxxxxx → D2 ( . . . ) S1,D1 #xxxxxx,D2

Class II
( . . . ); Y0 → A; A → Y:ea ( . . . ) Y0,A A,Y:ea

( . . . ); Y0 → B; B → Y:ea ( . . . ) Y0,B B,Y:ea

( . . . ) S1,D1 Y:ea,D2 23 16 15 8 7 0
( . . . ) S1,D1 S2,Y:ea 0 0 0 1 d e f f W 1 M M M R R R Instruction opcode
( . . . ) S1,D1 #xxxx,D2 Optional Effective Address Extension

{ea} MMMRRR Effective Address SeeTable 12-13
on page 12-22

W Read S2/Write D2 bit

Table 12-16 on page 12-24
{S1} d S1 accumulator [A,B]
{D1} e D1 input register [X0,X1]
{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

23 16 15 8 7 0
( . . . ) Y0 → A A → Y:ea 0 0 0 0 1 0 0 d 1 0 M M M R R R Instruction opcode
( . . . ) Y0 → B B → Y:ea Optional Effective Address Extension

MMMRRR ea = 6-bit Effective Address (seeTable 12-13 on page 12-22)
d Move opcode (seeTable 12-16 on page 12-24)
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R:Y Register and Y Memory Data Move R:Y

Description

■ Class I: Move a one-word operand from an accumulator (S1) to an input regis
(D1) and move another word operand from/to Y memory. All memory address
modes, including absolute addressing and 16-bit immediate data, can be use
register to register move (S1,D1) allows a Data ALU accumulator to be moved
Data ALU input register for use as a Data ALU operand in the following
instruction.

■ Class II: Move a one-word operand from a Data ALU accumulator to Y memo
and a one-word operand from Data ALU register Y0 to a Data ALU accumula
One effective address is specified. All memory addressing modes, excluding 
absolute addressing and long immediate data, can be used.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator
same accumulator or portion of that accumulator cannot be specified as a destinatio
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus m
portion of the instruction cannot specify A0, A1, A2, or A as its destination D2. Similar
if the opcode-operand portion of the instruction specifies the 56-bit B accumulator a
destination, the parallel data bus move portion of the instruction cannot specify B0, 
B2, or B as its destination D2. That is, duplicate destinations arenot allowed within the
same instruction. If the opcode-operand portion of the instruction specifies a given so
or destination register, that same register or portion of that register can be used as a s
S1 and/or S2 in the parallel data bus move operation. This allows data to be moved
same instruction in which it is being used as a source operand by a Data ALU opera
That is, duplicate sources are allowed within the same instruction. Note that S1 and S
specify the same register.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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L: Long Memory Data Move L:

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move one 48-bit long-word operand from/to X and Y memory. Two Data
ALU registers are concatenated to form the 48-bit long-word operand. This allows
efficient moving of both double-precision (high:low) and complex (real:imaginary) da
from/to one effective address in L (X:Y) memory. The same effective address is use
both the X and Y memory spaces; thus, only one effective address is required. Note
the A, B, A10, and B10 operands reference a single 48-bit signed (double-precision
quantity while the X, Y, AB, and BA operands reference two separate (i.e., real and
imaginary) 24-bit signed quantities. All memory alterable addressing modes can be 
Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a give
destination accumulator, that same accumulator or portion of that accumulator cann
specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A, A
AB, or BA as destination D. Similarly, if the opcode-operand portion of the instructio
specifies the 56-bit B accumulator as its destination, the parallel data bus move porti
the instruction cannot specify B, B10, AB, or BA as its destination D. That is, duplica
destinations arenotallowed within the same instruction. If the opcode-operand portion
the instruction specifies a given source or destination register, that same register or p
of that register can be used as a source S in the parallel data bus move operation. T
allows data to be moved in the same instruction in which it is being used as a sourc
operand by a Data ALU operation. That is, duplicate sources are allowed within the s

Operation Assembler Syntax

( . . . ); X:ea → D1; Y:ea → D2 ( . . . ) L:ea,D

( . . . ); X:aa → D1; Y:aa → D2 ( . . . ) L:aa,D

( . . . ); S1 → X:ea; S2 → Y:ea ( . . . ) S,L:ea

( . . . ); S1 → X:aa; S2 → Y:aa ( . . . ) S,L:aa

{ea} MMMRRR Effective Address Table 12-13 on page 12-22
W Read S/Write D bit

SeeTable 12-16 on page 12-24{L} LLL Two Data ALU registers
{aa} aaaaaa Absolute Short Address
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L: Long Memory Data Move L:

instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only fo
32-bit long memory move as previously described. These operands cannot be used
other type of instruction or parallel move.

Condition Codes

As a result of the MOVE A,L:ea operation, a 48-bit positive or negative saturation
constant is stored in the specified 24-bit X and Y memory locations if the signed inte
portion of the A accumulator is in use. As a result of the MOVE AB,L:ea operation, eit
one or two 24-bit positive and/or negative saturation constant(s) are stored in the spe
24-bit X and/or Y memory location(s) if the signed integer portion of the A and/or B
accumulator(s) is in use.

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
( . . . ) L:ea,D 0 1 0 0 L 0 L L W 1 M M M R R R Instruction opcode
( . . . ) S,L:ea Optional Effective Address Extension

( . . . ) L:aa,D 23 16 15 8 7 0
( . . . ) S,L:aa 0 1 0 0 L 0 L L W 0 a a a a a a Instruction opcode
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X: Y: XY Memory Data Move X: Y:

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are spec
(<eax> and <eay>) where one of the effective addresses uses the lower bank of ad
registers (R0–R3) while the other effective address uses the upper bank of address
registers (R4–R7). All parallel addressing modes can be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a give
destination accumulator, that same accumulator or portion of that accumulator cann
specified as a destination D1 or D2 in the parallel data bus move operation. Thus, if
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A as
destination D1 or D2. Similarly, if the opcode-operand portion of the instruction speci
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction cannot specify B as its destination D1 or D2. That is, duplicate destination
not allowed within the same instruction. D1 and D2 cannot specify the same register

Operation Assembler Syntax

( . . . ); X:<eax> → D1; Y:<eay> → D2 ( . . . ) X:<eax>,D1 Y:<eay>,D2

( . . . ); X:<eax> → D1; S2 → Y:<eay> ( . . . ) X:<eax>,D1 S2,Y:<eay>

( . . . ); S1 → X:<eax>; Y:<eay> → D2 ( . . . ) S1,X:<eax> Y:<eay>,D2

( . . . ); S1 → X:<eax>; S2 → Y:<eay> ( . . . ) S1,X:<eax> S2,Y:<eay>

{<eax>} MMRRR 5-bit X Effective Address (R0–R3 or R4–R7)
{<eay>} mmrr 4-bit Y Effective Address (R4–R7 or R0–R3)
{S1,D1} ee S1/D1 register [X0,X1,A,B]
{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

MMRRR,mmrr,ee,ff SeeTable 12-13 on page 12-22
W X move Operation Control (SeeTable 12-16 on page 12-24)
w Y move Operation Control (SeeTable 12-16 on page 12-24)
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If the instruction specifies an access to an internal X I/O and internal Y I/O modules
(reflected by the address of the X memory and the Y memory ), only the access to t
internal X I/O module is executed. The access to the Y I/O module is discarded.

If the opcode-operand portion of the instruction specifies a given source or destinati
register, that same register or portion of that register can be used as a source S1 and
in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a Data ALU operation. Th
duplicate sources are allowed within the same instruction. Note that S1 and S2 can sp
the same register.

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

( . . . ) X:<eax>,D1 Y:<eay>,D2
( . . . ) X:<eax>,D1 S2,Y:<eay>
( . . . ) S1,X:<eax> Y:<eay>,D2 23 16 15 8 7 0
( . . . ) S1,X:<eax> S2,Y:<eay> 1 w m m e e f f W r r M M R R R Instruction opcode
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MOVEC Move Control Register MOVEC

Instruction Fields

Description Move the contents of the specified source control register S1 or S2 to th
specified destination, or move the specified source to the specified destination contr
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2 re
set and consist of the Address ALU modifier registers and the program controller
registers. These registers can be moved to or from any other register or memory spac
memory addressing modes, as well as an Immediate Short Addressing mode, can b

If the System Stack register SSH is specified as a source operand, the Stack Pointer
post-decremented by 1 after SSH has been read. If SSH is specified as a destinatio
operand, the SP is preincremented by 1 before SSH is written. This allows the syste
stack to be efficiently extended using software stack pointer operations.

Operation Assembler Syntax

[X or Y]:ea → D1 MOVE(C) [Xor Y]:ea,D1

[X or Y]:aa → D1 MOVE(C) [Xor Y]:aa,D1

S1 → [X or Y]:ea MOVE(C) S1,[X or Y]:ea

S1 → [X or Y]:aa MOVE(C) S1,[X or Y]:aa

S1 → D2 MOVE(C) S1,D2

S2 → D1 MOVE(C) S2,D1

#xxxx → D1 MOVE(C) #xxxx,D1

#xx → D1 MOVE(C) #xx,D1

{ea} MMMRRR Effective Address SeeTable 12-13
on page 12-22

W Read S/Write D bit

SeeTable 12-16
on page 12-24

{X/Y} S Memory Space [X,Y]
{S1,D1} ddddd Program Controller register

[M0–M7, VBA, SR, OMR, SP,
SSH,SSL,LA,LC]

{aa} aaaaaa aa = 6-bit Absolute Short Address
{S2,D2} eeeeee S2/D2 register [all on-chip registers]
{#xx} iiiiiiii #xx = 8-bit Immediate Short Data
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MOVEC Move Control Register MOVEC
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For D1 or D2 = SR operand:
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand.

For D1 and D2≠ SR operand:
* S Set if data growth has been detected.
* L Set if data limiting has occurred during the move.

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0
MOVE(C) S1,[X or Y]:ea 0 0 0 0 0 1 0 1 W 1 M M M R R R O S 1 d d d d d
MOVE(C) #xxxx,D1 Optional Effective Address Extension

MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0
MOVE(C) S1,[X or Y]:aa 0 0 0 0 0 1 0 1 W 0 a a a a a a 0 S 1 d d d d d

MOVE(C) S1,D2 23 16 15 8 7 0
MOVE(C) S2,D1 0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d

23 16 15 8 7 0
MOVE(C) #xx,D1 0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d
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MOVEM  Move Program Memory MOVEM

Instruction Fields

Description Move the specified operand from/to the specified Program (P) memory
location. This is a powerful move instruction in that the source and destination registe
and D can be any register. All memory-alterable addressing modes can be used, as w
the Absolute Short Addressing mode. If the system stack register SSH is specified a
source operand, the system Stack Pointer (SP) is post-decremented by 1 after SSH
been read. If the system stack register SSH is specified as a destination operand, the
pre-incremented by 1 before SSH is written. This allows the system stack to be efficie
extended using software stack pointer operations.

Condition Codes

Operation Assembler Syntax

S → P:ea MOVE(M) S,P:ea

S → P:aa MOVE(M) S,P:aa

P:ea → D MOVE(M) P:ea,D

P:aa → D MOVE(M) P:aa,D

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S/Write D bit (seeTable 12-16 on page 12-24)

{ S,D} dddddd Source/Destination register [all on-chip registers] (seeTable
12-13 on page 12-22)

{aa} aaaaaa Absolute Short Address

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
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MOVEM  Move Program Memory MOVEM

Instruction Formats and Opcodes

For D1 or D2 = SR operand:
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand.

For D1 and D2≠ SR operand:
* S Set if data growth has been detected.
* L Set if data limiting has occurred during the move.

Operation Assembler Syntax

S → P:ea MOVE(M) S,P:ea

S → P:aa MOVE(M) S,P:aa

P:ea → D MOVE(M) P:ea,D

P:aa → D MOVE(M) P:aa,D

23 16 15 8 7 0
MOVE(M) S,P:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d
MOVE(M) P:ea,D Optional Effective Address Extension

MOVE(M) S,P:aa 23 16 15 8 7 0
MOVE(M) P:aa,D 0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d
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MOVEP Move Peripheral Data MOVEP

Instruction Fields

Description Move the specified operand to or from the specified X or Y I/O periphera
The I/O Short Addressing mode is used for the I/O peripheral address. All memory
addressing modes can be used for the X or Y memory effective address; all
memory-alterable addressing modes can be used for the P memory effective addre
the I/O space ($FFFF80 – $FFFFFF) can be accessed, except for the P: reference
opcode.If the System Stack register SSH is specified as a source operand, the syst
Stack Pointer (SP) is post-decremented by 1 after SSH has been read. If SSH is sp
as a destination operand, the SP is pre-incremented by 1 before SSH is written. Thi
allows the system stack to be efficiently extended using software stack pointer opera

Operation Assembler Syntax

[X or Y]:pp → D MOVEP [X or Y]:pp,D

[X or Y]:qq → D MOVEP [X or Y]:qq,D

[X or Y]:pp → [X or Y]:ea MOVEP [X or Y]:pp,[X or Y]:ea

[X or Y]:qq → [X or Y]:ea MOVEP [X or Y]:qq,[X or Y]:ea

[X or Y]:pp → P:ea MOVEP [X or Y]:pp,P:ea

[X or Y]:qq → P:ea MOVEP [X or Y]:qq,P:ea

S → [X or Y]:pp MOVEP S,[X or Y]:pp

S → [X or Y]:qq MOVEP S,[X or Y]:qq

[X or Y]:ea → [X or Y]:pp MOVEP [X or Y]:ea,[X or Y]:pp

[X or Y]:ea → [X or Y]:qq MOVEP [X or Y]:ea,[X or Y]:qq

P:ea → [X or Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea → [X or Y]:qq MOVEP P:ea,[X or Y]:qq

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{X/Y} S Memory space [X,Y] (seeTable 12-13 on page 12-22)
{X/Y} s Peripheral space [X,Y] (seeTable 12-13 on page 12-22)

W Read/write-peripheral (seeTable 12-13 on page 12-22)
{S,D} dddddd Source/Destination register [all on-chip registers] (seeTable

12-13 on page 12-22)
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MOVEP Move Peripheral Data MOVEP
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For D1 or D2 = SR operand:
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand.

For D1 and D2≠ SR operand:
* S Set if data growth is detected.
* L Set if data limiting occurred during the move.

X: or Y: Reference (high I/O address)
23 16 15 8 7 0

MOVEP [X or Y]:pp,[X or Y]:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p
MOVEP [X or Y]:ea,[X or Y]:pp Optional Effective Address Extension

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP X:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 0 S q q q q q q
MOVEP [X or Y]:ea,X:qq Optional Effective Address Extension

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP Y:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 0 M M M R R R 1 S q q q q q q
MOVEP [X or Y]:ea,Y:qq Optional Effective Address Extension
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MOVEP Move Peripheral Data MOVEP
P: Reference (high I/O address)

MOVEP P:ea,[X or Y]:pp 16 15 8 7 0
MOVEP [X or Y]:pp,P:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 0 1 p p p p p p

P: Reference (low I/O address)

MOVEP P:ea,[X or Y]:qq 16 15 8 7 0
MOVEP [X or Y]:qq,P:ea 0 0 0 0 0 0 0 0 1 W M M M R R R 0 S q q q q q q

Register Reference (high I/O address)

MOVEP S,[X or Y]:pp 23 16 15 8 7 0
MOVEP [X or Y]:pp,D 0 0 0 0 1 0 0 s W 1 d d d d d d 0 0 p p p p p p

Register Reference: (low I/O address)

MOVEP S,X:qq 23 16 15 8 7 0
MOVEP X:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 1 q 0 q q q q q

Register Reference: (low I/O address)

MOVEP S,Y:qq 23 16 15 8 7 0
MOVEP Y:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 0 q 1 q q q q q
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MPY Signed Multiply MPY

Instruction Fields 1

Instruction Fields 2

Description Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. Or, multiply the
signed 24-bit source operand S by the positive 24-bit immediate operand 2-n and store the
resulting product in the specified 56-bit destination accumulator D. The “–” sign optio
used to negate the specified product prior to accumulation. The default sign option is
When the processor is in the Double-Precision Multiply mode, the following instructi
do not execute in the normal way and should be used only as part of the double-pre
multiply algorithm:

MPY Y0,X0,A MPY Y0, X0,B

Operation Assembler Syntax

±S1 ∗ S2 → D  (parallel move) MPY (±)S1,S2,D (parallel move)

±S1 ∗ S2 → D (parallel move) MPY (±)S2,S1,D (parallel move)

±(S1 ∗ 2-n) → D (no parallel move) MPY (±)S,#n,D (no parallel move)

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1,
Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±+/-} k Sign [+,–] (seeTable 12-16 on page 12-24)

{S} QQ Source register [Y1,X0,Y0,X1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} sssss Immediate operand (seeTable 12-16 on page 12-24)
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MPY Signed Multiply MPY
Condition Codes

Instruction Formats and Opcodes 1

Instruction Formats and Opcode 2

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MPY (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 0 0

MPY (±)S2,S1,D Optional Effective Address Extension

23 16 15 8 7 0
MPY  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 0 0
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MPY(su,uu) Mixed Multiply MPY(su,uu)

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and store the resultin
product in the specified 56-bit destination accumulator D. One or two of the source
operands can be unsigned. The “–” sign option is used to negate the specified prod
prior to accumulation. The default sign option is “+”.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

±S1 ∗ S2 → D (S1 unsigned, S2 unsigned) MPYuu (±)S1,S2,D (no parallel move)

±S1 ∗ S2 → D (S1 signed, S2 unsigned) MPYsu (±)S2,S1,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see
Table 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{s} [ss,us] (seeTable 12-16 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

MPY su (±)S1,S2,D 23 16 15 8 7 0

MPY uu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 s d k Q Q Q Q
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MPYI Signed Multiply With Immediate Operand MPYI

Instruction Fields

Description Multiply the immediate 24-bit source operand #xxxx with the 24-bit regist
source operand S and store the resulting product in the specified 56-bit destination
accumulator D. The “–” sign option is used to negate the specified product prior to
accumulation. The default sign option is “+”.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

±#xxxxxx∗S → D MPYI (±)#xxxxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
#xxxx 16-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MPYI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 0

Immediate Data Extension
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MPYR Signed Multiply and Round MPYR

Instruction Fields 1

Instruction Fields 2

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed
16-bit source operand S by the positive 24-bit immediate operand 2-n), round the result
using either convergent or two’s-complement rounding, and store it in the specified 5
destination accumulator D. The “–” sign option negates the product prior to rounding.
default sign option is “+”. The contribution of the LS bits of the result is rounded into
upper portion of the destination accumulator. Once the rounding has been complete
LSBs of the destination accumulator D are loaded with 0s to maintain an unbiased
accumulator value that can be reused by the next instruction. The upper portion of t
accumulator contains the rounded result that can be read out to the data buses. Refe
RND instruction for more complete information on the rounding process.

Operation Assembler Syntax

±S1 ∗ S2 + r → D  (parallel move) MPYR (±)S1,S2,D  (parallel move)

±S1 ∗ S2 + r → D  (parallel move) MPYR (±)S2,S1,D  (parallel move)

±(S1 ∗ 2-n) + r → D  (no parallel move) MPYR (±)S,#n,D  (no parallel move)

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1,
Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)

{S} QQ Source register [Y1,X0,Y0,X1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} sssss Immediate operand (seeTable 12-16 on page 12-24)
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MPYR Signed Multiply and Round MPYR
Condition Codes

Instruction Formats and Opcodes 1

Instruction Formats and Opcode 2

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MPYR (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 0 1

MPYR (±)S2,S1,D Optional Effective Address Extension

23 16 15 8 7 0
MPYR  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1
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MPYRI MPYRI
 Signed Multiply and Round With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S, round the re
using either convergent or two’s-complement rounding, and store it in the specified 5
destination accumulator D. The “–” sign option is used to negate the product before
rounding. The default sign option is “+”. The contribution of the LS bits of the result i
rounded into the upper portion of the destination accumulator. Once the rounding has
completed, the LS bits of the destination accumulator D are loaded with 0s to mainta
unbiased accumulator value that can be reused by the next instruction. The upper p
of the accumulator contains the rounded result that can be read out to the data buses
to the RND instruction for more complete information on the rounding process.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

±#xxxx ∗ S + r → D MPYRI (±)#xxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
#xxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0
MPYRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 1

Immediate Data Extension
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NEG Negate Accumulator NEG

Instruction Fields

Description Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, two’s-complement operation.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

0 – D → D (parallel move) NEG D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
NEG D Data Bus Move Field 0 0 1 1 d 1 1 0

Optional Effective Address Extension
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NOP No Operation NOP

Instruction Fields

None

Description Increment the Program Counter (PC). Pending pipeline actions, if any, a
completed. Execution continues with the instruction following the NOP.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

PC+1 → PC NOP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0
NOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Motorola 13-145
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NORM Norm Accumulator Iterations NORM

whereE denotes the logical complement of E and• denotes the logical AND operator

Instruction Fields

Description Perform one normalization iteration on the specified destination operand
update the specified address register Rn based upon the results of that iteration, an
the result back in the destination accumulator. This is a 56-bit operation. If the
accumulator extension is not in use, the accumulator is unnormalized, and the accum
is not zero, the destination operand is arithmetically shifted one bit to the left, and th
specified address register is decremented by 1. If the accumulator extension registe
use, the destination operand is arithmetically shifted one bit to the right, and the spec
address register is incremented by 1. If the accumulator is normalized or zero, a NO
executed and the specified address register is not affected. Since the operation of th
NORM instruction depends on the E, U, and Z condition code register bits, these bits
correctly reflect the current state of the destination accumulator prior to executing th
NORM instruction.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

If E • U • Z=1, then ASL D and Rn–1fiRn
else ifE=1, then ASR D and Rn+1fiR
else NOP

NORM Rn,D

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{Rn} RRR Address register [R0-R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ * —

CCR

* V Set if bit 55 is changed as a result of a left shift
√ This bit is changed according to the standard definition
— This bit is unchanged by the instruction

23 16 15 8 7 0
NORM Rn,D 0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1
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NORMF Fast Accumulator Normalization NORMF

Instruction Fields

Description Arithmetically shift the destination accumulator either left or right as
specified by the source operand sign and value. If the source operand is negative th
accumulator is left shifted, and if the source operand is positive then it is right shifted.
source accumulator value should be between +56 to -55 (or +40 to -39 in sixteen bi
mode). This instruction can be used to normalize the specified accumulator D, by
arithmetically shifting it either left or right so as to bring the leading one or zero to bi
location 46. The number of needed shifts is specified by the source operand. This nu
could be calculated by a previous CLB instruction. For normalization the source
accumulator value should be between +8 to -47 (or +8 to -31 in Sixteen- bit Arithme
mode). NORMF is a 56 bit operation.

Condition Codes

Example

CLB A,B ;Count leading bits
NORMF B1,A ;Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands:

MOVE B1,N1 ;Update N1 with shift amount
MOVE (R1)+N1 ;Increment or decrement exponent

Operation Assembler Syntax

If S[23] = 0 then ASR S,D
else ASL -S,D

NORMF S,D

{S} sss Source register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-13
on page 12-22)

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ * —

CCR

* V Set if bit 39 is changed any time during the shift operation, and cleared otherw
√ Changed according to the standard definition.
— Unchanged by the instruction.
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NORMF Fast Accumulator Normalization NORMF

Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The
instruction updates the B accumulator to the number of needed shifts, seven in this
example. The NORMF instruction performs seven shifts to the right on A accumulat
and normalization of A is achieved. The exponent register is updated according to th
number of shifts.

Instruction Formats and Opcode

23 16 15 8 7 0
NORMF S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 s s s D

$20:0000:0000

B: $00:0007:0000

A:

Before execution

$20:0000:0000

After execution

A: $00:4000:0000

A:CLB A,B

NORMF B1,A
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NOT Logical Complement NOT

where “—” denotes the logical NOT operator.

Instruction Fields

Description Take the one’s complement of bits 47–24 of the destination operand D a
store the result back in bits 47–24 of the destination accumulator. This is a 24-bit
operation. The remaining bits of D are not affected.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

D[31:16] fi D[31:16] (parallel move) NOT D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
NOT D Data Bus Move Field 0 0 0 1 d 1 1 1

Optional Effective Address Extension
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OR Logical Inclusive OR OR

where⊕ denotes the logical inclusive OR operator.

Instruction Fields

Description Logically inclusive OR the source operand S with bits47–24 of the
destination operand D and store the result in bits47–24 of the destination accumulator.
The source can be a 24-bit register, 6-bit short immediate, or 24-bit long immediate.
instruction is a 24-bit operation. The remaining bits of the destination operand D are
affected. When using 6-bit immediate data, the data is interpreted as an unsigned in
That is, the six bits are right aligned, and the remaining bits are zeroed to form a 16
source operand.

Condition Codes

Operation Assembler Syntax

S ⊕ D[47:24] → D[47:24] (parallel move) OR S,D (parallel move)

#xx ⊕ D[47:24] → D[47:24] OR #xx,D

#xxxx ⊕ D[47:24] → D[47:24] OR #xxxx,D

{S} JJ Source input register [X0,X1,Y0,Y1] (seeTable 12-13
on page 12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
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OR Logical Inclusive OR OR
Instruction Formats and Opcodes

23 16 15 8 7 0
OR S,D Data Bus Move Field 0 1 J J d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0
OR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 0

23 16 15 8 7 0
OR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 0

Immediate Data Extension
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ORI OR Immediate With Control Register ORI

where + denotes the logical inclusive OR operator.

Instruction Fields

Description Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. 
condition codes are affected only when the Condition Code Register (CCR) is specifie
the destination operand.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

#xx + D → D OR(I) #xx,D

{D} EE Program Controller register [MR,CCR,COM,EOM] (seeTable 12-13
on page 12-22)

{#xx} iiiiiiii Immediate Short Data

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For CCR Operand:
* S Set if bit 7 of the immediate operand is set.
* L Set if bit 6 of the immediate operand is set.
* E Set if bit 5 of the immediate operand is set.
* U Set if bit 4 of the immediate operand is set.
* N Set if bit 3 of the immediate operand is set.
* Z Set if bit 2 of the immediate operand is set.
* V Set if bit 1 of the immediate operand is set.
* C Set if bit 0 of the immediate operand is set.
For MR and OMR Operands:
The condition codes are not affected using these operands.

23 16 15 8 7 0
OR(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E
13-152 DSP56300 Family Manual Motorola



nly in
egal
PFLUSH Program Cache Flush PFLUSH

Instruction Fields

None

Description Flush the whole instruction cache, unlock all cache sectors, set the LRU
stack and tag registers to their default values. The PFLUSH instruction is enabled o
Cache Mode. When the cache is disabled, execution of this instruction causes an ill
instruction trap.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Flush instruction cache PFLUSH

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction

23 16 15 8 7 0
PFLUSH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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PFLUSHUN PFLUSHUN
Program Cache Flush Unlocked Sections

Instruction Fields

None

Description Flush the instruction cache sectors that are unlocked, set the LRU stack
default value and set the unlocked tag registers to their default values. The PFLUSH
instruction is enabled only in Cache mode. When the cache is disabled, execution o
instruction causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Flush Unlocked instruction cache sectors PFLUSHUN

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction

23 16 15 8 7 0
PFLUSHUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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PFREE Program Cache Global Unlock PFREE

Instruction Fields

None

Description Unlock all the locked cache sectors in the instruction cache. The PFREE
instruction is enabled only in Cache Mode. When the cache is disabled, execution o
instruction causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Unlock all locked sectors PFREE

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PFREE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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PLOCK PLOCK
Lock Instruction Cache Sector

Instruction Fields

Description Lock the cache sector to which the specified effective address belongs. I
specified effective address does not belong to any cache sector and is therefore de
locked, nevertheless, load the least recently used cache sector tag with the17 most
significant bits of the specified address. Update the LRU stack accordingly. All mem
alterable addressing modes can be used for the effective address, but not a short a
address. The PLOCK instruction is enabled only in Cache mode. In PRAM mode it ca
an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Lock sector by effective address PLOCK ea

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PUNLOCK ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 1

Address Extension Word
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PLOCKR PLOCKR
Lock Instruction Cache Relative Sector

Instruction Fields

None

Description Lock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, then load the 17 most sign
bits of the sum into the least recently used cache sector tag, and then lock that cach
sector. Update the LRU stack accordingly. The displacement is a twos-complement 2
integer that represents the relative distance from the current PC to the address to b
locked. The PLOCKR instruction is enabled only in Cache Mode. When the cache is
disabled, execution of this instruction causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Lock sector by PC+xxxx PLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PLOCKR xxxx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

ADDRESS EXTENSION WORD
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PUNLOCK PUNLOCK
Unlock Instruction Cache Sector

Instruction Fields

Description Unlock the cache sector to which the specified effective address belong
the specified effective address does not belong to any cache sector, and is therefor
definitely unlocked, nevertheless, load the least recently used cache sector tag with
most significant bits of the specified address. Update the LRU stack accordingly. All
memory alterable addressing modes may be used for the effective address, but not a
absolute address. The PUNLOCK instruction is enabled only in Cache mode. In PR
mode it causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Unlock sector by effective address PUNLOCK ea

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PUNLOCK ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 1

Address Extension Word
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PUNLOCKR PUNLOCKR
Unlock Instruction Cache Relative Sector

Instruction Fields

None

Description Unlock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, and is therefore definitely
unlocked, nevertheless, load the least recently used cache sector tag with the 17 m
significant bits of the sum. Update the LRU stack accordingly. The displacement is a
twos-complement 24-bit integer that represents the relative distance from the curren
to the address to be locked. The PUNLOCKR instruction is enabled only in Cache m
In PRAM mode it causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Unlock sector by PC+xxxx PUNLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PUNLOCKR xxxx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Address Extension Word
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REP Repeat Next Instruction REP

Instruction Fields

Description Repeat the single-word instruction immediately following the REP
instruction the specified number of times. The value specifying the number of times 
given instruction is to be repeated is loaded into the 24-bit loop counter (LC) register.
single-word instruction is then executed the specified number of times, decrementin
loop counter (LC) after each execution until LC = 1. When the REP instruction is in eff
the repeated instruction is fetched only one time, and it remains in the instruction re
for the duration of the loop count. Thus, the REP instruction is not interruptible
(sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction’s effective address specifies the address of t
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes can be used. The absolute short and the immediate short addres
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed
form the 24-bit value that is to be loaded into the loop counter (LC).

If the System Stack register SSH is specified as a source operand, the system Stac
Pointer (SP) is post-decremented by 1 after SSH has been read.

Operation Assembler Syntax

LC → TEMP; [X or y]:ea → LC REP [X or Y]:ea
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; [X or Y]:aa → LC REP [X or Y]:aa
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;S → LC REP S
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;#xxx → LC REP #xxx
Repeat next instruction until LC = 1
TEMP → LC

{ea} MMMRRR Effective Address

SeeTable 12-13
on page 12-22

{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Short Address
{#xxx} hhhhiiiiiiii Immediate Short Data
{S} dddddd Source register [all on-chip registers]
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REP Repeat Next Instruction REP
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
REP [X or Y]:ea 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 1 0 0 0 0 0

23 16 15 8 7 0
REP [X or Y]:aa 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 1 0 0 0 0 0

23 16 15 8 7 0
REP #xxx 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0
REP S 0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0
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RESET Reset On-Chip Peripheral Devices RESET

Instruction Fields

None.

Description Reset the interrupt priority register and all on-chip peripherals. This is a
software reset, which isnotequivalent to a hardwareRESET since only on-chip peripherals
and the interrupt structure are affected. The processor state is not affected, and exe
continues with the next instruction. All interrupt sources are disabled except for the 
error, NMI, illegal instruction, Trap, Debug request, and hardware reset interrupts.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Reset the interrupt priority register and all
on-chip peripherals

RESET

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
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RND Round Accumulator RND

Instruction Fields

Description Round the 56-bit value in the specified destination operand D and store
result in the destination accumulator (A or B). The contribution of the LSBs of the
operand is rounded into the upper portion of the operand by adding a rounding const
the LSBs of the operand. The upper portion of the destination accumulator contains
rounded result. The boundary between the lower portion and the upper portion is
determined by the scaling mode bits S0 and S1 in the Status Register (SR).

Two types of rounding can be used: convergent rounding (also called round to near
(even)) or twos-complement rounding. The type of rounding is selected by the Roun
Mode bit (RM) in the MR portion of the SR. In both rounding modes a rounding const
is first added to the unrounded result. The value of the rounding constant added is
determined by the scaling mode bits S0 and S1 in the SR. A 1 ispositioned in the rounding
constant aligned with the MSB of the current LS portion, that is, the rounding consta
weight is actually equal to half the weight of the upper portion’s LSB. The following tab
shows the rounding position and rounding constant as determined by the scaling mo
bits:

If convergent rounding is used, the result of this addition is tested and if all the bits o
result to the right of, and including, the rounding position are cleared, then the bit to
left of the rounding position is cleared in the result. This ensures that the result is no
biased. In both rounding modes, the Least Significant Bits (LSBs) of the result are cle
The number of LSBs cleared is determined by the Scaling Mode bits in the Status Reg
(SR). All bits to the right of and including the rounding position are cleared in the res

In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) 
rounded and stored in the destination accumulator (A or B). This implies that the

Operation Assembler Syntax

D + r → D (parallel move) RND D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 25 24 23 22 21 - 0

0 0 No Scaling 23 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 24 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 22 0. . . .0 0 0 1 0. . . .0
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n 24
RND Round Accumulator RND

boundary between the lower portion and upper portion is in a different position then i
bit mode. The following table shows the rounding position and rounding constant in
sixteen bit arithmetic mode, as determined by the scaling mode bits:

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
RND D Data Bus Move Field 0 0 0 1 d 0 0 1

Optional Effective Address Extension

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 33 32 23 22 21 - 8

0 0 No Scaling 31 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 32 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 30 0. . . .0 0 0 1 0. . . .0
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ROL Rotate Left ROL
Operation

Assembler Syntax

ROL D (parallel move)

Instruction Fields

Description Rotate bits 47–24 of the destination operand D one bit to the left and store
result in the destination accumulator.The Carry bit (C) receives the previous value o
47 of the operand.The previous value of the C bit is shifted into bit 24 of the operand.
instruction is a 24-bit operation. The remaining bits of destination operand D are not
affected.

Condition Codes

Instruction Formats and Opcodes

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V This bit is always cleared.
* C Set if bit 47 of the destination operand is set, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
ROL D Data Bus Move Field 0 0 1 1 d 1 1 1

Optional Effective Address Extension

C

47 24
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ROR Rotate Right ROR
Operation

Assembler Syntax

ROR D (parallel move)

Instruction Fields

Description Rotate bits 47–24 of the destination operand D one bit to the right and s
the result in the destination accumulator.The Carry bit (C) receives the previous valu
bit 24 of the operand.The previous value of the C bit is shifted into bit 47 of the oper
This instruction is a 24-bit operation. The remaining bits of destination operand D are
affected.

Condition Codes

Instruction Formats and Opcodes

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
* C Set if bit 47 of the destination operand is set, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
ROR D Data Bus Move Field 0 0 1 0 d 1 1 1

Optional Effective Address Extension

C

47

(parallel move)

24
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RTI Return From Interrupt RTI

Instruction Fields

None.

Description Pull the Program Counter (PC) and the Status Register (SR) from the sys
stack. The previous PC and SR values are lost.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

SSH → PC; SSL → SR; SP – 1 → SP RTI

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

* S Set according to the value pulled from the stack.
* L Set according to the value pulled from the stack.
* E Set according to the value pulled from the stack.
* U Set according to the value pulled from the stack.
* N Set according to the value pulled from the stack.
* Z Set according to the value pulled from the stack.
* V Set according to the value pulled from the stack.
* C Set according to the value pulled from the stack.

23 16 15 8 7 0
RTI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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RTS Return From Subroutine RTS

Instruction Fields

None.

Description Pull the Program Counter (PC) from the system stack. The previous PC v
is lost. The Status Register (SR) is not affected.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

SSH → PC; SP – 1 → SP RTS

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
RTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
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SBC Subtract Long With Carry SBC

Instruction Fields

Description Subtract the source operand S and the Carry bit(C) from the destination
operand D and store the result in the destination accumulator. Long words (48-bit w
are subtracted from the 56-bit destination accumulator. Note that the C bit is set cor
for multiple-precision arithmetic using long-word operands if the extension register of
destination accumulator (A2 or B2) is the sign extension of bit 47 of the destination
accumulator (A or B).

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

D – S – C → D (parallel move) SBC S,D (parallel move)

{S} J Source register [X,Y] (seeTable 12-13 on page 12-22)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

23 16 15 8 7 0
SBC S,D Data Bus Move Field 0 0 1 J d 1 0 1

Optional Effective Address Extension
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STOP Stop Instruction Processing STOP

Instruction Fields

None

Description Enter the Stop processing state. All activity in the processor is suspende
until theRESET or IRQA pin is asserted or the Debug Request JTAG command is detec
The clock oscillator is gated off internally. The Stop processing state is a low-power
standby state. During the Stop state, the destination port is in an idle state with the co
signals held inactive, the data pins are high impedance, and the address pins are
unchanged from the previous instruction. If the exit from the Stop state is caused by a
level on theRESET pin, then the processor enters the reset processing state. If the exit
the Stop state was caused by a low level on theIRQA pin, then the processor will service
the highest priority pending interrupt and will not service theIRQA interrupt unless it is
highest priority. If no interrupt is pending, the processor will resume program executio
the instruction following the STOP instruction that caused the entry into the Stop sta
Program execution (interrupt or normal flow) resumes after an internal delay counte
counts:

■ If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles

■ If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles

■ If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles

During the clock stabilization count delay, all peripherals and external interrupts are
cleared and re-enabled/arbitrated at the end of the count interval. If theIRQA pin is asserted
when the STOP instruction is executed, the clock is not gated off, and only the inter
delay counter is started.

Condition Codes

Operation Assembler Syntax

Enter the stop processing state and stop the
clock oscillator

STOP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
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STOP Stop Instruction Processing STOP
Instruction Formats and Opcode

23 16 15 8 7 0
STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
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SUB Subtract SUB

Instruction Fields

Description Subtract the source operand from the destination operand D and store t
result in the destination operand D. The source can be a register (24-bit word, 48-bi
word, or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate. When
using 6-bit immediate data, the data is interpreted as an unsigned integer. That is, t
bits are right-aligned and the remaining bits are zeroed to form a 16-bit source oper
Note that the Carry bit (C) is set correctly using word or long-word source operands if
extension register of the destination accumulator (A2 or B2) is the sign extension of b
of the destination accumulator (A or B). The C bit is always set correctly using
accumulator source operands.

Condition Codes

Operation Assembler Syntax

D–S → D (parallel move) SUB S, D (parallel move)

D – #xx → D SUB #xx, D

D – #xxxx → D SUB #xxxx,D

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (seeTable 12-13
on page 12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
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SUB Subtract SUB
Instruction Formats and Opcodes

23 16 15 8 7 0
SUB S,D Data Bus Move Field 0 J J J d 1 0 0

Optional Effective Address Extension

23 16 15 8 7 0

SUB #xx,D
0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 0

23 16 15 8 7 0
SUB #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 0

Immediate Data Extension
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SUBL Shift Left and Subtract Accumulators SUBL

Instruction Fields

Description Subtract the source operand S from two times the destination operand D
store the result in the destination accumulator. The destination operand D is arithmet
shifted one bit to the left, and a 0 is shifted into the LSB of D prior to the subtraction
operation. The Carry bit (C) is set correctly if the source operand does not overflow 
result of the left shift operation. The Overflow bit (V) may be set as a result of either
shifting or subtraction operation (or both). This instruction is useful for efficient divid
and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

2 ∗ D – S → D (parallel move) SUBL S,D ( (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected by

thed bit in the opcode) is A, or A if the destination accumulator is B

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * √

CCR

* V Set if overflow has occurred in the result or if the MS bit of the destination
operand is changed as a result of the instruction’s left shift

√ Changed according to the standard definition

23 16 15 8 7 0
SUBL S,D Data Bus Move Field 0 0 0 1 d 1 1 0

Optional Effective Address Extension
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SUBR Shift Right and Subtract Accumulators SUBR

Instruction Fields

Description Subtract the source operand S from one-half the destination operand D 
store the result in the destination accumulator. The destination operand D is arithmet
shifted one bit to the right while the MS bit of D is held constant prior to the subtract
operation. In contrast to the SUBL instruction, the Carry bit (C) is always set correct
and the Overflow bit (V) can only be set by the subtraction operation, and not by an
overflow due to the initial shifting operation. This instruction is useful for efficient divid
and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

D / 2 – S → D (parallel move) SUBR S,D parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected b

thed bit in the opcode) is A, or A if the destination accumulator is B

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

23 16 15 8 7 0
SUBR S,D Data Bus Move Field 0 0 0 0 d 1 1 0

Optional Effective Address Extension
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Tcc Transfer Conditionally Tcc

Instruction Fields

Description Transfer data from the specified source register S1 to the specified
destination accumulator D1 if the specified condition is true. If a second source registe
and a second destination register D2 are also specified, transfer data from address r
S2 to address register D2 if the specified condition is true. If the specified condition 
false, a NOP is executed. The conditions that “cc” can specify are listed onTable 12-16
on page 12-24. When used after the CMP or CMPM instructions, the Tcc instruction
perform many useful functions, such as a “maximum value,” “minimum value,”
“maximum absolute value,” or “minimum absolute value” function. The desired value
stored in the destination accumulator D1. If address register S2 is used as an addre
pointer into an array of data, the address of the desired value is stored in the addres
register D2. The Tcc instruction may be used after any instruction and allows efficie
searching and sorting algorithms. The Tcc instruction uses the internal Data ALU pa
and internal Address ALU paths. It does not affect the condition code bits.

Condition Codes

Operation Assembler Syntax

If cc, then S1 → D1 Tcc S1,D1

If cc, then S1 → D1 and S2 → D2 Tcc S1,D1 S2,D2

If cc, then S2 → D2 Tcc S2,D2

{cc} CCCC Condition code (seeTable 12-16 on page 12-24)
{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (seeTable 12-16

on page 12-24)
{D1} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)
{S2} ttt Source address register [R0–R7]
{D2} TTT Destination Address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
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Tcc Transfer Conditionally Tcc
Instruction Formats and Opcode

23 16 15 8 7 0
Tcc S1,D1 0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J d 0 0 0

23 16 15 8 7 0
Tcc S1,D1 S2,D2 0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J d T T T

23 16 15 8 7 0
Tcc S2,D2 0 0 0 0 0 0 1 0 C C C C 1 t t t 0 0 0 0 0 T T T
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TFR Transfer Data ALU Register TFR

Instruction Fields

Description Transfer data from the specified source Data ALU register S to the speci
destination Data ALU accumulator D. TFR uses the internal Data ALU data paths; th
data does not pass through the data shifter/limiters. This allows the full 56-bit conten
one of the accumulators to be transferred into the other accumulatorwithout data shifting
and/or limiting. Moreover, since TFR uses the internal Data ALU data paths, paralle
moves are possible.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

S → D (parallel move) TFR S,D (parallel move)

{S} JJJ Source register [B/A,X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
TFR S,D Data Bus Move Field 0 J J J d 0 0 1

Optional Effective Address Extension
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TRAP Software Interrupt TRAP

Instruction Fields

None

Description Suspend normal instruction execution and begin TRAP exception
processing. The Interrupt Priority Level (I1,I0) is set to 3 in the Status Register (SR)
long interrupt service routine is used.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Begin trap exception process TRAP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
TRAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
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TRAPcc Conditional Software Interrupt TRAPcc

Instruction Fields

Description If the specified condition is true, normal instruction execution is suspend
and software exception processing is initiated. The Interrupt Priority Level (I1,I0) is se
3 in the Status Register (SR) if a long interrupt service routine is used. If the specifie
condition is false, instruction execution continues with the next instruction. The
conditions that the term “cc” can specify are listed onTable 12-18 on page 12-28.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

If cc then begin software exception processing TRAPcc

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
TRAPcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C C C C
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TST Test Accumulator TST

Instruction Fields

Description Compare the specified source accumulator S with 0 and set the conditio
codes accordingly. No result is stored although the condition codes are updated.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

S – 0 (parallel move) TST S (parallel move)

{S} d Source accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * —

CCR

* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
TST S Data Bus Move Field 0 0 0 0 d 0 1 1

Optional Effective Address Extension
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VSL Viterbi Shift Left VSL

Instruction Fields

Description Store the most significant part (24 bits) of the source accumulator at X
memory (at effective address location), while for the least significant part (24 bits) o
source accumulator shift one bit to the left and insert 0 or 1 at the Least Significant B
according to operand i, and store the result at Y memory at the same address. This
instruction enhances Viterbi algorithm performance.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

S[47:24] → X:ea; {S[23:0],i} → Y:ea VSL S,i,L:ea

{S} S Source register A,B (seeTable 12-13 on page 12-22)
{i} i Bit value, 0 or 1 to be placed in the least significant bit of

Y:<ea>
{ea} MMMRRR Effective address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
VSL S,i,L:ea 0 0 0 0 1 0 1 S 1 1 M M M R R R 1 1 0 i 0 0 0 0

Optional Effective Address Extension
13-182 DSP56300 Family Manual Motorola



to

I/O
t is
ntered
ccurs,
ed
ebug
WAIT Wait for Interrupt or DMA Request WAIT

Instruction Fields

None

Description Enter the low-power standby Wait processing state. The internal clocks 
the processor core and memories are gated off, and all activity in the processor is
suspended until an unmasked interrupt occurs. The clock oscillator and the internal 
peripheral clocks remain active. If the WAIT instruction is executed when an interrup
pending, the interrupt is processed. The effect is the same as if the processor never e
the Wait state. When an unmasked interrupt or external (hardware) processor reset o
the processor leaves the Wait state and begins exception processing of the unmask
interrupt or reset condition. The processor also exits from the Wait state when the D
Request (DE) pin is asserted or when a Debug Request JTAG command is detected.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Disable clocks to the processor core and
enter the Wait processing state

WAIT

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
WAIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
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Appendix A
Instruction Timing and Restrictions
This appendix describes the various aspects of execution timing analysis for each
instruction mnemonic and for various instruction sequences. The section consists o
following tables and information:

■ Tables showing how to calculate DSP56300 core instruction timing for each
instruction mnemonic (instruction timing)

■ Tables showing the number of instruction program words for each instruction
mnemonic (instruction program words)

■ Description of various sequences that cause timing delays and stalls in the
execution (instruction sequence delays)

■ Description of various instruction sequences that are forbidden and cause
undefined operation (instruction sequence restrictions)

A.1 Overview

The number of oscillator clock cycles per instruction depends on many factors, inclu
the number of words per instruction, the addressing mode, whether the instruction f
pipeline is full, the number of external bus accesses, cache hit/miss/burst, and the nu
of wait states inserted into each external access.

Table A-1 lists instruction timing and is based on the assumption that all instruction
cycles are counted in clock cycles and the instruction fetch pipeline is full. The follow
terms are used inside the table:

■ T: clock cycles for the normal case:

— All instructions fetched from the internal program memory

— No interlocks with previous instructions

— Addressing mode is the Post-Update mode (post-increment, post-decremen
post offset by N) or the No-Update mode.

■ + pru : Pre-update specifies clock cycles added for using the pre-update addre
modes (pre-decrement and offset by N addressing modes).
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■ + lab: Long absolute specifies clock cycles added for using the Long Absolute
Address mode.

■ + lim: Long immediate specifies clock cycles added for using the long immed
data addressing mode.

Note: A dash under one or more of the columnspru , lab, or lim indicates that this
column is not applicable to the corresponding instruction.

Table A-1. Instruction Timing, Word Count, and Encoding

Instruction
Mnemonic

Instruction Format T + pru + lab + lim

ADD ADD #xxxxxx,D 2 — — —

ADD   #xx,D 1 — — —

AND AND   #xxxxxx,D 2 — — —

AND   #xx,D 1 — — —

ANDI ANDI   D 3 — — —

ASL ASL   #ii,S2,D 1 — — —

ASL S1, S2,D 1 — — —

ASR ASR   S1, S2, D 1 — — —

ASR   #ii,S2,D 1 — — —

Bcc Bcc Rn 4 — — —

Bcc   xxxx 5 — — —

Bcc   xxx 4 — — —

BCHG BCHG   #n, [x or y]:aa 2 — — —

BCHG   #n, [x or y]:ea 2 1 1 —

BCHG   ##n, [x or y]:pp 2 — — —

BCHG   ##n, [x or y]:qq 2 — — —

BCHG   #n, D 2 — — —

BCLR BCLR   #n, [x or y]:pp 2 — — —

BCLR   #n, [x or y]:ea 2 1 1 —

BCLR   #n, [x or y]:aa 2 — — —

BCLR #n, [x or y]: qq 2 — — —

BCLR #n, D 2 — — —
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Overview
BRA BRA   (PC + Rn) 4 — — —

BRA   (PC + aa) 4 — — —

BRA (PC+aa) 4 — — —

BRKcc BRKcc 5 — — —

BRSET BRSET #bbbbb, S:pp, (PC+aaaa) 5 — — —

BRSET #bbbbb, S:qq, (PC+aaaa) 5 1 — —

BRSET #bbbbb, S:ea, (PC+aaaa) 5 — — —

BRSET #bbbbb, S:aa, (PC+aaaa) 5 — — —

BRSET #bbbbb, DDDDDD, (PC+aaaa) 5 — — —

BScc BScc   (PC + Rn) 4 — — —

BScc   (PC + aa) 4 — — —

BSCLR BSCLR #bbbbb,S:ea,(PC+aaaa) 5 1 — —

BSCLR #bbbbb,S:aa,(PC+aaaa) 5 — — —

BSCLR #bbbbb,S:pp,(PC+aaaa) 5 — — —

BSCLR #bbbbb,S:DDDDDD,(PC+aaaa) 5 — — —

BSCLR #bbbbb,S:qq,(PC+aaaa) 5 — — —

BSET BSET   #n,[x or y]:pp 2 — — —

BSET   ##n,[x or y]:ea 2 1 1 —

BSET   ##n,[x or y]:aa 2 — — —

BSET   ##n,D 2 — — —

BSET   ##n,[x or y]:qq 2 — — —

BSR BSR   (PC + Rn) 4 — — —

BSR (PC+aaaa) 5 — — —

BSR   (PC + aa) 4 — — —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Overview
BSSET BSSET #bbbbb,S:pp,(PC+aaaa) 5 — — —

BSSET #bbbbb,S:ea,(PC+aaaa) 5 1 — —

BSSET #bbbbb,S:aa,(PC+aaaa) 5 — — —

BSSET #bbbbb,S:DDDDDD,(PC+aaaa) 5 — — —

BSSET #bbbbb,S:qq,(PC+aaaa) 5 — — —

BTST BTST   #n,[x or y]:pp 2 — — —

BTST #n,[x or y]:ea 2 1 1 —

BTST #n,[x or y]:aa 2 — — —

BTST #n,D 2 — — —

BTST #n,[x or y]:qq 2 — — —

CLB CLB   S,D 1 — — —

CMP CMP   #iiiiii,D 2 — — —

CMP   #iii,D 1 — — —

CMPU CMPU   S1, S2 1 — — —

DEBUG/
DEBUGcc

DEBUG 1 — — —

DEBUGcc 5 — — —

DEC DEC D 1 — — —

DIV DIV S, D 1 — — —

DMAC DMAC   S1,S2,D (ss,su,uu) 1 — — —

DO DO   #xxx,aaaa 5 — — —

DO   DDDDDD,aaaa 5 — — —

DO   S:<ea>,aaaa 5 1 — —

DO   S:<aa>,aaaa 5 — — —

DO FOREVER DO FOREVER  ,(aaaa) 4 — — —

DOR DOR #xxx,(PX+aaaa) 5 — — —

DOR DDDDDD,(PC+aaaa) 5 — — —

DOR S:ea,(PC+aaaa) 5 1 — —

DOR S:aa,(PC+aaaa) 5 — — —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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DOR FOREVER DOR FOREVER,(PC+aaaa)

ENDDO ENDDO 1 — — —

EOR EOR   #xx,D 2 — — —

EOR   #iii,D 1 — — —

EXTRACT EXTRACT   S1,S2,D 1 — — —

EXTRACT   #iiii,s,D 2 — — —

EXTRACTU EXTRACTU   S1,S2,D 1 — — —

EXTRACTU   #iiii,s,D 2 — — —

IFcc IFcc 1 — — —

ILLEGAL ILLEGAL 5 — — —

INC INC D 1 — — —

INSERT INSERT   S1,S2,D 1 — — —

INSERT   #iiii,qqq,D 2 — — —

Jcc Jcc   xxx 4 — — —

Jcc   ea 4 0 0 —

JCLR JCLR   #n,[x or y]:ea,xxxx 4 1 — —

JCLR   #n,[x or y]:pp,xxxx 4 — — —

JCLR   #n,[x or y]:aa,xxxx 4 — — —

JCLR   #n,S,xxxx 4 — — —

JCLR #n,[x or y]:qq,xxxx 4 — — —

JMP JMP   aa 3 — — —

JMP   ea 3 1 1 —

JScc JScc   aa 4 — — —

JScc   ea 4 0 0 —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Overview
JSCLR JSCLR   #n,[x or y]:pp,xxxx 4 — — —

JSCLR #n,[x or y]:ea,xxxx 4 1 — —

JSCLR #n,[x or y]:aa,xxxx 4 — — —

JSCLR #n,S,xxxx 4 — — —

JSCLR #n,[x or y]:qq,xxxx 4 — — —

JSET JSET #n,[x or y]:pp,xxxx 4 — — —

JSET #n,[x or y]:ea,xxxx 4 1 — —

JSET #n,[x or y]:aa,xxxx 4 — — —

JSET #n,S,xxxx 4 — — —

JSET #n,[x or y]:qq,xxxx 4 — — —

JSR JSR   aa 3 — — —

JSR   ea 3 1 1 —

JSSET JSSET #n,[x or y]:pp,xxxx 4 — — —

JSSET #n,[x or y]:ea,xxxx 4 1 — —

JSSET #n,[x or y]:aa,xxxx 4 — — —

JSSET #n,S,xxxx 4 — — —

JSSET #n,[x or y]:qq,xxxx 4 — — —

LSL LSL   S,D 1 — — —

LSL   #ii,D 1 — — —

LSR LSR   #ii,D 1 — — —

LSR   S,D 1 — — —

LRA LRA   (PC + Rn) → 0DDDDD 3 — — —

LRA   (PC + aaaa) → 0DDDDD 3 — — —

LUA, LEA LUA   ea → 0DDDDD 3 — — —

LUA   (Rn + aa) → 01DDDD 3 — — —

MACI MACI ± #xxxxxx,S,D 2 — — —

MAC MAC ± 2**s,QQ,d 1 — — —

MAC   S1,S2,D (su,uu) 1 — — —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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MACRI MACRI ± #iiiiii,QQ,D 2 — — —

MACR MACR ±2**s,QQ,d 1 — — —

MAX MAX A,B 1 — — —

MAXM MAXM A,B 1 — — —

MERGE MERGE   S,D 1 — — —

MOVE No   parallel data Move (DALU) 1 — — —

MOVE #xx,D 1 — — —

MOVE S,D 1 — — —

MOVE ea (U   move, address register
update)

1 — — —

MOVE [x or y]:ea,D 1 1 1 1

MOVE S,[x or y]:ea 1 1 1 1

MOVE #xxxxxx,D 1 1 1 1

MOVE [x or y]:aa,D 1 — — —

MOVE [x or y]aa 2 — — —

MOVE   [x or y]:(Rn+xxx),D 2 — — —

MOVE S,[x or y]:(Rn+xxx) 2 — — —

MOVE [x or y]:(Rn+xxxx),D 3 — — —

MOVE S,[x or y]:(Rn+xxxx) 3 — — —

MOVE X:ea,D1,S2,D2 1 1 1 1

MOVE S1,S:ea S2,D2 1 1 1 1

MOVE #xxxxxx,D1 S2,D2 1 1 1 1

MOVE S1,D1 Y:ea,D2 1 1 1 1

MOVE S1,D1 S2,Y:ea 1 1 1 1

MOVE S1,D1 #xxxxxx,D2 1 1 1 1

MOVE A,X:ea X0,A 1 1 — —

MOVE B,X:ea X0,B 1 1 — —

MOVE   Y0 A,A,Y:ea 1 1 — —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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MOVE cont. MOVE   Y0 B,B,Y:ea 1 1 — —

MOVE   L:ea,D
MOVE S,L:ea

1 1 1 —

MOVE X:eax,D1 Y:eay,D2 1 — — —

MOVE X:eax,D1 S2,Y:eay 1 — — —

MOVE S1,X:eax Y:eay,D2 1 — — —

MOVE S1,X:eax S2,Y:eay 1 — — —

MOVEC MOVEC #xx,D1 1 — — —

MOVEC [x or y]:ea,D1 1 1 1 1

MOVEC S1,[x or y]:ea 1 1 1 1

MOVEC #xxxxxx,D1 1 1 1 1

MOVEC   [x or y]:aa,D1 1 — — —

MOVEC   S1,[x or y]:aa 1 — — —

MOVEC S1,D2 1 — — —

MOVEC S2,D1 1 — — —

MOVEM MOVEM S,P:ea 6 1 1 —

MOVEM P:ea,D 6 1 1 —

MOVEM S,P:aa 6 — — —

MOVEM P:aa,D 6 — — —

MOVEP MOVEP [x or y]:pp,[x or y]:ea 2 1 1 0

MOVEP [x or y]:ea,[x or y]:pp 2 1 1 0

MOVEP [x or y]:qq,[x or y]:ea 2 1 1 0

MOVEP [x or y]:ea,[x or y]:qq 2 1 1 0

MOVEP [x or y]:pp,P:ea 6 1 1 —

MOVEP P:ea,[x or y]:pp 6 1 1 —

MOVEP [x or y]:qq,P:ea 6 1 1 —

MOVEP P:ea,[x or y]:qq 6 1 1 —

MOVEP [x or y]:pp,D 1 — — —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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MOVEP cont. MOVEP S,[x or y]:pp 1 — — —

MOVEP [x or y]:qq,D 1 — — —

MOVEP S,[x or y]:qq 1 — — —

MPY MPY   S1,S2,D (su,uu) 1 — — —

MPY ± 2**s,QQ,d 1 — — —

MPYI MPYI (I)#xxxxxx,S,D 2 — — —

MPYR MPYR ± 2**s,QQ,d 1 — — —

MPYRI MPYRI ± #iiiiii,QQ,D 2 — — —

NOP NOP 1 — — —

NORM NORM 5 — — —

NORMF NORMF S,D 1 — — —

OR OR   #xx,D 2 — — —

OR   #iii,D 1 — — —

ORI OR(I) D 3 — — —

PFLUSH PFLUSH 1 — — —

PFLUSHUN PFLUSHUN 1 — — —

PFREE PFREE 1 — — —

PLOCK PLOCK ea 2 1 1 —

PLOCKR PLOCKR (PC+aaaa) 4 — — —

PUNLOCK PUNLOCK ea 2 1 1 —

PUNLOCKR PUNLOCKR (PC+aaaa) 4 — — —

REP REP   #xxx 5 — — —

REP   S 5 — — —

REP [x or y]:ea 5 1 — —

REP   [x or y]:aa 5 — — —

RESET RESET 7 — — —

RTI/RTS RTI 3 — — —

RTS 3 — — —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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A.2 Instruction Sequence Delays

Because of pipelining in the DSP56300 core, certain instruction sequences can cau
delay in the execution of instructions. Most of these sequences are caused by a
source-destination conflict or by the need to access the external bus. There are six ty
sequence delays:

■ External bus wait states

■ Instruction fetch delays

■ Data ALU interlocks

■ Address register interlocks

■ Stack extension delays

■ Pipeline interlocks

A.2.1 External Bus Wait States

An external bus wait state is caused by an instruction accessing the external bus fo
read or write. The execution time of the instruction is increased by the number of clo
cycles equal to the number of wait states programmed for that external data access
exact number of wait states depends on the type of memory accessed.

STOP STOP 10 — — —

SUB SUB #xx,D 2 — — —

SUB   #iii,D 1 — — —

Tcc Tcc  S1,D1,S2,D2 1 — — —

Tcc   S1,D1 1 — — —

Tcc  S2,D2 1 — — —

TRAP/
TRAPcc

TRAP 9 — — —

TRAPcc 9 — — —

VSL VSL S,i,L:ea 1 1 1 —

WAIT WAIT 10 — — —

Table A-1. Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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A.2.2 Instruction Fetch Delays

At an external instruction fetch, the effective number of stall states in the pipeline is 
number specified in the Bus Control Register (BCR).

A.2.3 Data ALU Interlock

A Data ALU interlock is caused by one of the following sequences:

■ Arithmetic stall: Occurs when an instruction uses one of the Data ALU register
(A0, A1, A2, B0, B1, or B2) or accumulators (A or B) as a source register for t
move portion of the instruction when the preceding instruction is an arithmetic
instruction1 that uses the same accumulator as its destination. Delays executio
the initiating instruction by one clock cycle.

■ Transfer stall:Occurs when an instruction uses one of the Data ALU registers (A
A1, A2, B0, B1, or B2) or accumulators (A or B) as a source register for the m
portion of the instruction when the preceding instruction uses the correspondi
accumulator or one of the Data ALU registers that comprise the accumulator 
destination register in the move portion of that instruction. Delays execution of
initiating instruction by one instruction cycle.

■ Status stall:Occurs when an instruction reads the contents of the Status Regis
(SR) for either a move operation or bit testing and the preceding or the secon
preceding instruction is an arithmetic instruction. Delays execution of the initiat
instruction by two instruction cycles for a move operation or one instruction cy
for bit testing.

A.2.4 Address Register Interlocks

An address register interlock is caused by one of the following sequences:

■ Conditional Transfer Interlock: Occurs when a Transfer On-Condition (Tcc)
instruction is followed by an instruction that explicitly specifies one of the addre
generation registers (R0–R7) as its source operand. Delays execution of the se
instruction by one instruction cycle.

■ Address Generation Interlock: Occurs when the move portion of an instruction
uses one of the AGU registers R0–R7 for address generation or for address
calculation, while one of the three preceding instruction cycles uses one of th
register set (Ri, Ni or Mi) members as a destination register in its move portio
ConsiderExample A-1.

1. An arithmetic instruction uses the internal Data ALU data paths.
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In this example, instruction I6 causes an address generation interlock because it uses
the source for address generation on the X Address Bus while the preceding instruc
I5, uses N0 as its destination.

Three types of address generation interlock exist: Type0, Type1, and Type2. These
depend on the clock cycle distance between the instruction causing the interlock an
preceding instruction that uses the AGU register as a destination.Figure A-1 gives an
example of each interlock type:

When a Type0 address generation interlock is detected (during the decoding of I2 in
example), three NOP clock cycles are automatically inserted before execution of the
instruction starts. When a Type1 interlock is detected (during the decoding of I3 in th
example), two NOP clock cycles are automatically inserted before the execution of t
instruction starts. When a Type2 interlock is detected (during the decoding of I4 in th
example), one NOP clock cycle is inserted before execution of the instruction starts

Example A-1.  Address Generation Interlock

I1 MOVE #$addr,R0

I2 NOP

I3 NOP

I4 NOP

I5 MOVE #$offset,N0

I6 MOVE X:(R0)+,Y1

Figure A-1. Types of Address Generation Interlock

 Type0 Interlock

 I1 MOVE #$addr,R0

I2 MOVE X:(R0)+,Y1

 Type1 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

I3 MOVE X:(R0)+,Y1

 Type2 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

 I3 INC B

I4 MOVE X:(R0)+,Y1

Three NOP instructions
are inserted

Two NOP instructions
are inserted

One NOP instruction
is inserted
A-12 DSP56300 Family Manual Motorola
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Note: Only clock cycles are counted to determine when interlock cycles should b
inserted.

When an instruction using one of the AGU registers as an address generation enter
decoding stage of the DSP56300 core, the distance from that instruction to the prec
instruction using the register as destination is measured in clock cycles to determine
existence and type of address generation interlock. Once an address generation inter
detected, the appropriate number of NOP clock cycles is inserted. The following
instructions take these additional cycles into account for detecting a possible new ad
generation interlock.Example A-2 demonstrates this feature.

In this example, a Type1 interlock is detected during the decoding phase of I 3 and 
NOP cycles are inserted before that instruction executes. During the decoding of I4,
address generation interlock is detected, so no NOP cycles are inserted. However, 
were an instruction that did not use R0, a Type2 address generation interlock would
detected during the decoding phase of I4, and one NOP cycle would be inserted befo
instruction executes.

A.2.5 Stack Extension Delays

Some instructions access the System Stack (SS) as part of their normal activity. Whe
SS is either completely full or empty, the special stack extension mechanism is eng
and the access completes only after an access to data memory is automatically perfo
This delays the decoding and the execution phases of that instruction. A stack-full o
stack-empty state is defined by the contents of the Stack Counter (SC) register. Wh
stack counter equals 14, the on-chip hardware stack contains fourteen words (a stack
is a 48-bit long word combined from the low and the high portions of the stack). The s
is declared as stack-full, and any additional push operation activates the stack exten
mechanism. When the stack counter equals 2, the on-chip hardware stack contains
two words. The stack is declared as stack-empty, and any additional pop operations
activate the stack extension mechanism. The instructions/cases listed inTable A-2 cause
an access to the system stack and may engage the stack extension mechanism.

Example A-2.  Detection of Address Generation Interlock

I1 MOVE #$addr,R0

I2 CLR A

I3 MOVE X:(R0)+,Y1

I4 MOVE X:(R0)+,Y0
Motorola Instruction Timing and Restrictions A-13
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:

Table A-3 shows how many clock cycles are added in the various instructions/cases
described.

:

Table A-2. Instructions That Access the System Stack

Instruction Description

JSR, Jcc All the conditional and unconditional Jump to Subroutine instructions (e.g., JSR, JSSET,
and so on). These instructions perform a stack PUSH operation that stores the PC and the
SR on top of the stack for the use of the ‘Return from Subroutine’ instruction that terminates
the subroutine execution.

RET The two Return from Subroutine instructions, RTS and RTI. These instructions perform a
stack POP operations that pulls the PC and (optionally) the SR out from the top of stack in
order to return to the calling procedure and restore the status bits and loop flag state.

END-OF-DO A condition of the hardware inside the Program Control Unit. This hardware detects a fetch
from the last address of a loop initiated when the Loop Counter equals 1. This condition
defines the end of the loop, thus performing a stack POP operation. This POP operation
restores the loop flag, purges the top of stack (PC:SR), and pulls LA and LC from the new
top of stack.

LOOP All the hardware-loop initiating instructions (e.g., DO) with all their options. These
instructions perform a stack double-PUSH operation that first stores the previous values of
LA and LC on top of the stack. Then the DO instruction stores the contents of SR and PC on
the new top of stack. This PC value is used every loop iteration to return to the top of loop
location and start fetch from there. DO performs two accesses to the stack instead of the
normal single access done by most stack operations.

ENDDO A special instruction that forces an end-of-do condition during a hardware loop. Like
END-OF-DO, ENDDO performs two accesses to the stack instead of the normal single
access done by most stack operations.

SSHWR All the explicit stack PUSH instructions that use SSH as their destination (e.g., the MOVE
R0,SSH instruction).

SSHRD All the explicit stack POP instructions that use SSH as their source (e.g., the MOVE SSH,Y1
instruction).

Table A-3. Stack Extension Delays

CASE
Stack Full Condition

( + clock cycles )
Stack Empty Condition

( + clock cycles )

JSR, Jcc 2 —

RET — 3

END-OF-DO — 5

DO 4 —

ENDDO — 5

SSHWR 2 —

SSHRD — 3
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A.2.6 Program Flow Control Delays

When flow-control instructions execute, some boundary cases exist and introduce
interlocks into the program flow. These interlocks lengthen the decoding phase of th
instructions, thus delaying execution. The following sequences represent unusual
operations that will probably never be used. The detection of these cases and the
generation of interlocks is done to maintain object code compatibility between the
DSP56300 core and the 56000 family of DSPs. The following terms are used in this
discussion:

■ I1: An address of an instruction, where I2, I3, and I4 indicate the next instruct
in the program flow

■ MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC, BSET, BCHG, BCLR,
and BTST

■ LA: the last address of a DO LOOP

■ (LA – 1): the address of an instruction word located at LA – 1

■ CR: Control Register, every one of the registers LA, LC, SR, SP, SSH, SSL, a
OMR

A.2.6.1 JMP to LA or to LA – 1

When I1 is any type of JMP with its target address equal to LA, the decoding phase o
instruction following the instruction at LA is delayed by 2 clock cycles. When I1 is an
type of JMP with its target address equal to LA – 1, the decoding phase of the instru
following the instruction at LA is delayed by one clock cycle.

A.2.6.2 RTI to LA or to LA – 1

When I1 is an RTI instruction whose return address is LA, the decoding phase of th
instruction following the instruction at LA is delayed by 2 clock cycles. When I1 is an R
instruction whose return address is LA – 1, the decoding phase of the instruction
following the instruction at LA is delayed by one clock cycle.

A.2.6.3 Conditional Instructions

When I1 is a conditional change of flow instruction (such as Jcc) and the condition i
false, the decoding phase of I2 is delayed by one clock cycle.
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A.2.6.4 Interrupt Abort

When I1 is an instruction with a decoding phase that is longer than one cycle, it may
aborted by the Interrupt Control Unit. In this case, a 1 clock cycle “hole” is inserted i
the pipeline, after which the instruction at the interrupt vector is decoded.

A.2.6.5 Degenerated DO loop

When I1 is a DO loop but the loop contains only one instruction, the decoding phase
is lengthened by one clock cycle.

A.2.6.6 Annulled REP and DO

If the repeat count of a REP instruction is zero, the decoding phase of the REP instru
is lengthened by one clock cycle. If the repeat count of a DO instruction is zero, the
decoding phase of the DO instruction is lengthened by three clock cycles.

A.3 Instruction Sequence Restrictions

Because of the pipelining in the DSP56300 core central processor, certain instructio
sequences are forbidden. Use of these sequences causes undefined operation. Mo
these restricted sequences cause contention for an internal resource, such as the S
Register. The DSP Assembler flags these as assembly errors. The following terms a
used in this discussion:

■ MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC

■ MOVEM: any type of MOVE to/from the Program space

■ LA: the last address of a DO LOOP

■ Two-words <inst>: a double-word instruction in which the second word is use
an immediate data or absolute address

■ Single-word <inst>: an instruction with an addressing mode that does not nee
second word extension

A.3.1 Restrictions Near the End of DO Loops

Proper DO loop operation is not guaranteed for an instruction sequence similar to o
the following sequences.
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■ At LA – 5: The following instructions should not start at address LA – 5:

— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}

— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

■ At LA – 4: The following instructions should not start at address LA – 4:

— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}

— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

■ At LA – 3: The following instructions should not start at address LA – 3:

— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

— MOVE from SSH, SSL

— Two-word JMP, Jcc, JSR, JScc

— JSET, JCLR, JSSET, JSCLR

— Two-word MOVEM

■ At LA – 2: The following instructions should not start at address LA – 2:

— DO, DOR, DO FOREVER

— MOVE to/from {LA, LC, SP,SC, SSH, SSL,SZ, VBA, OMR}

— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}

— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc

— MOVEM

— ANDI, ORI on MR

— BRKcc, ENDDO, REP

— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

■ At LA – 1: The following instructions should not start at address LA – 1:

— DO, DOR, DO FOREVER

— MOVE to/from {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}

— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc

— MOVEM
Motorola Instruction Timing and Restrictions A-17
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— ANDI, ORI on MR

— BRKcc, ENDDO, REP

— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

Note: A one-word conditional branch instruction at LA-1 is not allowed.

When two consecutive LAs have a conditional branch instruction at LA-1 of th
internal loop, the device does not operate properly. For example, the following
sequence may generate incorrect results:

DO #5, LABEL1
NOP
DO #4, LABEL2
NOP
MOVE (R0) +
BSCC _DEST ; conditional branch at LA-1 of internal loop
NOP ; internal LA

LABEL2
NOP ; external LA

LABEL1
NOP
NOP

_DEST NOP
NOP
RTS

Workaround: Put an additional NOP between LABEL2 and LABEL1.

■ At LA: The following instructions should not start at address LA:

— Any two-word instruction

— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

— MOVE from SSH, SSL

— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

— BTST on SSH

— JMP, JSR, BRA, BSR, Jcc, JScc, Bcc, BScc

— MOVE to/from Program space {MOVEM, MOVEP (only the P space option

— RESET

— RTI, RTS

— ANDI, ORI on MR

— BRKcc, ENDDO, REP

— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL
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A.3.2 General DO Restrictions

The general restrictions on DO instructions are as follows:

■ A DO loop should be initialized and aborted using only the following instruction
DO, DOR, DO FOREVER, ENDDO, and BRKcc.

■ The LF and the FV bits in the Status Register (SR) should not be explicitly chan
using the MOVE, BCHG, BSET, BCLR, ANDI, or ORI instructions.

■ Proper DO loop operation is not guaranteed if an instruction sequence similar
one of the following sequences is used.

— SSH cannot be used as the source for the Loop-Count for a DO, DOR, or a
FOREVER instruction.

— The following instructions should not appear within four words before a DO
DOR, or DO FOREVER:

• BCHG, BCLR, BSET, MOVE on/to SSH,SSL

• BCHG, BCLR, BSET, MOVE on/to SP, SC

— The following instructions should not appear immediately before a DO, DO
or DO FOREVER:

• MOVE from SSH

• BTST on SSH

• BCHG, BCLR, BSET, MOVE to/on {LA, LC, SP, SC, SSH, SSL}

• JSR, JScc, JSSET, JSCLR to LA whenever LF is set

• BSR, BScc, to LA whenever LF is set

— The following instructions should not appear in a DO, DOR, or DO FOREVE
loop:

• {JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BS

When Stack Extension mode is enabled, use of the BRKcc or ENDDO instructions in
DO loops may cause an improper operation. If the loop is not nested and has no ne
loop inside it, this restriction is relevant only if  LA or LC values are in use outside th
loop. If Stack Extension is used, emulate the BRKcc or ENDDO as shown in the
following examples in which there is a split between two cases, finite DO loops and 
FOREVER loops.
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Example A-3. Finite DO Loops

BRKcc

Original code:

do #N,label1
.....
.....

do #M,label2
.....
.....
BRKcc
.....
.....

label2
.....
.....

label1

Will be replaced by:

do #N, label1
.....
.....

do #M, label2
.....
.....
Jcc     fix_brk_routine
.....
.....

nop_before_label2
nop     ; This instruction must be NOP.

label2
.....
.....

label1
....
....

fix_brk_routine
move #1,lc
jmp  nop_before_label2

ENDDO
------
Original code:

do #M,label1
.....
.....

do #N,label2
.....
.....
ENDDO
.....
.....
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label2
.....
.....

label1

Will be replaced by:

do #M, label1
.....
.....

do #N, label2
.....
.....
JMP     fix_enddo_routine

nop_after_jmp
NOP  ; This instruction must be NOP.
.....
.....

label2
.....
.....

label1
....
....

fix_enddo_routine
move #1,lc
move #nop_after_jmp,la
jmp  nop_after_jmp

Example A-4. DO FOREVER Loops

BRKcc
-----
Original code:

do #M,label1
.....
.....

do forever,label2
.....
.....
BRKcc
.....
.....

label2
.....
.....

label1

Will be replaced by:

do #M,label1
.....
.....

do forever,label2
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.....

.....
JScc    fix_brk_forever_routine  ; <---

note: JScc and not Jcc
.....
.....

nop_before_label2
nop     ; This instruction must be NOP.

label2
.....
.....

label1
....
....

fix_brk_forever_routine
move ssh,x:<..>  ; <..> is some reserved not used

address (for temporary data)
move #nop_before_label2,ssh
bclr #16,ssl     ;
move #1,lc
rti              ; <---- note: "rti" and not "rts" !

ENDDO
------
Original code:

do #M,label1
.....
.....

do forever,label2
.....
.....
ENDDO
.....
.....

label2
.....
.....

label1

Will be replaced by:

do #M,label1
.....
.....

do forever,label2
.....
.....
JSR     fix_enddo_routine   ; <--- note:

JSR and not JMP
nop_after_jmp

NOP  ; This instruction should be NOP
.....
.....
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label2
.....
.....

label1
....
....

fix_enddo_routine
nop
move #1,lc
bclr #16,ssl
move #nop_after_jmp,la
rti              ; <--- note: "rti" and not "rts"

A.3.3 ENDDO Restrictions

The instructions in the following list should not appear within four words before an
ENDDO instruction:

■ BCHG, BCLR, BSET, MOVE on/to SSH,SSL

■ BCHG, BCLR, BSET, MOVE on/to SP, SC

The instructions in the following list should not appear immediately before an ENDD
instruction:

■ ANDI, ORI on MR

■ MOVE from SSH

■ BTST on SSH

■ BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}

A.3.4 BRKcc Restrictions

The instructions in the following list should not appear immediately before a BRKcc
instruction:

■ Every arithmetic instruction

■ IFcc, Tcc

■ BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA,
OMR}
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A.3.5 RTI and RTS Restrictions

The instructions in the following list should not appear within four words before an RT
RTS instruction:

■ BCHG, BCLR, BSET, MOVE on/to SSH,SSL

■ BCHG, BCLR, BSET, MOVE on/to SP, SC

The instructions in the following list should not appear immediately before an RTI
instruction:

■ MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}

■ MOVE, BTST from/on SSH

■ ANDI, ORI on {MR, CCR}

■ ENDDO

The instructions in the following list should not appear immediately before an RTS
instruction:

■ MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}

■ MOVE, BTST from/on SSH

■ ENDDO

A.3.6 SR Manipulation Restrictions

Changing values of bits in the Status Register (SR) should not be done explicitly using
of the MOVE, BCHG, BSET, BCLR instructions, but only using the ANDI or ORI
instructions with the appropriate 8-bit portion on the SR (MR, EMR, CCR).

A.3.7 SP/SC and SSH/SSL Manipulation Restrictions

The instructions in List A should not be executed within four instructions before execu
any of the instructions in List B.

List A

■ MOVE to (SP, SC)

■ BCHG, BSET, BCLR on (SP, SC)

List B

■ MOVE to/from {SSH,SSL}
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■ BTST, BCHG, BSET, BCLR on {SSH,SSL}

■ JSET, JCLR, JSSET, JSCLR on {SSH,SSL}

A.3.8 Fast Interrupt Routines

The following instructions cannot be used in a fast interrupt routine:

■ DO, DO FOREVER, REP

■ ENDDO, BRKcc

■ RTI, RTS

■ STOP, WAIT

■ TRAP, TRAPcc

■ ANDI, ORI on {MR, CCR}

■ MOVE from SSH

■ BTST on SSH

■ MOVE to {LA, LC, SP, SC, SSH, SSL}

■ BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL}

A.3.9 REP Restrictions

The REP instruction can repeat any single-word instruction except the REP instruct
itself and any instruction that changes program flow. The following instructions are n
allowed to follow a REP instruction (cannot be repeated):

■ REP, DO, DO FOREVER

■ ENDDO, BRKcc

■ JMP, Jcc, JCLR, JSET

■ JSR, JScc, JSCLR, JSSET

■ BRA, Bcc

■ BSR, BScc

■ RTS, RTI

■ TRAP, TRAPcc

■ WAIT, STOP
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A.3.10 Stack Extension Restrictions

The following instructions, related to the operation of the on-chip hardware stack
extension, cannot be used whenever the stack extension is enabled:

■ MOVE to EP

■ BCHG, BSET, BCLR on EP

■ MOVE to SC with a value greater than 15

The following instructions, related to the operation of the on-chip hardware stack
extension, cannot be placed in the stack error vector locations whenever the stack
extension is enabled:

■ JSR, JScc, JSCLR, JSSET

■ BSR, BScc

A.3.11 Stack Extension Enable Restrictions

When stack extansion is enabled, the  read result from stack may be improper if two
previous executed instructions cause sequential read and write operations with SSH
cases are possible:

■ Case 1:

— For the first executed instruction: move from SSH or bit manipulation on S
(i.e., JCLR, BRCLR, JSET, BRSET, BTST, BSSET, JSSET, BSCLR, JSCL

— For the second executed instruction: move to SSH or bit manipulation on S
(i.e., JSR, BSR, JScc, BScc).

— For the third executed instruction: an SSL or SSH read from the stack resu
may be improper. Move from SSH or SSL or bit manipulation on SSH or  S
(i.e., BSET, BCLR, BCHG, JCLR, BRCLR, JSET, BRSET, BTST, BSSET,
JSSET, BSCLR, JSCLR).

Workaround: Add two NOP instructions before the third executed instruction.

■ Case 2:

— For the first executed instruction: bit manipulation on SSH (i.e., BSET, BCL
BCJG).

— For the second executed instruction: an SSL or SSH read from the stack r
may be improper. Move from SSH or SSL or bit manipulation on SSH or  S
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(i.e., BSET, BCLR, BCHG, JCLR, BRCLR, JSET, BRSET, BTST, BSSET,
JSSET, BSCLR, JSCLR).

Workaround: Add two NOP instructions before the second executed instructio

A.4 Peripheral Pipeline Restrictions

The DSP56300 core is based on a highly optimized pipeline engine. Despite the relat
deep pipeline (seven stages), the latency effects normally associated with long pipe
are minimal because most of these effects are transparent to the user. Such design
techniques as forwarding and interlocking alleviate the need for a thorough knowledg
the machine’s pipeline in order to avoid data dependencies. This knowledge becom
necessary only when you are further optimizing the code. The assembler detects wh
transparency does not exist (e.g., pointer restrictions) and generates an appropriate
warning message. However, the pipeline is exposed to the user during peripheral ac
This section describes the cases in which you must take precautions in order to achie
desired functionality.

A.4.1 Polling a Peripheral Device for Write

When data is written to a peripheral device, there is a two-cycle pipeline delay until 
status bits affected by this operation are updated. For example, you operate a perip
port using the polling technique. You look for the Data Empty flag to be set, and when
set, you write new data to the Transmit Data Register. If you try to read the status b
within the next two cycles, the flag is mistakenly read as set due to the pipeline dela
associated with the peripheral operations. Therefore, if you assume that the Transmi
Register is empty and write a new data word, this data word overwrites the previous
written data. To achieve the correct functionality, you must wait at least two cycles be
attempting to read the Status Register after a write to the Transmit Data register.Example
A-5 shows the correct sequence for transmit operations.

Example A-5.  Providing a Wait for Proper Data Writes

send

movep x:(r0)+,x:STX ; send new data

nop ; pipeline delay

nop ; pipeline delay

poll

jclr #TDE,x:SCSR,poll ; wait for data empty

jmp send ; go to send data
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A.4.2 Writing to a Read-Only Register

Writing to a read-only register is an operation that normally has no effect, but if a rea
operation from the same register is attempted within the following two cycles, the valu
the read data is the value of the data that was written instead of the unchanged data
read-only register. To ensure that the correct data is read after the write operation, y
must wait at least two cycles before performing the read.

A.4.3 XY Memory Data Move

An XY memory data move does not work properly in either of the following situation

■ The X-memory move destination is internal I/O and the Y-memory move sourc
a register used as destination in the previous adjacent move from non Y-mem

■ The Y-memory move destination is a register used as source in the next adja
move to non Y-memory.

Here are examples cases (where x:(r1) is a peripheral):

Example 1:

move #$12,y0
move x0,x:(r7) y0,y:(r3) (while x:(r7) is a peripheral).

Example 2:

mac     x1,y0,a x1,x:(r1)+      y:(r6)+,y0
move    y0,y1

To address this problem, use one of the following alternatives:

■ Separate these two consecutive moves by any other instruction.

■ Split the XY Data Move to two moves.

A.5 Sixteen-Bit Compatibility Mode Restrictions

When there is a return from a long interrupt (by the RTI instruction), and the first
instruction after the RTI is a move to a DALU register (A, B, X, Y), the move may not
correct if the 16-bit arithmetic mode bit (bit 17 of SR) is changed due to restoring SR a
RTI. To address this problem, replace the RTI with the following sequence:

movec   ssl,sr
nop
rti
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Appendix B
Benchmark Programs
The following benchmarks illustrate the source code syntax and programming techni
for the DSP56300 core. Initialization cycles are not taken into account.Table B-1 lists the
DSP benchmark programs provided in this appendix.

Table B-1. List of Benchmark Programs

Benchmark Page
Number
of Words

Clock
Cycles

Sample Rate or
Execution Time for 60

MHz Clock Cycle

Real Multiply page B-3 3 4 67  ns

N Real Multiply page B-4 7 2N + 8 33.3 N + 133.6 ns

Real Update page B-5 4 5 83  ns

N Real Updates page B-6 9 2N + 8 33.3N + 133.6 ns

Real Correlation or Convolution (FIR
Filter)

page B-7 6 N + 14 60/(N + 14) MHz

Real * Complex Correlation or
Convolution (FIR Filter)

page B-8 9 2N + 10 30/(N + 5) MHz

Complex Multiply page B-10 6 7 117 ns

N Complex Multiplies page B-11 9 5N + 9 66.7N + 150.3 ns

Complex Update page B-12 7 8 133 ns

N Complex Updates page B-13 9 4N + 9 66.7N + 150.3 ns

Complex Correlation or Convolution
(FIR Filter)

page B-15 16 4N + 13 30/(2N + 5.5) MHz

Nth Order Power Series (Real) page B-17 10 2N + 11 33.3N + 183.7ns

Second Order Real Biquad IIR Filter page B-18 7 9 150.3 ns

N Cascaded Real Biquad IIR Filter page B-19 10 5N + 10 12/(N + 2) MHz

N Radix-2 FFT Butterflies (DIT, In-Place
Algorithm)

page B-20 12 8N + 9 133.6N + 150.3 ns

True (Exact) LMS Adaptive Filter page B-21 15 3N + 16 60/(3N + 17) MHz
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B.1 Benchmarks

The following benchmarks illustrate the source code syntax and programming techn
for the DSP56300 core.  The assembly language source is organized into six colum
shown inTable B-2..

The columns ofTable B-2 are defined as follows:

Delayed LMS Adaptive Filter page B-24 13 3N + 12 60/(3N + 12) MHz

FIR Lattice Filter page B-26 10 3N + 10 60/(3N + 10) MHz

All Pole IIR Lattice Filter page B-28 12 4N + 8 30/(2N + 4) MHz

General Lattice Filter page B-30 14 5N + 19 60/(5N + 19) MHz

Normalized Lattice Filter page B-32 15 5N + 19 60/(5N + 19) MHz

[1 × 3][3 × 3] Matrix Multiplication page B-34 13 14 233.8 ns

N Point 3 × 3 2-D FIR Convolution page B-35 19 11N2 + 8N
+ 7

60/(11N2 + 8N + 7)
MHz

Viterbi Add-Compare Select page B-38

Parsing a Data Stream page B-41

Creating a Data Stream page B-42

Parsing a Hoffman Code Data Stream page B-45 7 2N + 8 33.3N + 133 ns

Table B-2. Example of Assembly Language Source

Label Opcode Operands X Bus Data Y Bus Data Comment P T

FIR MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0 ;Do each tap 1 1

Label For program entry points and end of loop indication.

Opcode .Indicates the Data ALU, Address ALU, or Program Controller
operation to be performed. The Opcode column must always be
included in the source code.

Operands Specifies the operands used by the opcode.

Table B-1. List of Benchmark Programs  (Continued)

Benchmark Page
Number
of Words

Clock
Cycles

Sample Rate or
Execution Time for 60

MHz Clock Cycle
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B.1.1 Real Multiply

Equation B-1:

 X Bus Data Specifies an optional data transfer over the X Bus and the
addressing mode to be used.

 Y Bus Data Specifies an optional data transfer over the Y Bus and the
addressing mode to be used.

Comment For documentation purposes; does not affect the assembled code

P Provides the number of Program words used by the operation;
should not be included in the source code.

T Provides the number of clock cycles used by the operation; shoul
not be included in the source code.

Table B-3. Real Multiply

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move x:(r0),x0 y:(r4),y0 ; 1 1

mpyr x0,y0,a ; 1 1

move a,x:(r1) ; 1 2 i’lock

Totals 3 4

c a b×=
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B.1.2 N Real Multiplies

Equation B-2:

Table B-4. N Real Multiplies Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

r1 c(i)

Example B-1. N Real Multiplies

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

mpyr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

do #N-1,end ; 2 5

mpyr x0,y0,a a,x:(r1)+ y:(r4)+,y0 ; 1 1

move x:(r0)+,x0 ; 1 1

end ;

move a,x:(r1)+ ; 1 1

Totals 7 2N + 8

c i( ) a i( ) b i( )× i 1 2 … N, , ,==
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B.1.3 Real Update

Equation B-3:

Example B-2. Real Update

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

move #DADDR,r2

move x:(r0),x0 y:(r4),y0 ; 1 1

move x:(r1),a ; 1 1

macr x0,y0,a ; 1 1

move a,x:(r2) ; 1 2 i’lock

Totals 4 5

d c a b×+=
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B.1.4 N Real Updates

Equation B-4:

Table B-5. N Real Updates Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

r1 c(i)

r5 d(i)

Example B-3. N Real Updates

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR,r5 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

move x:(r1)+,a ; 1 1

move x:(r1)+,b ; 1 1

do #N/2,end ; 2 5

macr x0,y0,a x:(r0)+,x1 y:(r4)+,y1 ; 1 1

macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

move x:(r1)+,a a,y:(r5)+ ; 1 1

move x:(r1)+,b b,y:(r5)+ ; 1 1

end

Totals 9 2N + 8

d i( ) c i( ) a i( ) b i( )×+= i 1 2 … N, , ,=
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B.1.5 Real Correlation or Convolution (FIR Filter)

Equation B-5:

Table B-6. Real Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

Example B-4. Real Correlation or Convolution (FIR Filter)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4 ;

move #N – 1,m4 ;

move m4,m0 ;

movep y:input,y:(r
4)

; 1 2

clr a x:(r0)+,x0 y:(r4)–,y0 ; 1 1

rep #N – 1 ; 1 5

mac x0,y0,a x:(r0)+,x0 y:(r4)–,y0 ; 1 1

macr x0,y0,a (r4)+ ; 1 1

movep a,y:output ; 1 2 i’lock

Totals 6 N + 14

c n( ) a i( ) b n i–( )×[ ]
i 0=

N 1–

∑=
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B.1.6 Real * Complex Correlation or Convolution (FIR Filter)

Equation B-6:

Table B-7. Real * Complex Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 b(i)

r1 cr(n) ci(n)

Example B-5. Real * Complex Correlation or Convolution (FIR Filter)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #N-1,m4 ;

move m4,m0 ;

movep y:input,x:(r
4)

; 1 2

clr a x:(r0),x0 ; 1 1

clr b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

do #N-1,end ; 2 5

mac x0,x1,a x:(r0),x0 ; 1 1

mac y0,x1,b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

end

cr n( ) jci n( ) ar i( ) jai i( )+( ) b n i–( )×[ ]
i 0=

N 1–

∑= =

cr n( ) ar i( ) b n i–( )×
i 0=

N 1–

∑= ci n( ) ai i( ) b n i–( )×
i 0=

N 1–

∑=
B-8 DSP56300 Family Manual Motorola



Benchmarks
macr x0,x1,a ; 1 1

macr y0,x1,b (r4)+ ; 1 1

move a,x:(r1) ; 1 1

move b,y:(r1) ; 1 1

Totals 11 2N + 11

Example B-5. Real * Complex Correlation or Convolution (FIR Filter)  (Continued)
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B.1.7 Complex Multiply

Equation B-7:

Table B-8. Complex Multiply Memory Map

Pointer X memory Y memory

r0 ar ai

r4 br bi

r1 cr ci

Example B-6. Complex Multiply

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

move x:(r0),x1 y:(r4),y0 ; 1 1

mpy y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1

macr x0,y1,b ; 1 1

mpy x0,x1,a ; 1 1

macr -y0,y1,a b,y:(r1) ; 1 1

move a,x:(r1) ; 1 2 i'lock

Totals 6 7

cr jci+ ar jai+( ) br jbi+( )×=

cr ar br ai bi×–×= ci ar bi ai br×+×=
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B.1.8 N Complex Multiplies

Equation B-8:

Table B-9. N Complex Multiplies Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r5 cr(i) ci(i)

Example B-7. N Complex Multiplies

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR-1,r
5

;

move x:(r0),x1 y:(r4),y0 ; 1 1

move x:(r5),a ; 1 1

do #N,end ; 2 5

mpy y0,x1,b x:(r4)+,x0 y:(r0)+,y1 ; 1 1

macr x0,y1,b a,x:(r5)+ ; 1 1

mpy -y0,y1,a y:(r4),y0 ; 1 1

macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

end

move a,x:(r5) ; 1 2 i'lock

Totals 9 4N + 9

cr i( ) jci i( )+ ar i( ) jai i( )+( ) br i( ) jbi i( )+( )×= i 1 2 … N, , ,=

cr i( ) ar i( ) br i( ) ai i( ) bi× i( )–×=

ci i( ) ar i( ) bi i( ) ai i( ) br×+× i( )=
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B.1.9 Complex Update

Equation B-9:

Table B-10. Complex Update Memory Map

Pointer X memory Y memory

r0 ar ai

r4 br bi

r1 cr ci

r2 dr di

Example B-8. Complex Update

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

move #DADDR,r2

move y:(r1),b ; 1 1

move x:(r0),x1 y:(r4),y0 ; 1 1

mac y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1

macr x0,y1,b x:(r1),a ; 1 1

mac x0,x1,a ; 1 1

macr -y0,y1,a b,y:(r2) ; 1 1

move a,x:(r2) ; 1 2 i'lock

Totals 7 8

dr jdi+ cr jci+( ) ar jai+( ) br jbi+( )×+=

dr cr ar br ai bi×–×+= di ci ar bi ai br×+×+=
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B.1.10 N Complex Updates

Equation B-10:

Table B-11. N Complex Updates Memory Map

Pointer X memory Y memory

r0 ar(i) ; ai(i)

r4 br(i) ; bi(i)

r1 cr(i) ; ci(i)

r5 dr(i) ; di(i)

Example B-9. N Complex Updates

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR-1,r5 ;

move x:(r0)+,x1 y:(r4)+,y0 ; 1 1

move x:(r1)+,b y:(r5),a ; 1 1

do #N,end ;2 5 ; 2 5

mac y0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1

macr –x0,y1,b x:(r1)+,a a,y:(r5)+ ; 1 1

mac x0,y0,a x:(r1)+,b b,y:(r5)+ ; 1 2 i'lock

macr x1,y1,a x:(r0)+,x1 y:(r4)+,y0 ; 1 1

end

move a,y:(r5)+ ; 1 2 i'lock

Totals 9 5N + 9

dr i( ) jdi i( )+ cr i( ) jci i( )+( ) ar i( ) jai i( )+( ) br i( ) jbi i( )+( )×+=

dr i( ) cr i( ) ar i( ) br i( ) ai i( ) bi× i( )–×+=

di i( ) ci i( ) ar i( ) bi i( ) ai i( ) br× i( )+×+=

i 1 2 … N, , ,=
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Table B-12. N Complex Updates Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

r5 dr(i) di(i)

Example B-10. N Complex Updates

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR-1,r5 ;

move x:(r5),a ; 1 1

move x:(r0),x1 y:(r4),y0 ; 1 1

move x:(r4)+,x0 y:(r1),b ; 1 1

do #N,end ; 2 5

mac y0,x1,b a,x:(r5)+ y:(r0)+,y1 ; 1 1

macr x0,y1,b x:(r1)+,a ; 1 1

mac -y0,y1,a y:(r4),y0 ; 1 1

macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

move x:(r4)+,x0 y:(r1),b ; 1 1

end

move a,x:(r5) ; 1 1

Totals 11 5N + 9
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B.1.11 Complex Correlation or Convolution (FIR Filter)

Equation B-11:

Table B-13. Complex Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

Example B-11. Complex Correlation or Convolution (FIR Filter)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1

move #N-1,m4

move #m4,m0

movep y:input,x:(r
4)

1 2

movep y:input,y:(r
4)

1 2

clr a ; 1 1

clr b x:(r0),x1 y:(r4),y0 ; 1 1

cr n( ) jci n( )+ ar i( ) jai i( )+( ) br n i–( ) jbi n i–( )+( )×[ ]
i 0=

N 1–

∑=

cr n( ) ar i( ) br n i–( ) ai i( ) bi n i–( )×–×[ ]
i 0=

N 1–

∑=

ci n( ) ar i( ) bi n i–( ) ai i( ) br n i–( )×+×[ ]
i 0=

N 1–

∑=
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do #N-1,end ; 2 5

mac y0,x1,b x:(r4)-,x0 y:(r0)+,y1 ; 1 1

mac x0,y1,b ; 1 1

mac x0,x1,a ; 1 1

mac -y0,y1,a x:(r0),x1 y:(r4),y0 ; 1 1

end

mac y0,x1,b x:(r4),x0 y:(r0)+,y1 ; 1 1

macr x0,y1,b ; 1 1

mac x0,x1,a ; 1 1

macr -y0,y1,a ; 1 1

move b,y:(r1) ; 1 1

move a,x:(r1) ; 1 1

Totals 16 4N + 13

Example B-11. Complex Correlation or Convolution (FIR Filter)  (Continued)
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B.1.12 Nth Order Power Series (Real)

Equation B-12:

Table C-3.   Nth Order Power Series (Real) Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b

r1 c

Example B-12. Nth Order Power Series (Real)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4

move #CADDR,r1

move x:(r0)+,a ; 1 1

move y:(r4),x0 1 1

mpyr x0,x0,b x:(r0)+,y0 ; 1 1

move b,y1 ; 1 2 i'lock

do #N-1,end ; 2 5

mac y0,x0,a x:(r0)+,y0 ; 1 1

mpyr x0,y1,b b,x0 ; 1 1

end

macr y0,x0,a ; 1 1

move a,x:(r1) ; 1 2 i'lock

Totals 10 2N + 11

c a i( ) bi×[ ]
i 0=

N 1–

∑=
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B.1.13 Second Order Real Biquad IIR Filter

Equation B-13:

Table B-1. Second Order Real Biquad IIR Filter Memory Map

Pointer X memory Y memory

r0 w(n-2), w(n-1)

r4 a2/2, a1/2, b2/2, b1/2

Example B-13. Second Order Real Biquad IIR Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #1,m0

move #3,m4

movep y:input,a ; 1 1

rnd a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1

mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1

mac y0,x0,a a,x:(r0) y:(r4),y0 ; 1 2 i'lock

macr y0,x1,a ; 1 1

movep a,y:output ; 1 2 i'lock

Totals 7 9

w n( ) 2⁄ x n( ) 2⁄ a1( ) 2⁄ w n 1–( ) a2( ) 2⁄–× w n 2–( )×–=

y n( ) 2⁄ w n( ) 2⁄ b1( ) 2⁄ w n 1–( ) b2( ) 2⁄+× w n 2–( )×+=
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B.1.14 N Cascaded Real Biquad IIR Filter

Equation B-14:

Table B-2. N Cascaded Real Biquad IIR Filter Memory Map

Pointer X memory Y memory

r0 w(n-2)1, w(n-1)1, w(n-2)2, ...

r4 (a2/2)1, (a1/2)1, (b2/2)1, (b1/2)1, (a2/2)2, ...

Table B-3. N Cascaded Real Biquad IIR Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

ori #$08,mr ;

move #AADDR,r0 ;

move #BADDR,r4 ;

move #(2N-1),m0 ;

move #(4N-1),m4 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

movep y:input,a ; 1 1

do #N,end ; 2 5

mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1

mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1

mac y0,x0,a a,x:(r0)+ y:(r4)+,y0 ; 1 2 i’lock

mac y0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

end

rnd a ; 1 1

movep a,y:output ; 1 2 i'lock

Totals 10 5N + 10

w n( ) 2⁄ x n( ) 2⁄ a1( ) 2⁄ w n 1–( ) a2( ) 2⁄–× w n 2–( )×–=

y n( ) 2⁄ w n( ) 2⁄ b1( ) 2⁄ w n 1–( ) b2( ) 2⁄+× w n 2–( )×+=
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B.1.15 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)

Equation B-15:

Table B-4. N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r1 br(i) bi(i)

r6 cr(i) ci(i)

r4 ar’(i) ai’(i)

r5 br’(i) bi’(i)

Example B-14. N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r1 ;

move #CADDR,r6 ;

move #ATADDR,r4 ;

move #BTADDR-1,r5 ;

move x:(r1),x1 y:(r6),y0 ; 1 1

move x:(r5),a y:(r0),b 1 1

do #N,end ; 2 5

mac y0,x1,b x:(r6)+n,x
0

y:(r1)+,y1 ; 1 1

macr x0,y1,b a,x:(r5)+ y:(r0),a ; 1 1

subl b,a ; 1 1

move x:(r0),b b,y:(r4) ; 1 1

mac x0,x1,b x:(r0)+,a a,y:(r5) ; 1 1

macr -y0,y1,b x:(r1),x1 y:(r6),y0 ; 1 1

subl b,a b,x:(r4)+ y:(r0),b ; 1 2 i'lock

end

move a,x:(r5)+ ; 1 2 i'lock

Totals 12 8N + 9

ar' ar cr br ci bi×–×+= br' ar cr br ci bi×+×– 2 ar a–× r '= =

ai' ai ci br cr bi×+×+= bi' ai ci br cr bi×–×– 2 ai a–× i'= =
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B.1.16 True (Exact) LMS Adaptive Filter

Figure B-1. True (Exact) LMS Adaptive Filter

Table B-5. System Equations

True LMS Algorithm Delayed LMS Algorithm

e(n) = d(n) – H(n) × (n) e(n) = d(n) – H(n) × (n)

H(n + 1) = H(n) + uX(n)e(n) H(n + 1) = H(n) + uX(n – 1)e(n – 1)

Table B-6. LMS Algorithms

True LMS Algorithm Delayed LMS Algorithm

Get input sample Get input sample

Save input sample Save input sample

Do FIR Do FIR

Get d(n), find e(n) Update coefficients

Update coefficients Get d(n), find e(n)

Output f(n) Output f(n)

Shift vector X Shift vector X

x(n)—Input sample at time n
d(n)—Desired signal at time n
f(n)—FIR filter output at time n
H(n)—Filter coefficient vector at time n. H = {h0,h1,h2,h3}
X(n)—Filter state variable vector at time N, X = {x(n),x(n – 1),x(n – 2),x(n – 3)}
u—Adaptation Gain
NTAPS—Number of coefficient taps in the filter. For this example, NTAPS = 4

x(n) x(n-1) x(n-2) x(n-3)

z-1 z-1 z-1

d(n)

f(n)

e(n)

h(1) h(2)
h(3)h(0)

-

+
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Table B-7. True (Exact) LMS Adaptive Filter Memory Map

Pointer X memory Y memory

r0 x(n), x(n – 1), x(n – 2), x(n – 3)

r4, r5 h(0), h(1), h(2), h(3)

Example B-15. True (Exact) LMS Adaptive Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #-2,n0 ;

move n0,n4

move #NTAPS-1,m
0

;

move m0,m4 ;

move m0,m5 ;

move #AADDR+NTAPS-1,r0 ;

move #BADDR,r4 ;

move r4,r5 ;

_getsmp

movep y:input,x0 ; input sample 1 1

clr a x0,x:(r0)+ y:(r4)+,y0 ; save 1 1

;X(n), get h0

rep #NTAPS-1 ; do fir 1 5

; do taps

mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

; last tap

macr x0,y0,b ; 1 1

; Get d(n), subtract fir output, multiply by “u”,

; put the result in y1.

; This section is application dependent.

move x:(r0)+,x0 y:(r4)+,a 1 1

movep b,y:output ; output fir if desired 1 1
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move y:(r4)+,b 1 1

do #NTAPS/2,c
up

; 2 5

macr x0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

macr x0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1

tfr y0,a a,y:(r5)+ 1 1

tfr y0,b b,y:(r5)+ 1 1

cup

move x:(r0)+n0,
x0

y:(r4)+n4,y
0

; 1 1

; continue looping (jmp _getsmp)

Total 15 3N + 16

Example B-15. True (Exact) LMS Adaptive Filter  (Continued)
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B.1.17 Delayed LMS Adaptive Filter
■ Error signal is in y1

■ FIR sum in a = a + h(k)old * x(n – k)

■ h(k)new in b = h(k)old + error * x(n – k – 1)

Table B-8. Delayed LMS Adaptive Filter Memory Map

Pointer X memory Y memory

r0 x(n), x(n – 1), x(n – 2), x(n – 3), x(n – 4)

r5, r4 dummy, h(0), h(1), h(2), h(3)

Example B-16. Delayed LMS Adaptive Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #STATE,r0 ; start of X

move #2,n0 ; used for pointer update

move #NTAPS,m0 ; number of filter taps

move #COEF+1,r4 ; start of H

move m0,m4 ; number of filter taps

move #COEF,r5 ; start of H-1

move m4,m5 ; number of filter taps

movep y:input,a ; get input sample 1 1

move a,x:(r0) ; save input sample 1 1

clr a x:(r0)+,x0 ; x0<-x(n) 1 1

move x:(r0)+,x1 y:(r4)+,y0 1 1

; x1<-x(n-1); y0<-h(0)

do #TAPS/2,lms ; 2 5

;a<-h(0)*x(n) b<-h(0) Y<-dummy

mac x0,y0,a y0,b b,y:(r5)+ 1 2 i’lock

;b<-H(0)=h(0)+e*x(n-1), x0<-x(n-2), y0<-h(1)

macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1
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;a<-a+h(1)*x(n-1); b<-h(1); Y(0)<-H(0)

mac x1,y0,a y0,b b,y:(r5)+ ; 1 2 i’lock

;b<-H(1)=h(1)+e*x(n-2); x1<-x(n-3); y0<-h(2)

macr x0,y1,b x:(r0)+,x1 y:(r4)+,y0 ; 1 1

lms

movep a,y:output 1 1

move b,y:(r5)+ ; Y<-last coef 1 1

move (r0)-n0 ; update pointer 1 1

Totals 13 3N + 12

Example B-16. Delayed LMS Adaptive Filter  (Continued)
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B.1.18 FIR Lattice Filter

Figure B-2. FIR Lattice Filter

Table B-9. FIR Lattice Filter Memory Map

Pointer X memory Y memory

r0 s1, s2, s3, sx

r4 k1, k2, k3

Example B-17. FIR Lattice Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #S,r0 ; point to s

move #N,m0 ; N = number of k coefficients

move #K,r4 ; point to k coefficients

move #N-1,m4 ; mod for k's

movep y:datin,b ; get input 1 1

move b,a ; save first state 1 1

Input

z-1 z-1 z-1
s2s1 s3 sx

Output

k1

k1

k2

k2

k3

k3

+ + +

+ + +

B (in)

t't

Single Section:   t' = s*k + t,  t' → t
s' = t*k + s

z-1 z-1 z-1
s2 s

k1

k1

k2

k2

+ + +

+ + +
s1 s'

k

k
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move x:(r0),x0 y:(r4)+,y0 ; get s, get k 1 1

do #N,_elat ; 2 5

macr x0,y0,b b,y1 ; s*k+t,copy t
; for mul

1 1

tfr x0,a a,x:(r0)+ ; save s',
; copy next s

1 1

macr y1,y0,a x:(r0),x0 y:(r4)+,y0 ; t*k+s, get s,
; get k

1 1

_elat

move a,x:(r0)+ y:(r4)-,y0 ; adj r4,
; dummy load

1 1

movep b,y:datout ; output sample 1 1

Totals 10 3N + 10

Example B-17. FIR Lattice Filter  (Continued)
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B.1.19 All Pole IIR Lattice Filter

Figure B-3. All Pole IIR Lattice Filter

Table B-10. All Pole IIR Lattice Filter Memory Map

Pointer X memory Y memory

r0 k3, k2, k1

r4 s3, s2, s1

Example B-18. All Pole IIR Lattice Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #k+N-1,r0 ;point to k

move #N-1,m0 ;number of k's-1

move #STATE,r4 ;point to filter states

move m0,m4 ;mod for states

move #1,n4 ;

movep y:datin,a y:(r4)+,b ;get input 1 1

move x:(r0)-,x0 y:(r4)+,y0 ;get s, get k 1 1

macr -x0,y0,a x:(r0)-,x0 y:(r4),y0 ;s*k+t 1 1

t t'

s'

Single Section: t' = t – k*s
s' = s + k*t'
t'→ t

Input Output

z-1 z-1
s2 s1

– k3
k2

k2

+ + +

+ +
s3

k1

– k1

z-1

s

+

+

k

– k

z-1
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do #N-1,_endl
at

;do sections 2 5

macr -x0,y0,a y:(r4)+,y1 ; 1 1

tfr y1,b a,x1 b,y:(r4) ; 1 2 i'lock

macr x1,x0,b x:(r0)-,x0 y:(r4),y0 1 1

_endlat

movep a,y:datout 1 1

move x:(r0)+,x0 y:(r4)+,r0 ;output sample 1 1

move b,y:(r4)+ ;save s' 1 1

;save last s', update r4

move a,y:(r4) 1 1

Totals 12 4N + 8

Example B-18. All Pole IIR Lattice Filter  (Continued)
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B.1.20 General Lattice Filter

Figure B-4. General Lattice Filter

Table B-11. General Lattice Filter Memory Map

Pointer X memory Y memory

r0 k3, k2, k1, w3, w2, w1, w0

r4 s4, s3, s2, s1

Example B-19. General Lattice Filter

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #K,r0 ;point to coefficients

move #2*N,m0 ;mod 2*(# of k's)+1

move #STATE,r4 ;point to filter states

move #-2,n4

t t'

s'

Input

w0 Output

z-1 z-1

+

+

w2

k1

– k1

z-1

s

+

+

k

– k

z-1

+

+

k2

– k2

+

+

k3

– k3

+
w3

w1

w

Single Section: t' = t – k*s
s' = s + k*t'
t' → t
Output = ∑(w*s')
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move #N,m4 ;mod on filter states

movep y:datin,a ;get input 1 1

move x:(r0)+,x0 y:(r4)-,y0 1 1

do #N,_endlat 2 5

macr -x0,y0,a ; 1 1

tfr y0,b a,x1 b,y:(r4)+n
4

; 1 2 i'lock

macr x1,x0,b x:(r0)+,x0 y:(r4)-,y0 ; 1 1

_endlat

move b,y:(r4)+ ;save s' 1 2 i'lock

clr a a,y:(r4)+ ;save last s',
; update r4

1 1

move y:(r4)+,y0 1 1

rep #N ; 1 5

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;s*w+out,
; get s, get w

1 1

macr x0,y0,a ;last mac 1 1

movep a,y:datout ;output sample 1 2 i’lock

Totals 14 5N + 19

Example B-19. General Lattice Filter  (Continued)
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B.1.21 Normalized Lattice Filter

Figure B-5. Normalized Lattice Filter

Table B-12. Normalized Lattice Filter Memory Map

Pointer X memory Y memory

r0 q2, k2, q1, k1, q0, k0, w3, w2, w1, w0

r4 sx, s2, s1, s0

t t'

Input

Output

w2

+

+

k – k

z-1

+
w3

w1

w

q

u' u
q

Single Section: t' = t*q - k*s
u' = t*k + s*q
t' → t

Output = ∑(w*u')

+

+

k2 – k2

z-1

q2

q2

+

+

k1 – k1

z-1

q1

q1

+

+

k0 – k0

z-1

q0

q0

w0
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Example B-20. Normalized Lattice Filter

Label
Opcod

e
Operands X Bus Data Y Bus Data Comment P T

move #COEF,r0 ; point to
; coefficients

move #3*N,m0 ; mod on
; coefficients

move #STATE+1,r4 ; point to
; state variables

move #N,m4 ; mod on filter
; states

movep y:datin,y0 ; get input sample 1 1

move x:(r0)+,x1 ; get q in the
; table

1 1

do #N,_elat 2 5

mpy x1,y0,a x:(r0)+,x0 y:(r4),y1 ; q * t,get k,get s 1 1

macr -x0,y1,a b,y:(r4)+ ; q * t - k * s,
; save new s

1 1

mpy x0,y0,b ; k * t 1 1

macr x1,y1,b x:(r0)+,x1 a,y0 ; k * t + q * s
; get next q,set t'

1 1

_elat

move b,y:(r4)+ ; save second
; last state

1 2 i'lock

move a,y:(r4)+ ; save last state 1 1

clr a y:(r4)+,y0 ; clear a, get
; first state

1 1

rep #N 1 5

mac x1,y0,a x:(r0)+,x1 y:(r4)+,y0 ; fir taps 1 1

macr x1,y0,a (r4)+ ; round,
; adj pointer

1 1

movep a,y:datout ; output sample 1 2 i'lock

Total 15 5N + 19
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B.1.22 [1 × 3][3 × 3] Matrix Multiplication

Example B-21. [1 × 3][3 × 3] Matrix Multiplication

Label Opcode Operands X Bus Data Y Bus Data Comment P T

_init

move #MAT_A,r0 ;point to A matrix

move #MAT_B,r4 ;point to B matrix

move #MAT_X,r1 ;output X matrix

move #2,m0 ;mod 3

move #8,m4 ;mod 9

move m0,m1 ;mod 3

_start

move x:(r0)+,x
0

y:(r4)+,y0 1 1

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

move a,y:(r1)+ 1 1

mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

move b,y:(r1)+ 1 1

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,a 1 1

move a,y:(r1)+ 1 2 i’lock

_end

Totals 13 14
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B.1.23 N Point 3 × 3 2-D FIR Convolution

The two-dimensional FIR uses a [3× 3] coefficient mask:

      c(1,1) c(1,2) c(1,3)
      c(2,1) c(2,2) c(2,3)
      c(3,1) c(3,2) c(3,3)

The coefficient mask is stored in Y memory in the following order:

c(1,1), c(1,2), c(1,3), c(2,1), c(2,2), c(2,3), c(3,1), c(3,2), c(3,3).

The image is an array of 512× 512 pixels.  To provide boundary conditions for the FIR
filtering, the image is surrounded by a set of 0s such that the image is actually store
514× 514 array.

The image (with boundary) is stored in row major storage.  The first element of the a
image(,) is image(1,1) followed by image(1,2). The last element of the first row is
image(1,514) followed by the beginning of the next column image(2,1). These are st
sequentially in the array “im” in X memory:

■ Image(1,1) maps to index 0, image(1,514) maps to index 513;

■ Image(2,1) maps to index 514 (row major storage).

Although many other implementations are possible, this is a realistic type of image
environment in which the actual size of the image may not be an exact power of 2. O
possibilities include storing a 512× 512 image but computing only a 511× 511 result,
computing a 512× 512 result without boundary conditions but throwing away the pixe
on the border, and so on.

Figure B-6. FIR Filtering

Image Area
[512x512] 51

4

 Area of zeros

514
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Table B-13. N Point 3 × 3 2-D FIR Convolution Memory Map

Pointer

r0 image(n,m)
image(n,m+1)
image(n,m+2)

r1 image(n+514,m)
image(n+514,m+1)
image(n+514,m+2)

r2 image(n+2*514,m)
image(n+2*514,m+2)
image(n+2*514,m+3)

r4 FIR coefficients

r5 output image

Example B-22. N Point 3 × 3 2-D FIR Convolution

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #MASK,r4 ;point to coefficients

move #8,m4 ;mod 9

move #IMAGE,r0 ;top boundary

move #IMAGE+514,r1 ;left of first pixel

;left of first pixel 2nd row

move #IMAGE+2*514,r2 ;

;adjust. for end of row

move #2,n1 ;

move n1,n2 ;

move #IMAGEOUT,r5 ;output image

;first element, c(1,1)

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

do #512,row ; 2 5

do #512,col ; 2 5

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;c(1,2) 1 1

mac x0,y0,a x:(r0)-,x0 y:(r4)+,y0 ;c(1,3) 1 1
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mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,1) 1 1

mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,2) 1 1

mac x0,y0,a x:(r1)-,x0 y:(r4)+,y0 ;c(2,3) 1 1

mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,1) 1 1

mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,2) 1 1

mac x0,y0,a x:(r2)-,x0 y:(r4)+,y0 ;c(3,3) 1 1

; preload, get c(1,1)

macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

;output image sample

move a,y:(r5)+ ; 1 2 i'lock

col

; adjust pointers for frame boundary, adj r0,r5 w/dummy loads

move x:(r0)+,x0 y:(r5)+,y1 ; 1 1

; adj r1,r5 w/dummy loads

move x:(r1)+n1,
x0

y:(r5)+,y1 ; 1 1

; adj r2 (dummy load y1), preload x0 for next pass

move x:(r0)+,x0 ; 1 1

move y:(r2)+n2,y1 1 1

row

Total
P = 19

T = 11N2 + 8N + 7

Example B-22. N Point 3 × 3 2-D FIR Convolution  (Continued)
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B.1.24 Viterbi Add-Compare-Select (ACS)

This routine implements the Viterbi algorithm kernel. The algorithm is parametric and
any valid values of Trellis states number and any branch metrics.

Given Branch Metric value (BrM), ACS should perform as follows:

■ Fetch path metric of state(i) – Si.

■ Fetch path metric of state(j) – Sj.

■ Add BrM to Si.

■ Subtract BrM from Sj.

■ Compare and select the greater of the two:
Next Sk = Max (Si + BrM, S – BrM).

■ Store the result in next-state path-metric memory location.

■ Update the state’s Trellis history with the selection bit.

■ Perform the similar task for:
Next Sk+1 = Max (Si – BrM, Sj + BrM).

Figure B-7. Viterbi Butterfly

Example of Viterbi Butterfly:

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

000

111

000

111

State

Note: Branch metric of XXX = – (Branch metric of bit inverse of XXX)
For example, Branch metric (001) = – (Branch metric (110)).

16-State R=1/3 Trellis Structure - Butterfly Pairs

i

j

k

k + 1
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Figure B-8. ACS Butterfly—First Half

Figure B-9. ACS Butterfly—Second Half

Path Metric
RAM

MetricA TrellisA

Trellis
RAM

b1: MetricB b0: TrellisB

move l:(r5) + n5,a :

add y1,a l:(r5) – n5,b :
MetricA + y1 TrellisA

sub y1,b :
MetricB– y1 TrellisB

max a,b l:(r5) + n5,a :
b: max(a,b)

 Survivor Metric
a1: MetricA a0: TrellisA

asl b b1,x:(r4)
move b0,y:(r4) + Survivor Metric Trellis << 1 + 0

b0b1

b0b1

b0b1

a0a1

a0a1

r5

Path Metric
RAM

Trellis
RAM

r4

= VSL b,#0,l:(r4) +

Fetch from RAM

Fetch from RAM

Branch Metric

b0b1

a0a1

A

A

B

B A

B

Y1
$0

$f

X-space Y-space

X-space Y-space$10

$1f

B

Survivor Trellis

Survivor Metric Trellis << 1 + 1
b0b1

Path Metric
RAM

Trellis
RAM

r4

= VSL b,#1,l:(r4) +

move #1,a0
addl a,b b1,x:(r4)
move b0,y:(r4) +

X-space Y-space$10

$1f

B

b1: MetricB b0: TrellisB
sub y1,a l:(r5) – n5,b :

MetricA – y1 TrellisA

add y1,b :
MetricB + y1 TrellisB

max a,b :
b: max(a,b)

Survivor Metric

b0b1

b0b1

a0a1

Fetch from RAM

b0b1

A

B

B

B

Survivor Trellis
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Example B-23. Viterbi Add-Compare-Select (ACS)

Label Opcode Operands X Bus Data Y Bus Data Comment P T

; r0  - R/W pointer to branch-metric table.
; r4  - write pointer - path metric Present State tables.
; r5  - read pointer - path metric tables Previous State.
; n5 - bit-count value, used for decode loop.
; y1  - given Brm for ACS loop
; x0 - tmp register

ComputeBrMtrc: ;

; for the general case, assuming that the branch metrics are
; calculated and prepared as table at y:(r0) location

move y:(r0)+,y1 1

; load first branch metric.

move l:(r5)+n5,a 1

; a0 <- trellis, a1 <- PathMetr

; main ACS loop

do #NoOfAcsButt,NextStage ; 2

add y1,a l:(r5)-n5,b 1

; a=a+y1, b0 <- trellis, b1 <- PthMt

sub y1,b ; b=b-y1 1

max a,b l:(r5)+n5,a 1

; b=max(a,b) | refetch a

vsl b,#0,l:(r4)+ 1

; store survivor path metric & trellis

sub y1,a l:(r5)-n5,
b

1

; a=a-y1 | refetch b

add y1,b x:(r5)+,x0 y:(r0)+,y1 1

; b=b+y1 | increment r5 | load next brm.

max a,b l:(r5)+n5,a 1

; b=max(a,b) | fetch next a

vsl b,#1,l:(r4)+ 1

; store survivor path metric & trellis

NextStage:

move #branch_tbl,r0 2

; set r0 to start of br. metric table.

Total 14
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B.1.25 Parsing a Data Stream

This routine implements parsing of a data stream for MPEG audio. The data stream
composed by concatenated words of variable length, is allocated in consecutive me
words. The word lengths reside in another memory buffer. The routine extracts word
from the data stream according to their length. Two consecutive words are read from
stream buffer and are concatenated in the accumulator. Using bit offset and the spe
length, a field of variable length can be extracted. The decision whether to load a ne
memory word into the accumulator from the stream is determined when bit offset
overflow to the LSP of the accumulator. The following describes the pointers and regi
used by the routine:

■ r0—pointer to the buffer in X memory containing the variable length stream

■ r5—pointer to buffer in Y memory where the length of each field is stored

Example B-24. Parsing Data Stream

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ; this is the initialization code

move #stream_buffer,r0

move #length_buffer,r5

move #bits_offset,r4

move #boundary,r3

move #>48,b

move #>24,x0

move x0,x:(r3) b,y:(r4)

Get_bit
s

; bring length of next field and ‘24‘

move x:(r3),x0 y:(r5)+,y1 1 1

; bring word for parsing and “bits offset”

move x:(r0)+,a y:(r4),b 1 1

; bring next word for parsing, point back to first word

move x:(r0)-,a0 1 1

; calculate new “bits offset”, r1 points to current
; word
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B.1.26 Creating a Data Stream

The routine discussed in this section creates a data stream for MPEG audio. Words
variable length are concatenated and stored in consecutive memory words. The wo
generating the stream are allocated in a memory buffer and are right-aligned. The w
lengths reside in another memory buffer. The word and its length are loaded for inser
A word is read from the stream buffer into the accumulator. Using a bit offset and th
specified length, a field of variable length is inserted into the accumulator. The
accumulator is stored containing the new concatenated field. The decision whether to
a new word from the stream is made when bit offset overflow to the LSP of the
accumulator. Following are the pointers and registers used by the routine:

■ r0—pointer to a buffer in X memory, containing the variable length codes—th
code is right-aligned at each location

sub y1,b r0,r1 1 1

; save “bits offset” in x1

move b,x1 1 2

; merge width and offset

merge y1,b 1 1

; extract the field according to b, place it in a

extract b1,a,a 1 1

; restore “bits offset”, r0 points to next word

tfr x1,b (r0)+ 1 1

; compare “bits offset” to 24, extracted word to a1

cmp x0,b a0,a 1 1

; if “bits offset” is less or equal 24 another word is
; needed update “bits offset” and point to next word

add x0,b ifle 1 1

tgt r1,r0 1 1

; save “bits field” in memory

move b1,y:(r4) 1 1

Totals 12 13

Example B-24. Parsing Data Stream  (Continued)
B-42 DSP56300 Family Manual Motorola



Benchmarks

red

be
■ r2—pointer to a buffer in X memory containing the stream generated

■ r4—pointer to a buffer in Y memory where the actual length of each field is sto

■ r3—pointer to a location that stores the “bits offset,” the number of bits left to 
consumed, 48 initially

■ r5—pointer to a location storing the constant 24

■ r1—used as temporary storage (no need to initialize)

■ x0—stores the current word to be inserted

■ y1—stores the length of the code brought in x0

■ y0—stores 24

Table B-14. Creating Data Stream Memory Map

Pointer X memory Y memory

r0 data buffer

r2 stream buffer

r4 length buffer

r3 “bits offset”

r5 24

Example B-25. Creating Data Stream

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ;this is the initialization code

move #data_buffer,r0

move #stream_buffer,r2

move #length_buffer,r4

move #bits_offset,r3

move #boundary,r5

move #>48,b

move #>24,y0

move b,x:(r3) y0,y:(r5)

Put_bits

; bring code and its length
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move x:(r0)+,x0 y:(r4)+,y1 1 1

; bring “bits offset” and ‘24‘

move x:(r3),b y:(r5),y0 1 1

; calculate new “bits offset”, bring current word
; from stream buffer

sub y1,b x:(r2),a 1 1

; save “bits offset” in x1

move b,x1 1 2

; merge width and offset

merge y1,b 1 1

; insert the field according to b, place it in a

insert b1,x0,a 1 1

; restore “bits offset”, r1 points to current word

tfr x1,b r2,r1 1 1

; compare “bits offset” to 24, send new word to stream
; buffer

cmp y0,b a1,x:(r2)+ 1 1

; send a0 to next location in stream buffer in case of
; crossing boundary

move a0,x:(r2) 1 2

; if “bits offset” is less or equal 24 then update
; “bits offset” and point to the next word in stream
; buffer

add y0,b ifle 1 1

tgt r1,r2 1 1

; save “bits offset” in memory

move b1,y:(r4) 1 1

Totals 12 14

Example B-25. Creating Data Stream  (Continued)
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B.1.27 Parsing a Hoffman Code Data Stream

The routine discussed in this section parses a Hoffman code data stream. It extracts
field from the stream and brings two consecutive words to the accumulator from the
stream buffer. An address word is extracted using a bit offset and a field length. The
length is determined by the number of bits needed by the address of the two Hoffman
lookup tables. A word is loaded from the first lookup table. If the "Hit" bit in the word
not set, then a field of variable length is extracted. The length of the extracted field i
specified in the length field in the word. The bit offset is updated according to the len
of the extracted word. If the "Hit" bit in the word is set, a new address word is read f
the stream. A word is brought from the second lookup table. The bit field is extracte
according to the same guidelines. The flow chart inFigure B-10demonstrates the parsing
process:

Following are the pointers and registers used by the routine:

■ r0—pointer to the buffer in X memory containing the stream

■ r1—used as temporary storage (no need to initialize)

■ r3—pointer to buffer in Y memory where the extracted fields are stored

■ r5—pointer to a location that stores the “bits offset”, number of bits left to be
consumed, 48 initially

■ r2—pointer to the right table

■ r6—pointer to the first lookup table

■ r7—pointer to the second lookup table

Figure B-10. Parsing Process

Concatenated Two Consecutive Words From Stream Buffer

First
Lookup
Table

Second
Lookup
Table

Address Word

Bit Offset

Symbol Field Length Field"Hit" Bit

Symbol Field Length Field

Extracted
Field

Read Word From 1st Table
If "Hit" Was Not Set In Previous
Reading

Read Word From 2nd Table
If "Hit" Was Set In Previous
Reading
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■ r4—pointer to constants

Table B-15. Parsing Hoffman Code Data Stream Memory Map

Pointer X memory Y memory

r0 stream buffer

r3 extracted data buffer

r5 “bits offset”

r4 #no.1 address bus length

#no.2 mask word for length field

#no.3 merged width and offset

‘24‘

r6 first lookup table

r7 second lookup table

Example B-26. Parsing Hoffman Code Data Stream

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ;this is the initialization code

move #stream_buffer,r0

move #data_buffer,r3

move #bits_offset,r5

move #constants,r4

move #first_table,r2

move #first_table,r6

move #second_table,r7

;move constants to memory

move #>48,b

move b,y:(r5)

move #>3,n4

move #n0_1,y1

move y1,y:(r4)
+
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move #n0_2,y1

move y1,y:(r4)
+

move #n0_3,y1

move y1,y:(r4)
+

move #>24,y1

move y1,y:(r4)-n4

Get_bits

;bring word from stream, and “bits-offset”

move x:(r0)+,a y:(r5)+,b 1 1

;bring next word from stream, and address length

move y:(r4)+,y0 1 1

move x:(r0)-,a0 1 1

;calculate new “bits offset”, and save old one in x1

sub y0,b b,x1 1 1

;merge width and offset

merge y0,b 1 1

;extract the field according to b, place it in a

extract b1,a,a 1 1

;move address to n2

move a0,n2 1 1

;bring mask for length field in lookup table words

move y:(r4)+,y1 1 1

;bring the merged offset and length for extactionf

move y:(r4)+,x0 1 1

;r1 points to current address for extracted field

move r3,r1 1 1

;bring word from lookup table

Example B-26. Parsing Hoffman Code Data Stream  (Continued)
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move x:(r2+n2),a 1 1

;extract the field according to x0, place it in b

extract x0,a,b 1 1

;test if "Hit" bit is set, r2 points s first lookup
;table

tst a r6,r2 1 1

; if "Hit" bit is set, r2 points second lookup table,
;a holds address length

tmi y0,a r7,r2 1 1

;restore “bit offset” , send extracted field to
;memory

tfr x1,b b0,x:(r3)+ 1 1

; if "Hit" bit is set, restore r3

tmi r1,r3 1 1

;mask length field , save pointer to current stream
;word

and y1,a r0,r1 1 1

;calculate new “bits offset”, y1 holds ’24’

sub a,b y:(r4)-n4,y1 1 1

;compare “bits offset” to 24, update steam pointer

cmp y1,b (r0)+ 1 1

;if “bits offset” is less or equal 24 another word
;is needed - update “bits offset” and point to next
;word

add y1,b ifle 1 1

tgt r1,r0 1 1

;save “bits field” in memory

move b1,y:(r5) 1 1

Totals 22 22

Example B-26. Parsing Hoffman Code Data Stream  (Continued)
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Appendix C
From CDR Process to HiP Process
Competitive designs for wireless infrastructure applications require faster digital sign
processors (DSPs) with reduced power requirements. To meet this industry demand
Motorola’s roadmap for future DSP56300 family derivatives includes the application
continuously evolving, cutting-edge fabrication process technologies. This appendix
describes the general differences between DSP56300 family derivatives that use
Motorola’s Communication Design Rules (CDR) process technology and derivatives
use Motorola’s High-Performance (HiP) process technology. It presents the hardwar
software design implications for DSP56300 family derivatives. Migration of DSP563
family members from the CDR to the HiP4 process affects internal memory block si
voltage, operating frequency, and Port A timings.Table C-1 summarizes the
process-related differences for DSP56300 family derivatives using the CDR and HiP
process technologies and identifies related trends for future process technologies. T
remainder of this appendix discusses the differences summarized here.

Table C-1. CDR-to-HiP Process Differences Summary

Feature CDR HiP4 Future

Voltage 2.5 and 3.3v (core and
internal PLL)

1.8v (core and internal
PLL)

< 1.8v

Operating Frequency 100 MHz (maximum
frequency)

Operating frequencies >
100 MHz

Operating frequencies
>>100 MHz

Port A Timings:

DRAM Access Support

SRAM Timings

Synchronous Timings

Arbitration Timings

Address Trace Mode

Supported up to 100 MHz

Supported up to 100 MHz

Referenced to CLKOUT

Referenced to CLKOUT

Supported

TBD

Supported, but with
additional wait states

CLKOUT not supported

CLKOUT not supported;
alternatives exist

Not supported due to
BCLK not functioning

TBD

Accesses may require
additional wait states

CLKOUT not supported

CLKOUT not supported;
alternatives may continue
to exist

TBD

Memory Block Size 256 x 24-bit words 1024 x 24-bit words TBD

TBD = To be determined
Motorola DSP56300 Family Manual C-1



Voltage

,
erate

eater

imum
. As

ll Port

s in

CDR
cess

onal

ed.
C.1 Voltage

DSP56300 family members are dual-voltage devices. The core and internal PLL of
derivatives migrating to the HiP4 process technology operate from a 1.8v supply
compared to the core and internal PLL of derivatives using CDR process technology
which operate from a 2.5v and 3.3v supply. The input/output pins on each device op
from an independent 3.3v supply. DSPs with split power supplies afford designers gr
flexibility in migrating board designs to devices with new process technologies.
Motorola’s HiP process technologies will continue to take advantage of this feature.

C.2 Operating Frequency

DSP56300 family derivatives that use the CDR process technology operate at a max
frequency of 100 MHz. HiP4 derivatives operate at frequencies greater than 100 MHz
process technologies evolve, even greater speeds are anticipated.

C.3 Port A Timings

Speed increases resulting from the application of new process technologies affect a
A timings as follows:

■ DRAM Access Support

DRAM accesses are supported with DSP56300 family derivatives that use the
CDR process technology at speeds up to 100 MHz. Support for DRAM acces
HiP4 and beyond is being investigated.

■ SRAM Timings

SRAM accesses are supported with DSP56300 family derivatives that use the
process technology at speeds up to 100 MHz. The application of the HiP4 pro
technology to the DSP56300 family results in additional wait states for SRAM
timings. Future changes in process technology may continue to result in additi
wait states.

■ Synchronous Timings and Arbitration Timings

DSP56300 family members that use the CDR process technology rely onCLKOUT

as a reference signal for synchronous timings and arbitration timings. TheCLKOUT

output pin provides a 50 percent duty cycle output clock synchronized to the
internal processor clock when the Phase Lock Loop (PLL) is enabled and lock
At speeds made possible by HiP4 process technology,CLKOUT produces a
low-amplitude waveform that is not usable externally by other devices.
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Alternatives to usingCLKOUT exist. One example is the use of the Asynchronou
Bus Arbitration Enable Bit (ABE) in the Operating Mode register. When set, th
ABE bit eliminates the setup and hold time requirements with respect toCLKOUT

for BB andBG. Future changes in process technology may continue to produce
alternatives toCLKOUT.

■ Address Trace Mode

Address Trace mode, when available and enabled by setting the ATE bit in th
Operating Mode register of DSP56300 family derivatives that use the CDR pro
technology, allows users to determine the address of internal memory access
Specifically, when ATE is set,BCLK serves as a sampling signal and results in
output of the memory access address on the address lines. With the applicati
HiP4 process technology,BCLK does not function. WithoutBCLK functioning, no
signal exists to initiate the sampling process, and the DSP does not output an
addresses. Therefore, Address Trace mode is not supported under the HiP4 pr

C.4 Memory Block Size

The internal memory block size of DSP56300 derivatives using the HiP4 process
technology is 1024 x 24-bit words compared to 256 x 24-bit words in CDR derivative
This change in size affects DMA/core contention (and EFCOP/core contention for
derivatives, such as the DSP56307, that have an enhanced filter coprocessor).

In CDR derivatives, the internal RAM is divided into 256-word blocks. A situation of
contention exists if the core and DMA access the same block of 256 words. If both t
core and DMA access the same block, then the core always has priority, and the DM
delayed until a free slot is available. If the core and DMA access different blocks, the
not interfere with one another; each continues to operate at its maximum speed. Me
block boundaries are located at 256 word addresses.

This same situation applies to HiP4 derivatives, except that contention exists if the c
and DMA access the same block of 1024 words. Memory block boundaries are loca
1 K word addresses. To avoid DMA/core contention, DMA and core accesses must
address different 1024-word blocks. The following figure shows two examples of core
DMA accesses to different 256-word blocks in the DSP56307 (no contention) and th
resulting effect of these same accesses in a hypothetical HiP4 derivative.
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Figure C-1. CDR/HIP DMA and Core Access Comparisons

The same change in block size applies to EFCOP/core contention in derivatives tha
contain an EFCOP. Unlike Core/DMA contention, EFCOP/core contention may resu
faulty data output in the Filter Data Output Register. For example, in the DSP56307
contention occurs if the EFCOP and core attempt to access the same 256 word bloc
HiP4 derivatives, contention occurs if the EFCOP and core attempt to access the sam
word block. Both the DSP56307 and future HiP4 derivatives include the Data/Coeffic
Transfer Contention (FCONT) bit in the EFCOP Control Status Register. The FCONT
allows programmers to detect when EFCOP/core contention occurs.

256 1024

256

256

256

256 1024

256

Example 1: 256

No contention Core 256 No contention Core

DMA 256 DMA 1024

Example 2: 256

No contention DMA 256 Contention DMA

Core 256 Core

CDR Derivatives HiP4 Derivatives
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Symbols

(Data ALU) operations5-12
“Double-Precision Multiply” mode3-13

Numerics

16-bit arithmetic mode bit (bit 17 of SR)A-28
56-bit accumulators3-4

A

A JSR is performed5-12
AAR Bit Definitions 9-16
ABS instruction13-5
accumulator extension register3-17, 5-17
accumulator registers (A or B)3-4
accumulator shifter3-5
ADC instruction13-6
ADD instruction13-8
adder

modulo1-4
offset1-4
reverse-carry1-4

ADDL instruction13-9
ADDR instruction13-10
Address Attribute Registers

Bus Access Type9-18
Bus Address Attribute Polarity9-18
Bus Address Multiplexing9-17
Bus Address to Compare9-16
Bus Number of Address Bits to Compare9-16
Bus Packing Enable9-17
Bus Program Memory Enable9-18
Bus X Data Memory Enable9-18
Bus Y Data Memory Enable9-17

Address Attribute Registers (AAR0–AAR3)9-15
Address Attribute signals5-9
Address Generation Unit5-2
Address Generation Unit (AGU)1-3, 4-1
Address modification4-11, 4-12
address modifier types

Linear addressing4-10
Modulo addressing4-10
Multiple wrap-around modulo addressing4-10
Reverse-carry addressing4-10

address of instruction words in program memory
space5-23
Motorola
Address Register Direct4-7
Address Register Indirect4-12
address register indirect modes4-10
address register interlockA-11
address registers4-4
Address Trace Mode7-1
Address Trace model, enable5-8
address tracing mode1-2
addressing modes1-5, 4-6

Address Register Indirect4-6
PC-relative4-6
Register Direct4-6
Special4-6

allow some internal memory modules to switch from
Program RAM to data RAM (X, Y, or both) or vice
versa5-10

analog signal processing1-8
analog-to-digital1-9
AND instruction13-11
ANDI instruction3-13, 13-13
arithmetic computations5-12
Arithmetic Logic Unit (ALU)

Address4-1
addressing modes

PC-relative mode4-9
Register Direct mode4-7
Register Indirect mode4-7
special address modes4-9

Data3-1
arithmetic overflow occurs in the 56-bit result5-18
arithmetic saturation3-4
Arithmetic Saturation Mode3-11
Arithmetic Saturation mode3-4, 3-11, 5-13
Arithmetic Saturation Mode (SM) bit in the SR3-4
arithmetic stal3-21
arithmetic unit3-20
ASL instruction13-14
ASR 13-14, 13-16, 13-93
ASR instruction13-16
automatic saturation on 48 bits for the results going to

the accumulator, select5-13
automatic sign extension3-4

B

barrel shifte3-3
barrel shifter1-2
BCR 9-13
Index -1



Bcc instruction13-18
BCHG 3-20, 9-12
BCHG instruction13-19, 13-20
BCLR 3-20, 9-12
BCLR instruction13-22, 13-23
bit 6-3, 9-13
Bit Field Unit (BFU)3-5
Bit Manipulation Instructions3-22
bit parsing instructions3-20
bit-reversed Fast Fourier Transform (FFT) buffers4-10
BCR 9-13
block diagram of the OnCE controller7-12
block diagram of the OnCE module7-11
Block Floating Point FFT operation3-14
bootstrap ROM1-2
Boundary Scan Register (BSR)7-2, 7-3, 7-5
BRA instruction13-25
BRCLR 3-20
BCR 9-13
BRKcc 5-23
BRKcc instruction13-28
BRKcc or ENDDO inside do loops might cause an

improper operationA-19
BRSET3-20
OMR 9-13
BScc instruction13-31, 13-32
BSCLR3-20, 3-22
BSET3-20, 3-22, 9-12
BSET instruction13-35
BSR7-10
BSR instruction13-38
BSR register7-2, 7-5
BSSET3-20
BTST 3-20
BTST instruction13-41
bus arbitration example cases9-14
bus arbitration examples

Bus Busy9-14
bus lock during read/write modify instructions9-14
bus parking9-15
default9-14
low priority 9-14
Normal9-14

bus arbitration protocol9-12
bus arbitration scheme9-13
bus arbitration signals

Bus Busy (BB)9-11
Bus Grant (BG)9-11
Bus Request (BR9-11

Bus Control Register (BCR)9-12, 9-15, 9-18
Bus Area 0 Wait State Control9-20
Bus Area 1 Wait State Control9-20
Bus Area 2 Wait State Control9-20
Bus Area 3 Wait State Control9-20

Bus Default Area Wait State Control9-19
Bus Lock Hold9-19
Bus Request Hold9-19
Bus State9-19

Bus Control Register (BCR) Bit Definitions9-19
Bus Interface Unit (BIU)10-9
bus parking9-13, 9-14
BYPASS7-5
BYPASS instruction7-10

C

capacitor6-2
carry is generated by the MSB resulting from an

addition operation5-18
CDR to the HiP4 processC-1
charge pump loop filter6-3
Chip Select (CS) signals9-5
circular buffer10-4
circular buffers4-10
CLAMP insruction7-9
CLAMP instruction7-9
CLB instruction13-43
CLKGEN 1-6
CLKOUT 9-7
CLKOUT 6-2, 6-4, 6-5
Clock Generator (CLKGEN6-1
Clock Generator (CLKGEN)1-6
Clock Generator block diagram6-5
Clock input division6-4
Clock input frequency division6-3
Clock Out Disable (COD)6-2
clock synchronization6-10
CLR instruction13-45
CMP instruction13-46
CMPM instruction13-48
CMPU instruction13-49
code execution flow control5-23
Communication Design Rules (CDR) processC-1
Condition Codes12-14
conditional branch instructionA-18
configuration and status5-2
consecutive LAsA-18
Control hardware DO loops and REP5-1
control output buffer of clock atCLKOUT pin 6-7
controls and monitor stack extension in data

memory5-6
Convergent rounding3-8, 3-9
convergent rounding3-8
convergent rounding (round-to-nearest-even)3-3
Core1-2
counter mode for the DMA channel10-3
counter operation details10-4
current system state of processor, define5-11
Index -2 Motorola
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y

current system state of the processor, define5-11

D

DALU registerA-28
DAM

hardware and software triggers10-5
Data ALU 3-1

scaling3-6
Data ALU input registers3-3
Data ALU interlockA-11
Data ALU MAC unit5-16
Data ALU operations3-7
Data ALU registers3-2
Data Arithmetic Logic Unit5-12
data limiters3-6
data memory5-6
Data or Control Register Direct4-7
data representation3-7
data shifter3-6
data shifter/limiter circuits3-5
DEBUG 7-33
Debug Event7-1
DEBUG instruction13-50
Debug mode

in OnCE module7-23
Debug support1-2
DEBUG_REQUEST7-33
DEBUG_REQUEST instruction7-9

executing in OnCE module7-24
DEBUGcc instruction13-51
debugging interface7-1
debugging interface signals

Test Clock (TCK) 7-1
Test Data Input (TDI) 7-1
Test Data Output (TDO) 7-2
Test Reset (TRST)7-2

debugging tool that reflects internal memory accesses at
the external address lines5-8

DEC instruction13-52
Decode5-1
Decode instructions5-1
dedicated TAP7-3
details on counter operation10-4
detection of end of program loop5-14
Determine5-7
determine chip operating mode5-6
determine length of delay invoked when core exits the

Stop state5-11
determine what portion of the higher locations of

internal X and Y data memory switch to internal
program memory when Memory Switch mode is
enabled5-7

determine whether stack extension is mapped onto the
memory space or onto the Y memory space5-8

determines number of data words allocated in memor
for the stack in Extended mode5-22

determines operating mode of the chip5-6
deubgging interface signals

Debug Event (DE) 7-2
digital signal processing1-9
digital-to-analog1-9
Direct Memory Access (DMA)1-7
disable external bus controller to reduce power

consumption when external memories not
used5-11

disable priority assigned to Address Attribute signals
(AA0-AA3) 5-9

DIV instruction13-53
divide by 2, PLL6-3
Divide Factor (DF)1-6
DMA 1-7

3D modes (D3D = 1)10-22
address generation mode10-22
Bus Interface Unit (BIU) operations10-9
byte packing10-9
channel priority10-7
channel priority levels10-7
Circular buffer10-4
circular buffer10-13
circular buffer of length greater than 4096

words10-15
data transfer constraint10-6
DMA Channel Enable10-16
DMA channel function as a circular buffer10-13
DMA restrictions10-26
DRAM In-Page accesses10-9
Dual Counter mode10-13
Dynamic DMA/Core Prioritizing mode10-8
end-of-block transfer interrupt10-9
fast DMA request sources10-6
larger-than-normal field width in a

two-dimensional counter10-4
Linear buffer with non-unit stride10-4
non-3D addressing modes (D3D = 0)10-21
overlap of data movement with core10-7
priority between DMA channel and core10-8
Single-Counter mode10-15
Source Address Register (DSR)10-11
source and destination data structures10-4
special address modes10-4
Static DMA/Core Prioritizing mode10-8
Three-Dimensional Mode10-20
timing of core and DMA data transfers in context of

integral core clock cycle counts10-6
transfer dimensions10-4
transfer mode10-5
Motorola DSP56300 Family Manual Index -3
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DMA Address Mode10-20
DMA and Instruction Cache8-8
DMA Channel Priority10-18
DMA channel priority arbitration10-7
DMA channels10-2
DMA Continuous Mode Enable10-19
DMA Control Register (DCR)10-3
DMA Control Register (DCR) Bit Definitions10-16
DMA Control Registers (DCR0–DCR5)10-16
DMA Control Registers (DCR5 – 0)

DMA Address Mode10-20
DMA Channel Enable10-16
DMA Channel Priority10-18
DMA Continuous Mode Enable10-19
DMA Destination Space10-21
DMA Interrupt Enable10-16
DMA Request Source10-20
DMA Source Space10-21
DMA Transfer Mode10-17
Three-Dimensional Mode10-20

DMA Counter (DCO)10-2
DMA Counter Mode A10-11
DMA Counter Mode B10-12
DMA Counter Modes C, D and E10-13
DMA Counters (DCO5 – 0)10-11
DMA Destination Address Register (DDR)10-2
DMA Destination Address Registers

(DDR0–DDR5)10-11
DMA Destination Space10-21
DMA Interrupt Enable10-16
DMA Offset Register (DOR)10-3
DMA Offset Registers (DOR0–DOR3)10-24
DMA Request Source10-20
DMA Source Address Register (DSR)10-2
DMA Source Address Registers (DSR0–DSR5)10-10
DMA Source Space10-21
DMA Status Register (DSTR)10-3, 10-24

DMA Active 10-25
DMA Active Channel10-25
DMA Transfer Done10-26

DMA Status Register (DSTR) Bit Definitions10-25
DMA Transfer Mode10-17
DMA, advantages of using10-1
DMA, types of data structures

Constant Addressing10-3
One-dimensional10-3
Three-dimensional10-3
Two-dimensional10-3

DMAC 3-5
DMAC instruction3-12, 13-56
DO 4-5, 5-20
DO Forever Flag5-14
DO FOREVER instruction13-60
DO FOREVER loop5-14

DO instruction5-19, 5-23, 13-57, 13-58, 13-59
DO loop1-5, 5-19
DO loop flag5-14
double-precision multiplication3-12
double-precision multiplication algorithm3-20
Double-precision Multiply mode3-20
double-precision multiply operations3-13
DRAM Control Register9-21
DRAM Control Register (DCR)9-7, 9-15

Bus DRAM Page Size9-23
Bus Mastership Enable9-23
Bus Page Logic Enable9-23
Bus Refresh Enable9-22
Bus Refresh Prescaler9-22
Bus Refresh Rate9-22
Bus Row Out-of-page Wait States9-24
Bus Software Triggered Reset9-22

DRAM Control Register (DCR) Bit Definitions9-22
DSP56300 core implementation of JTAG7-3
DSP56300 core processing states (Normal, Exception

Reset, Wait, or Stop)5-1
dynamic scaling of fixed-point data3-6

E

External Memory Interface (Port A)
prevent improper operation when OMR9-11

OMR 9-11
eliminate setup and hold time requirements (with

respect to CLKOUT) forBB  andBG 5-9
enable/disable memory patch function5-7
enable/disable operation of the instruction cache

controller5-14
enable/disable stack extension5-7
ENABLE_ONCE7-30, 7-33
ENABLE_ONCE instruction7-9
ENDDO 5-23
ENDDO instruction13-67
end-of-block-transfer DMA interrupt10-9
EOR13-92
EOR instruction13-68, 13-69
EP register4-5
evaluate and increase the speed of

software-implemented algorithms5-8
EX bit 7-14
examples of bus arbitration9-14
exceptions and interrupts5-2
execution unit of the processor5-3
Exit Command bit (EX)7-14
Expanded mode11-2
EXTAL 7-10
EXTAL 6-3, 6-4
Extended mode5-20
Extension Pointer (EP) Register5-18
Index -4 Motorola
(8/26/99)



Extension Pointer (EP) register4-5
external address bus signals9-2
external bus control9-3, 9-4
external bus control signals9-2

Address Attribute9-2
Bus Busy9-4
Bus Clock9-5
Bus Clock, active low9-5
Bus Grant9-4
Bus Lock9-4
Bus Request9-4
Bus Strobe9-3
Column Address Strobe9-5
Read Enable9-2
Row Address Strobe9-2
Transfer Acknowledge9-3
Write Enable9-3

external clock that synchronizes test logic7-1
external data bus signals9-2
external memory

how it is divided9-1
External Memory Interface (AA lines as

memory-mapped chip selects or address lines to
external devices9-1

External Memory Interface (Port A)
accessing slower memories9-6
Address Bus, Data Bus, and Bus Control pins9-5
Bus Access Type9-18
Bus Address Attribute Polarity9-18
Bus Address Multiplexing9-17
Bus Address to Compare9-16
bus arbitration9-1, 9-11
bus arbitration example cases9-14
bus arbitration signals9-11
Bus Number of Address Bits to Compare9-16
Bus Packing Enable9-17
Bus Program Memory Enable9-18
bus timing9-5
Bus X Data Memory Enable9-18
Bus Y Data Memory Enable9-17
control hand-over of bus ownership by bus master

at end of bus possession9-11
disable Port A controller9-11
DRAM support9-7
dynamically control the number of wait states

inserted into a bus access operation9-1
execution of WAIT and STOP instructions9-13
external address bus signals9-2
external bus control signals9-2
external data bus signals9-2
external memory address defined9-5
Fast or Slow Bus Release mode9-13
internal wait state generator9-1
signals9-2

size9-1
SRAM support9-5
steps in bus arbitration sequence9-12
steps in DRAM in-page access9-10
steps in out-of-page access9-10
steps in SRAM access9-6

EXTEST7-5, 7-10
EXTEST instruction7-7, 7-9
EXTRACT 3-5, 3-20
EXTRACT instruction13-70, 13-71
EXTRACTU 3-5, 3-20
EXTRACTU instruction13-72, 13-73

F

Fast Access mode (Page mode)9-21
Fast Fourier Transforms (FFTs)3-6
Fast normalization for NORMF3-5
Fast or Slow Bus Release mode9-13
Fetch instructions5-1
FFT butterfly passes3-14
FFT scaling bit3-14
filtering the PLL power supply6-10
finite loops and do forever loopsA-19
First-In, First-Out (FIFO) queues4-10
Frequency6-4
Frequency Divider6-3
Frequency Division6-3
Frequency Multiplication6-3
Frequency multiplication6-4
frequency predivider6-3

G

GO Command bit (GO)7-14

H

Hardware DO Loop13-57
hardware DO loops5-2, 5-19
hardware stack1-5, 4-5
hardware stack is full,5-20
hardware stack, monitor how many entries are

used5-22
HI-Z instruction7-9

I

I instruction13-113, 13-114
IDCODE instruction7-7
IEEE Standard Test Access Port and Boundary-Scan

Architecture (IEEE 1149.1)7-2
IFcc instruction13-74
IFcc.U instruction13-75
ILLEGAL instruction 13-76
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Illegal Interrupt8-8
Immediate Short Data MOVE3-19
implement no-overhead nested hardware DO loops5-19
INC instruction13-77
increment or decrement address registers4-5
indicate location of top of System Stack5-20
indicate operating mode of DSP56300 core5-11
indicate the location of the last instruction word in a

hardware loop5-23
indicate when accumulator extension register is in

use5-17
Infinite Impulse Response (IIR) filtering4-12
INSERT3-5, 3-20
INSERT instruction13-78, 13-79
Insruction Cache

cache controller generates a miss on program
memory space address8-9

Illegal Interrupt8-8
PUNLOCK 8-4
read of the cache status via the OnCE module8-10

instruction
fetch delaysA-11
format12-14
guide12-13

Instruction Cache8-1
Burst Enable (BE) bit in the Extended Operating

Mode (EOM)8-3
Burst mode8-4
Cache Controller8-2
cache controller generates a hit on program

memory space address8-9
cache controller generates sector hit on program

memory space address8-9
cache controller generates sector miss on program

memory space8-9
Cache Enable (CE) bit in the Extended Mode

Register (EMR)8-1, 8-3
cache hit8-4
cache locking8-6
cache miss8-5
cache unlocking8-6
cache word miss, Burst mode disabled8-4
cache word miss, Burst mode enabled8-5
coherency between Program RAM mode and Cache

mode8-8
controlling8-3
debugging8-10
DMA transfers8-8
features8-1
flushing8-7
global cache flush8-7
hardware reset disables cache8-6
instruction fetch8-4

locked sectors are unlocked by PFLUSH
instruction8-7

Memory Array8-2
no match between the TAG field and all sector Ta

registers8-5
Operating Mode Register (OMR Bit 10)8-3
operation8-4
PFLUSH8-4
PFLUSHUN8-4
PFLUSHUN causes a flush only to the unlocked

sectors8-7
PFREE8-4
PLOCK 8-4, 8-6
PLOCKR8-4, 8-6
PMOVE instruction8-8
PUNLOCKR8-4
sector miss8-5
Sector Replacement Unit (SRU)8-2, 8-4, 8-6
Status Register (SR)8-1
switching from Cache to Program RAM mode8-8
Tag Register File8-2
transferring data8-8
unlocking sector by the PFREE, PUNLOCK, or

PUNLOCKR instructions8-6
unlocking sectors simultaneously using the

instruction PFREE8-7
use in real-time applications8-9
Valid Bit Array 8-2
VBIT field as an address to the Valid Bit Array8-4
wait states in the pipeline8-5

instruction cache1-2
instruction cache controller5-14
instruction set

ABS 13-5
ADC 13-6
ADD 13-8
ADDL 13-9
ADDR 13-10
AND 13-11
ANDI 13-13
ASL 13-14
ASR 13-16
Bcc 13-18
BCHG 13-19, 13-20
BCLR 13-22, 13-23
BRA 13-25
BRKcc 13-28
BScc13-31, 13-32
BSET13-35
BSR13-38
BTST 13-41
CLB 13-43
CLR 13-45
CMP 13-46
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CMPM 13-48
CMPU 13-49
DEBUG 13-50
DEBUGcc13-51
DEC 13-52
DIV 13-53
DMAC 13-56
DO 13-57, 13-58, 13-59
DO FOREVER13-60
ENDDO 13-67
EOR13-68, 13-69
EXTRACT 13-70, 13-71
EXTRACTU 13-72, 13-73
I 13-113, 13-114
IFcc 13-74
IFcc.U 13-75
ILLEGAL 13-76
INC 13-77
INSERT13-78, 13-79
Jcc13-80
JCLR13-81, 13-82
JMP13-83
JScc13-84
JSCLR13-85, 13-86
JSET13-87, 13-88
JSR13-89
JSSET13-90, 13-91
L: 13-126, 13-127
LRA 13-92
LSL 13-93, 13-94
LSR 13-95, 13-96
LUA 13-97, 13-98
MAC 13-99, 13-100
MAC(su,uu)13-102
MACI 13-101
MACR 13-103, 13-104
MACRI 13-105
MAX 13-106
MAXM 13-107
MERGE13-108, 13-109
MOVE 13-111
MOVEC 13-130, 13-131
MOVEM 13-132, 13-133
MOVEP 13-134, 13-135, 13-136
MPY 13-137, 13-138
MPY(su,uu)13-139
MPYI 13-140
MPYR 13-141
MPYRI 13-143
NEG 13-144
NOP13-145
NORMF 13-147, 13-148
NOT 13-149
OR 13-150, 13-151

ORI 13-152
R 13-115, 13-116
R:Y 13-124, 13-125
REP13-160, 13-161
RESET13-162
RND 13-163, 13-164
ROL 13-165
ROR13-166
RTI 13-167
RTS13-168
SBC13-169
STOP13-170, 13-171
SUB 13-172, 13-173
SUBL 13-174
SUBR13-175
Tcc 13-176, 13-177
TFR 13-178
TRAP 13-179
TRAPcc13-180
TST 13-181
U 13-117
VSL 13-182
WAIT 13-183
X 13-118, 13-119
X:R 13-120, 13-121
X:Y: 13-128, 13-129
Y 13-122, 13-123

instruction timingA-1
instructions that directly reference the CCR (ORI and

ANDI) 5-12
instructions that specify SR as a destination (e.g.,

MOVEC) 5-12
interlock3-23
interlock condition3-21
interlock hardware5-3
Internal X I/O space11-3, 11-6
interrupt1-5
interrupt priority level5-16
interrupt requests5-3
interrupt, long (by RTI instruction)A-28
interrupts and exceptions5-1
is set9-11

J

Jcc instruction13-80
JCLR3-20
JCLR instruction13-81, 13-82
JMP instruction13-83
Joint Test Action Group (JTAG)7-2
Joint Test Action Group (JTAG).7-2
JScc instruction13-84
JSCLR3-20
JSCLR instruction13-85, 13-86
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JSET3-20
JSET instruction13-87, 13-88
JSR4-5, 5-19, 5-20
JSR instruction5-19, 13-89
JSSET3-20
JSSET instruction13-90, 13-91
JTAG 1-2, 1-7, 7-2

BSR and the EXTEST instruction7-10
BYPASS

bypass the DSP56300 core for a given circuit
board test7-3

Bypass register7-9
CLAMP

force test data onto outputs of DSP56300
device7-3

DEBUG_REQUEST7-11
enter Debug mode7-3

DEBUG_REQUEST public instruction7-6
ENABLE_ONCE

access OnCE controller and circuits to control
target system7-3

ENABLE_ONCE instruction7-10
ENABLE_ONCE public instruction7-6
EXTEST

perform boundary scan operations7-3
HIGHZ

disable the output drive to pins during
testing7-3

HI-Z instruction7-9
HI-Z public instruction7-5
IDCODE

query identificaiton information7-3
IDCODE instruction7-8
Instruction Register Format7-6
mandatory public instructions7-5
SAMPLE/PRELOAD

sample the DSP56300 core-based device
system pins7-3

STOP instruction7-10
Stop mode7-10, 7-11
TAP Controller

Test-Logic-Reset state7-11
Test-Logic-Reset controller state7-6

JTAG ENABLE_ONCE7-11
JTAG ID register7-8
JTAG instruction shift register7-27
JTAG Instructions7-6
JTAG instructions

BYPASS7-10
CLAMP 7-9
DEBUG_REQUEST7-9
ENABLE_ONCE7-9
EXTEST7-7
IDCODE 7-7

SAMPLE/PRELOAD7-7
JTAG Test Access Port (TAP)7-1
Jump/Branch on bit instructions3-20

L

L: instruction13-126, 13-127
LA or LC values are being used outside the loopA-19
LA-1, one-word conditional branch instructionA-18
LAs, consecutiveA-18
LC and LA registers5-18
limiters in the DSP56300 core3-6
Limiting bit (L bit) in the SR3-11
Locked state, PLL6-3
Logical operations for AND, OR, EOR, and NOT3-5
long interrupt5-19, 5-23
long interrupt (by RTI instruction)A-28
long interrupts5-12, 5-18, 5-19
Loop Address (LA) Register5-2, 5-23
Loop Address Register (LA)4-10
Loop Counter (LC4-10
Loop Counter (LC) Register5-2
Loop Counter (LC) register5-23
loops, finite and do foreverA-19
Low-Power Divider (LPD)6-5
Low-Power Divider output6-6
LRA instruction13-92
LRU/Lock Status Register7-21
LSL instruction13-93, 13-94
LSR instruction13-95, 13-96
LUA 13-97, 13-176
LUA instruction13-97, 13-98

M

M0–M7 registers4-6
MAC 1-3
MAC instruction13-99, 13-100
MAC unit 3-3
MAC(su,uu) instruction13-102
MACI instruction13-101
MACR instruction3-3, 13-103, 13-104
MACRI instruction13-105
MAX instruction 13-106
MAXM instruction 13-107
memory breakpoints7-17

enabling7-25
memory expansion port1-2
memory map of space that is not accessible through P

A 9-1
memory patch function5-7
Memory Switch Configuration5-7
MERGE3-5, 3-20
MERGE instruction13-108, 13-109
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modifier registers4-6
modulo adder1-4, 4-1
modulo addressing4-12
modulo arithmetic types4-10
modulo arithmetic units4-5
modulo M4-12, 4-13
MOVE 3-19, 3-22
MOVE A,A (or B,B) instruction3-11
MOVE from SSH5-20
move from SSH or bit manipulation on SSHA-26
MOVE instruction13-111
MOVE instructions8-8
MOVE operations4-4
move to SSH or bit manipulation on SSHA-26
MOVE to SSH)5-19
MOVEC 5-12, 5-20, 5-22, 5-23
MOVEC instruction4-5, 13-130, 13-131
MOVEM 8-10
MOVEM instruction13-132, 13-133
MOVEP instruction13-134, 13-135, 13-136
moves from registers or accumulators3-17
moves in Sixteen-Bit Arithmetic mode3-16
moves into registers or accumulators3-16
MPY instruction13-137, 13-138
MPY(su,uu) instruction13-139
MPYI instruction13-140
MPYR instruction13-141
MPYRI instruction13-143
Multibit left shift 3-5
Multibit right shift 3-5
multi-dimensional and special address mode

transfers10-3
Multiple Wrap-Around Addressing mode4-13
Multiplication Factor (MF) of the PLL6-3
multiplier-accumulator (MAC)1-2, 1-3
Multiplier-Accumulator (MAC) unit3-3
multiply/accumulate operation3-3
multiplying integer number3-8
multiprecision multiplications3-12

N

N0–N7 registers4-5
Narrow Bandwidth mode6-3
NEG instruction13-144
nested hardware DO loops5-19
next available location to which a push can be made4-5
NOP between LABEL2 and LABEL1A-18
NOP instruction13-145
NOP instructionsA-26
Normal mode7-11
NORMF 3-5
NORMF instruction13-147, 13-148
NOT instruction13-149

nstruction Cache
size8-1

O

OBCR register7-19
OCR register7-13

bit 5—Exit Command bit (EX)7-14
bit 6—GO Command bit (GO)7-14

ODEC7-15
off-chip capacitor6-2
off-chip memory1-2
offset adder1-4, 4-1, 4-2
offset and modifier registers4-5
offset register4-5
Offset registers4-5
offset registers4-5
OMAC0 comparator7-18
OMAC1 comparator7-19
OMAL register7-18
OMBC counter7-21
OMLR0 register7-18
OMLR1 register7-19
OMR Register5-19
OMR register11-1
OnCE

Address Trace mode7-36
change of flow instruction7-27
displaying a specified register7-31
displaying X memory area7-31
enable Trace mode7-23
ensure Trace Buffer coherence7-27
examples of debugging procedures7-29
examples of OnCE-JTAG interaction7-33
PAB Register for Decode (OPABDR)7-26
PAB Register for Execute (OPABEX)7-26
poll the core status bits in the JTAG Instruction

Register7-29
reading the Trace buffer7-30
returning from Debug mode to Normal mode7-32
verifying that the chip has entered Debug

mode7-29
ways to enter Debug mode7-24

OnCE Breakpoint Control Register (OBCR)7-19
Breakpoint 0 Condition Code7-20
Breakpoint 0 Read/Write7-20
Breakpoint 1 Read/Write7-20
Breakpoint Event Bits7-19
Breakpoint1 Condition Code7-20
Memory Breakpoint7-21

OnCE Breakpoint Control Register (OBCR) Bit
Definitions7-19

OnCE Command Register (OCR)7-12, 7-13
Exit Command7-14
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Read/Write Command7-13
Register Select7-15

OnCe Command Register (OCR)
Go Command7-14

OnCE Command Register (OCR) Bit Definitions7-13
OnCE commands7-28
OnCE Decoder7-12
OnCE Decoder (ODEC)7-15
OnCE GDB Register (OGDBR)7-26
OnCE Memory Address Comparator 0 (OMAC0)7-18
OnCE Memory Address Comparator 1 (OMAC1)7-19
OnCE Memory Address Latch Register (OMAL)7-18
OnCE Memory Address Latch register (OMAL)7-18
OnCE Memory Breakpoint Counter (OMBC)7-21
OnCE Memory Limit Register 0 (OMLR0)7-18
OnCE Memory Limit Register 1 (OMLR1)7-19
OnCE module1-2, 1-7, 7-1
OnCE PAB Register for Fetch (OPABFR)7-26
OnCE Status and Control Register (OSCR)7-12, 7-16

Cache Hit7-16
Core Status7-16
Interrupt Mode Enable7-17
Memory Breakpoint Occurrence7-17
Software Debug Occurrence7-17
Trace Mode Enable7-17
Trace Occurrence7-17

OnCE Status and Control register (OSCR)8-10
OnCE Status and Control Register (OSCR) Bit

Definitions7-16
OnCE Trace Counter (OTC)7-22
OnCE trace logic7-22
on-chip DRAM controller9-21
On-Chip Emulation (OnCE) module1-7, 7-11
On-Chip Emulation module1-2
on-chip memory1-2
OnCMemory Breakpoint Occurrence7-17
Operating Mode Register (OMR)4-5, 5-2, 5-5, 5-6,

5-19, 8-3, 9-11, 11-1
Address Attribute Priority Disable5-9
Address Trace Enable5-8
Asynchronous Bus Arbitration Enable5-9
Bus Release Timing5-9
Cache Burst Mode Enable5-10
Chip Operating Mode5-11
Chip Operating Mode (COM) Byte5-6
Core-DMA Priority5-10
Extended Chip Operating Mode (EOM) Byte5-6
External Bus Disable5-11
Memory Switch Configuration5-7
Memory Switch Mode5-10
Patch Enable5-7
Stack Extension Enable5-7
Stack Extension Overflow Flag5-8
Stack Extension Underflow Flag5-8

Stack Extension Wrap Flag5-8
Stack Extension XY Select5-8
Stop Delay Mode5-11
System Stack Control/Status (SCS) Byte5-6
TA Synchronize Select5-9

Operating Mode Register (OMR) ATE bit7-36
Operating Mode Register bit definitions5-7
operating mode, determining5-6
OR instruction13-150, 13-151
OR(I) 13-152
ORI and ANDI5-12
ORI instruction3-13, 13-152
OSCR register7-16

bit 4—Trace Occurrence bit (TO)7-17
OTC counter7-22
out 9-10
out-of-page access9-8
Overflow bit (V bit) in the SR3-11
overflow bit is set or if the data shifter/limiter circuits

perform a limiting operation5-17
overflow in the destination operand size3-6
overflow protection3-4
overflows out of the data shifter3-5

P

PAG 1-4
Parallel Move Descriptions13-111

immediate short data move13-113
long memory data move13-126
X memory and register data move13-120, 13-124
X memory data move13-118, 13-122
XY memory data move13-128

parallel move operations5-12
partial accumulator3-18
PC Relative addressing modes4-9
PCAP 6-2, 6-3
PCTL1 PLL Enable (PEN) bit6-2
PCU1-4

Configuration and status registers5-4
configuration and status registers5-5
Program/Loop/Exception processing control

registers5-4
System Stack5-4
System Stack configuration and operation

registers5-4
PCU hardware System Stack5-18
PCU programming model5-4
PDC1-4
PCTL 6-3
PFLUSH8-7, 8-8
PFLUSHUN8-8
PFREE8-7
Phase Detector6-2
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Phase Detector (PD)6-3
Phase Locked Loop (PLL) clock generator6-1
phase skew of the PLL6-4
PIC 1-5
PINIT 6-2
pipeline conflicts3-20, 3-21
pipeline dependencies3-20
PLL 1-6

clock synchronization6-10
control on-chip crystal oscillator

transconductance6-9
Control PLL and on-chip crystal oscillator behavior

during Stop processing state6-8
control XTAL output from crystal oscillator

on-chip drive6-8
define Multiplication Factor (MF) applied to PLL

input frequency6-10
define PDF value that is applied to input

frequency6-7
define the DF of low-power divider6-9
Division Factor6-4
enable PLL operation6-8
loss of lock condition6-5
operating frequency6-6
PCTL Multiplication Factor6-4
PCTL Predivider Factor (PDF) bits6-4
phase skew6-4
recommendations for filtering PLL power

supply6-10
skew elimination6-4

PLL closed-loop6-3
PLL Control 1(PCTL1) Register6-2
PLL Control Register (PCTL)6-6

Clock Output Disable6-7
Crystal Range6-9
Division Factor6-9
Multiplication Factor6-10
PLL Enable6-8
PLL Stop State6-8
Predivider Factor6-7
XTAL Disable6-8

PLL Control Register (PCTL) Bit Definitions6-7
PLL filter 6-2
PLL lock state6-2
PLL Multiplication Factor (MF)6-2
PLL power supply6-10, 6-11
PLOCK 8-6
PLOCK 6-2
PLOCKR8-6
PMOVE 8-8
PMOVE transfer with the program memory space as the

destination8-8
PMOVE transfer with the program memory space as the

source8-8

PMOVER8-8, 8-9
PMOVEW 8-8, 8-9
Program5-2
Program Address Generator (PAG)1-4, 5-1, 5-3
Program control instructions3-22
Program Control Unit (PCU)1-4, 5-1, 10-1
Program Counter (PC)4-10
Program Counter (PC) Register5-2, 5-23
Program Decode Controller (PDC5-3
Program Decode Controller (PDC)1-4, 5-1
Program Interrupt Controller (PIC)1-5, 5-1, 5-3
program loop5-14
Program looping is initialized5-12
program memory

external11-7
internal11-7

program RAM1-2
Program/Loop/Exception processing control5-2
PUNLOCK 8-2, 8-6, 8-7
PUNLOCKR8-6, 8-7

R

R instruction13-115, 13-116
R:Y instruction13-124, 13-125
R0–R7 registers4-4
read result from stack may be improperA-26
read-modify-write instructions3-20
reduce interlocks5-3
reflect current Interrupt Priority Level (IPL) of

processor5-16
Register Direct addressing modes4-7
Register Indirect addressing modes4-7
REP instruction5-23, 13-160, 13-161
REPEAT mechanism5-2
repeat the repeated instruction5-23
representation of integer and fractional numbers3-8
RESET instruction13-162
result equals zero5-18
results of previous arithmetic computations, define5-12
reverse-carry adder1-4, 4-1, 4-2
Reverse-Carry Modifier4-11
rnable/disable Burst mode in memory expansion port

during instruction cache miss5-10
RND instruction13-163, 13-164
ROL instruction13-165
ROM, bootstrap1-2
ROR instruction13-166
rounding bit in the Status Register (SR)3-4
Rounding Mode (RM) bit in the SR3-10
Rounding Mode (RM) bit in the Status Register3-8
rounding modes3-8
rounding performed by the Data ALU during arithmetic

operations, select type of5-13
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round-to-nearest even number3-8
RTI 4-5, 5-20
RTI instruction13-167
RTI instruction initiates a return5-19
RTS5-20
RTS instruction13-168
RTS instruction initiates a return from the

subroutine5-19

S

SAMPLE/PRELOAD7-5
SAMPLE/PRELOAD instruction7-7
Saturation mode3-11
SBC instruction13-169
scaling3-10, 5-16

in Data ALU3-6
scaling and limiting3-19
Scaling mode3-4
Scaling Mode bits3-6
scaling or limiting3-17
select fast or slow bus release5-9
Sequencing for DEBUG_REQUEST and Poll the

Status7-33
seven stages of the pipeline5-1
seven-stage instruction pipeline5-1
seven-stage pipelined architecture of the PCU5-3
Shifting and limiting3-4
signal processing

analog1-8
digital 1-8

signals the external memory interface uses for
controlling and transferring data9-2

signed multiply-accumulate and round (MACR)
instruction3-3

Sixteen-bit Arithmetic mode3-5, 3-15, 3-19, 3-20
Sixteen-bit Arithmetic mode of operation,

enable/disable5-14
Sixteen-bit Compatibility (SC) mode4-3, 4-4
Skew elimination6-4
skew elimination6-4, 6-5
source accumulator3-6
SP Register Values in Non-extended Mode5-21
special address modes4-9
specify priority between core accesses and DMA

accesses to external bus5-10
specify priority of core accesses to external

memory5-13
specify scaling to be performed in Data ALU5-16
SSHA-26
SSL or SSH read from the stack result may be

improperA-26
Stack Counter (SC)5-18
Stack Counter (SC) Register5-2

Stack Counter (SC) register5-22
stack exception5-22
stack extansion is enabledA-26
stack extension4-5, 5-6
stack extension algorithm5-19
stack extension control logic5-19
stack extension delayA-13
stack extension enable5-7
Stack Extension Enable (SEN)5-19
Stack Extension mode is enabledA-19
stack Extension Pointer (EP)5-20
stack Extension Pointer (EP) Register5-2
stack overflow occurs in Stack Extended mode5-8
Stack Pointer (SP)5-18

Stack Error/P45-21
Stack Pointer5-22

Stack Pointer (SP) Register5-2
Stack Pointer (SP) register5-20
Stack Pointer (SP) Register Bit Definitions5-21
Stack Pointer (SP)Underflow Flag / P55-21
Stack Size (SZ) Register5-22
Stack Size Register (SZ)5-18
stack underflow occurs in Stack Extended mode5-8
standard program flow-control resources5-2
Status Register

Limit 5-17
Status Register (SR)3-2, 3-4, 3-6, 3-21, 4-3, 4-10, 5-2,

5-5, 5-11, 8-1, 8-3
Arithmetic Saturation Mode5-13
Cache Enable5-14
Carry5-18
Condition Code Register (CCR)5-12
Core Priority5-13
DO FOREVER flag5-14
DO Loop Flag5-14
Double-Precision Multiply Mode5-15
Extended Mode Register (EMR)5-11
Extension5-17
Interrupt Mask5-16
Mode Register (MR)5-11
Negative5-17
Overflow 5-18
Rounding Mode5-13
Scaling5-17
Scaling Mode5-16
Sixteen-bit Arithmetic Mode5-14
Sixteen-bit Compatibility Mode5-15
Unnormalized5-17
Zero5-18

Status Register Bit Definitions5-13
Status Register CE bit8-9
status stall3-21
STOP instruction7-10, 13-170, 13-171
Stop state6-2
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store return address and status for subroutine calls5-19
stystem stack, extending into 24-bit wide X or Y data

memory5-19
SUB instruction13-172, 13-173
SUBL instruction13-174
SUBR instruction13-175
Switch mode1-2
System Configuration mode11-2
System Stack5-2, 5-18, 5-20
System Stack (SS)5-2
System Stack (SSH, SSL)4-10
System Stack Configuration and Operation

Registers5-18
System Stack Configuration and Operation Registers

(SS, SSH, SSL)5-18
System Stack High (SSH)5-18
System Stack High (SSH) Register5-2
System Stack Low (SSL)5-18
System Stack Low (SSL) Register5-2

T

TAP 1-2, 1-7
TAP controller7-3
Tcc instruction13-176, 13-177
TCK pin 7-1
Test Access Port1-2
Test Access Port (TAP)1-7, 7-2
test clock input pin (TCK)7-1
test mode select input pin (TMS)7-1
Test Technology Committee of IEEE7-2
TFR instruction13-178
TMS pin 7-1
TMS Sequencing for Reading Pipeline Register7-35
TO bit 7-17
Trace Buffer7-26
Trace buffer7-26
Trace mode7-23

enabling7-25
Trace Occurrence bit (TO)7-17
transfer conditionally (Tcc)3-4
transfer Data ALU register (TFR) instruction3-4
transfer data between the program memory space and

any other source/destination8-8
transfer saturation3-4, 3-6
transfer stal3-22
TRAP instruction13-179
TRAPcc instruction13-180
TST 13-181
TST instruction13-181
two consecutive LAs have a conditional branch

instruction at LA-1 of the internal loopA-18
two MSBs of the Most Significant Portion (MSP) of the

result are identical5-17

twos-complement rounding3-8, 3-10

U

U instruction13-117
unlocking the Instruction Cache8-6
update-by-offset addressing modes4-5

V

VCO
divide by 26-3
frequency divider6-3

VCO oscillating frequency6-3
Vector Base Address (VBA) Register5-2
Vector Base Address (VBA) register5-23
Voltage Controlled Oscillator (VCO)6-3
VSL instruction13-182

W

WAIT instruction13-183
WAIT or STOP instruction9-8
wait states, external memory5-20
wos-complement rounding3-4

X

X Data Bus (XDB)3-2
X I/O space11-3, 11-6
X instruction13-118, 13-119
X:R instruction13-120, 13-121
X:Y: instruction13-128, 13-129
X-data RAM1-2

Y

Y Data Bus (YDB)3-2
Y instruction13-122, 13-123
Y-data RAM1-2
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	Six Data ALU registers (A2, A1, A0, B2, B1, and B0) that are concatenated into two general purpos...
	Two data bus shifter/limiter circuits

	The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y Data Bus (YDB) ...
	The Multiplier-Accumulator (MAC) unit comprises the main arithmetic processing unit of the DSP563...
	The multiplier executes 24-bit ¥ 24-bit, parallel fractional multiplies between twos-complement s...

	1.1.2 Address Generation Unit (AGU)
	The Address Generation Unit (AGU) performs the effective address calculations for addressing data...
	Linear
	Modulo
	Multiple wrap-around modulo
	Reverse-carry

	These arithmetic types easily allow creation of data structures in memory for FIFOs (queues), del...
	Linear addressing—Useful for general-purpose addressing
	Modulo addressing—Useful for creating circular buffers for FIFOs
	Multiple wrap-around modulo addressing—Useful for decimation, interpolation and waveform generati...
	Reverse-carry (bit-reverse) addressing—Useful for 2k-point FFT addressing

	The AGU is divided into halves, each with its own Address Arithmetic Logic Unit (Address ALU), on...
	Each Address ALU contains a 24-bit full adder, which is an offset adder. A second full adder—whic...


	1.2 Program Control Unit (PCU)
	The Program Control Unit (PCU) performs instruction fetch, instruction decoding, hardware DO loop...
	Program Decode Controller (PDC): Decodes the 24-bit instruction loaded into the instruction latch...
	Program Address Generator (PAG): Contains the hardware for program address generation, system sta...
	Program Interrupt Controller (PIC): Arbitrates among all interrupt requests (internal interrupts ...

	PCU features include:
	Position independent code (PIC) support
	Addressing modes optimized for DSP applications (including immediate offsets)
	On-chip instruction cache controller
	On-chip memory-expandable hardware stack
	Nested hardware DO loops
	Fast auto-return interrupts
	Program Address Trace mode support


	1.3 On-chip Instruction Cache Controller
	The instruction cache functions as a buffer memory between external memory and the DSP core proce...
	Software controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the Status Regis...
	Instruction Cache size of 1024 or 24-bit words
	8-way, fully associative instruction cache with sectored placement policy
	1- to 4-word transfer granularity
	Least recently used (LRU) sector replacement algorithm
	Transparent operation (i.e., no user management is required)
	Individual sector locking/unlocking
	Global cache flush controlled by software
	Cache controller status observable via the JTAG/OnCE port


	1.4 Port A External Memory Interface
	Port A is an external memory interface for memory expansion or memory-mapped I/O. Its programmabl...
	The Address Attribute (AA) lines operate as memory-mapped chip selects or as address lines to ext...

	1.5 Phase Lock Loop (PLL) and Clock Generator
	The clock generator in the DSP56300 core is composed of two main blocks:
	Phase Lock Loop (PLL): Clock-input division, frequency multiplication, and skew elimination
	Clock Generator (CLKGEN): Low-power division and clock pulse generation and change of low-power D...

	The PLL allows the processor to operate at a high internal clock frequency using a low frequency ...
	A lower frequency clock input reduces the overall electromagnetic interference generated by a sys...
	The ability to oscillate at different frequencies reduces costs by eliminating the need to add ad...


	1.6 Hardware Debugging Support
	The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the IEEE 1...
	An On-chip Emulation (OnCE) port supports hardware and software development on the DSP56300 core ...
	A third debugging feature is the Address Trace mode, which reflects internal Program RAM accesses...

	1.7 Direct Memory Access (DMA)
	The Direct Memory Access (DMA) block permits data transfers without the interaction of the core p...
	Six DMA channels supporting internal and external accesses
	One-, two-, and three-dimensional transfers (including circular buffering)
	End-of-block-transfer interrupts
	Triggering from interrupt lines and all peripherals


	1.8 Introduction to Digital Signal Processing
	Digital signal processing is the arithmetic processing of real-time signals that are sampled at r...
	Filtering
	Convolution (mixing two signals)
	Correlation (comparing two signals)
	Rectification, amplification, and/or transformation

	Historically, all of these functions require analog circuits. Only recently has semiconductor tec...
	Figure�1-2. Analog Signal Processing

	The equivalent circuit using a DSP is shown in Figure 1-3. This application requires an Analog-to...

	DSP Operation
	Figure�1-3. Digital Signal Processing
	The DSP output is processed by a D/A converter and is low-pass filtered to remove the effects of ...
	Fewer components
	Stable, deterministic performance
	No filter adjustments
	Wide range of applications
	Filters with much closer tolerances
	High noise immunity
	Easily implemented adaptive filters
	Built-in self-test capability
	Better power supply rejection

	The DSP56300 family is not a custom IC designed for a particular application; it is designed as a...
	Figure 1-4 shows the following key attributes of a DSP:
	Multiply/Accumulate (MAC) operation
	Fetching up to two operands per instruction cycle for the MAC
	Program control to provide versatile operation
	Input/output to move data in and out of the DSP

	The MAC operation is the fundamental operation used in DSP. The DSP56300 family of processors has...

	FIR Filter
	Figure�1-4. Mapping DSP Algorithms into Hardware
	1.9 Summary of Features
	The high throughput of the DSP56300 family of processors makes them well-suited for wireless and ...
	Speed: The DSP56300 family supports most high-performance DSP applications.
	Precision: The data paths are 24 bits wide, providing 144 dB of dynamic range; intermediate resul...
	Parallelism: Each on-chip execution unit, memory, and peripheral operates independently and in pa...

	— An instruction pre-fetch
	— A 24-bit ¥ 24-bit multiplication
	— A 54-bit addition
	— Two data moves
	— Two address-pointer updates using either linear or modulo arithmetic
	Flexibility: While many other DSPs need external communications circuitry to interface with perip...
	Sophisticated Debugging: Motorola’s On-Chip Emulation (OnCE) technology allows simple, inexpensiv...
	Phase Locked Loop (PLL)-Based Clocking: The PLL allows the chip to use almost any available exter...
	Invisible Pipeline: The seven-stage instruction pipeline is essentially invisible to the programm...
	Instruction Set: The instruction mnemonics are similar to those used for microcontroller units, m...
	Low Power: Designed in CMOS, the DSP56300 family consumes very little power. Two additional low-p...


	1.10 Manual Organization
	This manual describes the DSP56300 family Central Processing Unit in detail. Use this manual in c...
	This manual presents practical information to help the user accomplish the following:
	Understand the operation and instruction set of the DSP56300 family
	Write code for DSP algorithms
	Write code for general control tasks
	Write code for communication routines
	Write code for data manipulation algorithms

	Table 1-1 describes the contents of each chapter and each appendix.
	Table�1-1 DSP Family Manual Chapters (Continued)

	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	A
	B
	C
	D
	E
	Note: The latest electronic version of this document as well as other DSP documentation (includin...



	Chapter 2 Core Architecture Overview
	This chapter describes the DSP56300 family core, a powerful DSP engine that can execute an instru...
	The DSP56300 core is composed of:
	External Memory Expansion Port (Port A)—See Chapter 9
	Data Arithmetic Logic Unit (Data ALU)—See Chapter 3
	Address Generation Unit (AGU)—See Chapter 4
	Instruction Cache Controller—See Chapter 8
	Program Control Unit (PCU)—See Chapter 5
	Direct Memory Access (DMA) Controller—See Chapter 10
	PLL Clock Generator—See Chapter 6
	JTAG Test Access Port and On-Chip Emulation (OnCE) module—See Chapter 7

	To minimize the total system cost for customer applications, the DSP56300 core external memory in...
	The core is designed for low power consumption in Normal and Wait and Stop modes. In Normal mode,...
	Low-power features of the DSP56300 family core include the following:
	Very low-power CMOS design
	Low-power Wait standby mode
	Ultra-low power Stop mode
	Power management units for further power reduction
	Fully static logic, with operation frequency down to DC

	Sixteen-bit Compatibility mode enables full compatibility to object code written for the DSP56000...
	2.1 Core Buses
	The following 24-bit buses provide data exchange between the main core blocks:
	Global Data Bus
	GBD
	Between Program Control Unit and other core structures
	Peripheral I/O Expansion Bus
	PIO_EB
	To peripherals
	Program Memory Expansion Bus
	PM_EB
	To Program ROM
	Program Data Bus
	PDB
	Carries program data throughout the core
	Program Address Bus
	PAB
	Carries program memory addresses throughout the core
	X Memory Expansion Bus
	XM_EB
	To X memory
	X Memory Data Bus
	XDB
	Carries X data throughout the core
	X Memory Address Bus
	XAB
	Carries X memory addresses throughout the core
	Y Memory Expansion Bus
	YM_EB
	To Y Memory
	Y Memory Data Bus
	YDB
	Carries Y data throughout the core
	Y Memory Address Bus
	YAB
	Carries Y memory addresses throughout the core
	DMA Data Bus
	DDB
	Transfers data with DMA channels
	DMA Address Bus
	DAB
	Transfers address information with DMA channels
	Figure 2-1 is a block diagram of the DSP56303, a member of the DSP56300 family. The diagram illus...
	Figure�2-1. DSP56303 Block Diagram
	Note: The registers in the core are discussed in detail in the chapters on the individual functio...


	2.2 Core Processing
	As for all DSPs, the operation of the DSP56300 core is a combination of software and hardware int...
	Instruction Set: The instruction set provides the programming language for processing the algorit...
	Core Modules: These circuits transfer and modify data. They are generally configured through inte...
	Processing States: Core processing states modify the operation of the core processor and the core...

	— Normal: The typical operating mode in which code loads into the core processor and executes.
	— Exception: An event interrupts the normal execution flow. The processor halts normal processing...
	— Reset: All execution halts and the processor and its registers in all peripherals are restored ...
	— Wait: Typically invoked by the WAIT instruction; the application requires only minimal processi...
	— Stop: Typically invoked by using the STOP instruction; the application does not require immedia...
	— Debug: Application developers can operate the system under the control of the JTAG Test Access ...

	2.3 Processing States
	The following paragraphs describe the DSP56300 core processing states.
	2.3.1 Normal Processing State
	The Normal processing state is associated with instruction execution. DSP56300 core instructions ...
	All double-word instructions
	Instructions with an addressing mode that requires more than one cycle for the address calculation
	Instructions causing a change of flow

	Instruction pipelining allows overlapping of instruction execution so that a pipeline stage of a ...
	Each instruction requires a minimum of seven clock cycles to fetch, decode, and execute. This res...
	Table�2-1 Instruction Pipeline


	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n8
	n9
	n10
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n8
	n9
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n8
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n7
	n1
	n2
	n3
	n3e
	n4
	n5
	n6
	n1
	n2
	n3
	n3e
	n4
	n5
	n1
	n2
	n3
	n3e
	n4
	2.3.2 Exception Processing State (Interrupt Processing)
	The Exception Processing state is associated with interrupts that are generated by conditions ins...
	1. A hardware interrupt is synchronized with the DSP56300 core clock, and the interrupt pending f...
	2. All pending interrupts (external and internal) are arbitrated to select the interrupt to be pr...
	3. The interrupt controller freezes the program counter (PC) and fetches two instructions at the ...
	4. The interrupt controller inserts the two instructions into the instruction stream and releases...
	When a fast interrupt executes, the state of the machine is not saved on the stack if neither of ...
	Note: Any Jump to Subroutine (JSR) instructionmakes the interrupt long (for example, JScc, BSSET,...

	One of the main uses of interrupts is to transfer data between DSP memory or registers and a peri...
	Exceptions may originate from any of the 128 vector addresses listed in Table 2-2. Exceptions may...

	Table�2-2 Interrupt Sources (Continued)



	VBA:$00
	3
	VBA:$02
	3
	VBA:$04
	3
	VBA:$06
	3
	VBA:$08
	3
	VBA:$0A
	3
	VBA:$0C
	3
	VBA:$0E
	3
	VBA:$10
	0–2
	VBA:$12
	0–2
	VBA:$14
	0–2
	VBA:$16
	0–2
	VBA:$18
	0–2
	VBA:$1A
	0–2
	VBA:$1C
	0–2
	VBA:$1E
	0–2
	VBA:$20
	0–2
	VBA:$22
	0–2
	VBA:$24
	0–2
	VBA:$26
	0–2
	:
	:
	VBA:$FE
	0–2
	The 128 interrupts are prioritized into four levels. Level 3, the highest priority level, is not ...
	2.3.2.1 Hardware Interrupt Source
	Two types of hardware interrupts to the DSP56300 core exist: internal and external. The internal ...
	Stack Error
	Illegal Instruction
	Debug Request
	Trap
	DMAs
	Peripherals

	Each internal interrupt source is serviced if it is not masked. When serviced, the interrupt requ...
	The edge-triggered interrupts are latched as pending on the high-to-low transition of the interru...
	When the IRQA, IRQB, IRQC and IRQD interrupts are disabled in the interrupt priority register, th...
	Note: On all external, level-sensitive interrupt sources, the interrupt should be serviced (that ...


	2.3.2.2 Software Interrupt Sources
	There are two software interrupt sources:
	Illegal Instruction Interrupt (III): The III is a Non-Maskable Interrupt (IPL 3) that is serviced...
	TRAP: A Non-Maskable Interrupt (IPL 3) that is serviced immediately after the TRAP or TRAPcc inst...


	2.3.2.3 Interrupt Priority Structure
	Four interrupt priority levels (IPLs) exist. IPLs are numbered from 0 (the lowest level) to 3 (th...
	Hardware Reset
	Illegal Instruction Interrupt (III)
	Stack Error
	TRAP
	NMI
	Debug

	The interrupt mask bits (I1, I0) in the SR reflect the current processor priority level and indic...
	Table�2-3 Status Register Interrupt Mask Bits�
	The DSP56300 core has two interrupt priority registers: IPRC that is dedicated for DSP56300 core ...



	D5L1
	D5L0
	D4L1
	D4L0
	D3L1
	D3L0
	D2L1
	D2L0
	D1L1
	D1L0
	D0L1
	D0L0
	DxL1: 0
	DMA 0/1/2/3/4/5 IPL
	IDL2
	IDL1
	IDL0
	ICL2
	ICL1
	ICL0
	IBL2
	IBL1
	IBL0
	IAL2
	IAL1
	IAL0
	IxL2
	(See Table 2-5)
	IRQ A/B/C/D mode
	IxL1:0
	(See Table 2-4)
	IRQ A/B/C/D IPL
	Figure�2-1. Interrupt Priority Register C (IPRC)

	PerCL 1
	PerCL 0
	PerBL 1
	PerBL 0
	PerAL 1
	PerAL 0
	Per9L 1
	Per9L 0
	Per8L 1
	Per8L 0
	Per7L 1
	Per7L 0
	Per6L 1
	Per6L 0
	Per5L 1
	Per5L 0
	Per4L 1
	Per4L 0
	Per3L 1
	Per3L 0
	Per2L 1
	Per2L 0
	Per1L 1
	Per1L 0
	Figure�2-2. Interrupt Priority Register P (IPRP)
	Table�2-4 Interrupt Priority Level Bits

	0
	0
	No
	—
	0
	1
	Yes
	0
	1
	0
	Yes
	1
	1
	1
	Yes
	2
	Table�2-5 External Interrupt Trigger Mode Bit

	0
	Level
	1
	Negative Edge
	If more than one exception is pending when an instruction executes, the interrupt with the highes...
	Table�2-6 Exception Priorities Within an IPL (Continued)
	2.3.2.4 Instructions Preceding the Interrupt Instruction Fetch
	The following conditions apply to instructions preceding an interrupt instruction fetch:
	Every instruction requiring more than one cycle to execute is aborted when it is fetched in the c...
	Aborted instructions are fetched again when program control returns from the interrupt routine. T...
	If the first interrupt word fetch occurs in the cycle following the fetch of a one-word-one-cycle...
	During an interrupt instruction fetch, two instruction words are fetched — the first from the int...


	2.3.2.5 Interrupt Types
	Two types of interrupt routines can be used: fast and long. The fast routine consists of the two ...
	Note: Status is not preserved during a fast interrupt routine; therefore, instructions that modif...

	If one of the instructions in the fast routine is a JSR, then a long interrupt routine is formed....
	Only the long interrupt routine should be terminated by an RTI. Long interrupt routines are inter...
	Note: Do not use RTI for fast interrupts.


	2.3.2.6 Interrupt Arbitration
	External interrupts are internally synchronized with the processor clock before their interrupt-p...

	2.3.2.7 Interrupt Instruction Fetch
	The interrupt controller generates an interrupt instruction fetch address, which points to the fi...

	2.3.2.8 Interrupt Instruction Execution
	Interrupt instruction execution is considered “fast” if neither of the instructions of the interr...
	Table�2-7 Fast Interrupt Pipeline


	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	n1
	n2
	ii1
	ii2
	n3
	n4
	Execution of a fast interrupt routine always conforms to the following rules:
	1. The processor status is not saved.
	2. The fast interrupt routine can modify the status of the normal instruction stream (for example...
	3. The PC, which contains the address of the next instruction to be executed in normal processing...
	4. The fast interrupt returns without an RTI.
	5. Normal instruction fetching resumes using the PC following the completion of the fast interrup...
	6. A fast interrupt is not interruptible.
	7. A JSR instruction within the fast interrupt routine forms a long interrupt routine.
	Table�2-8 Long Interrupt Pipeline�


	n1
	n2
	ii1
	ii2
	n3
	sr1
	sr2
	sr3
	sr4
	sr5
	sr6
	n3
	n4
	n5
	n6
	n7
	n1
	n2
	jsr
	ii2
	n3
	sr1
	sr2
	sr3
	rti
	sr5
	sr6
	n3
	n4
	n5
	n6
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n3
	n4
	n5
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n3
	n4
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n3
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	—
	n1
	n2
	jsr
	—
	—
	sr1
	sr2
	sr3
	rti
	—
	Execution of a long interrupt routine always adheres to the following rules:
	1. A JSR to the starting address of the interrupt service routine is located at one of the two in...
	2. During execution of the JSR instruction, the PC and SR are stacked. The interrupt mask bits of...
	3. The interrupt service routine can be interrupted (that is, nested interrupts are supported), b...
	4. The long interrupt routine, which can be any length, should be terminated by an RTI, which res...
	Either of the two instructions of the fast interrupt can be the JSR instruction that forms the lo...
	Note: A REP instruction is treated as a single two-word instruction, regardless of how many times...

	If a non-interruptible code sequence is desired, change the IPL bits to the desired mask level. D...


	2.3.3 Reset Processing State
	The DSP device enters reset processing state when the external RESET pin is asserted (a hardware ...
	1. Internal peripheral devices are reset.
	2. The modifier registers (M0–M7) are set to $FFFFFF.
	3. The interrupt priority registers are cleared.
	4. The Bus Control Register (BCR), the Address Attribute Registers (AAR3–AAR0) and the DRAM Contr...
	5. The Stack Pointer (SP) and the Stack Counter (SC) are cleared.
	6. The following bits of the SR are cleared:
	— Rounding mode (RM) bit (Bit 21)
	— Arithmetic Saturation mode (SM) bit (Bit 20)
	— Cache Enable (CE) bit (Bit 19)
	— Sixteen-bit Arithmetic (SA) mode bit (Bit 17)
	— DO Forever (FV) flag bit (Bit 16)
	— DO Loop Flag (LF) bit (Bit 15)
	— Double Precision Multiply (DM) mode bit (Bit 14)
	— Sixteen-bit Compatibility (SC) mode bit (Bit 13)
	— Scaling (S[1 – 0]) bits (Bit 11 and Bit 10)
	— Condition Code bits (SR[7 – 0])
	7. The following bits of the SR are set:

	— Core Priority (CP[1 – 0]) bits (Bit 23 and Bit 22)
	— Interrupt (I[1 – 0]) mask bits (Bit 9 and Bit 8)
	8. The Instruction Cache Controller is initialized as described in Chapter�8, Instruction Cache.
	9. The Cache Enable (CE) bit in SR and the Burst mode bit in OMR are cleared.
	10. The PLL Control register is initialized as described in Chapter�6, PLL and Clock Generator.
	11. The Vector Base Address Register (VBA) is cleared.
	The DSP56300 core remains in the Reset state until RESET is deasserted. Upon leaving the Reset st...




	2.3.4 Wait Processing State
	The Wait processing state is a low-power consumption state that occurs when the WAIT instruction ...

	2.3.5 Stop Processing State
	The Stop processing state is the lowest power consumption mode that occurs when the STOP instruct...
	1. A low level is applied to the IRQA pin (IRQA asserted).
	2. A low level is applied to the RESET pin (RESET asserted).
	3. A low level is applied to the DE pin.
	Any of these actions enables the oscillator and, after a clock stabilization delay, clocks to the...


	1. If the exit from Stop state was caused by a low level on the RESET pin, then the processor ent...
	2. If the exit from Stop state was caused by a low level on the IRQA pin, then the processor serv...
	3. If the exit from Stop state was caused by a low level on the DE pin, then the processor enters...
	For minimum power consumption during the Stop state at the cost of longer recovery time, clear th...



	2.3.6 Debug State
	Debug state is invoked and used with the JTAG/OnCE port. See Chapter�7, Debugging Support for a d...



	Chapter�3 Data Arithmetic Logic Unit
	3.1 Introduction
	This section describes the architecture and the operation of the Data Arithmetic Logic Unit (Data...

	3.2 Data ALU Architecture
	The Data ALU contains the following components:
	Four 24-bit input registers
	A fully pipelined Multiplier-Accumulator (MAC)
	Two 48-bit accumulator registers
	Two 8-bit accumulator extension registers
	A Bit Field Unit (BFU) with a 56-bit barrel shifter
	An accumulator shifter
	Two data bus shifter/limiter circuits
	Figure 3-1 is a block diagram of the Data ALU.


	Bit Field Unit and Barrel Shifter
	Figure�3-1. Data ALU Block Diagram
	The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y Data Bus (YDB) ...
	All the Data ALU operations are performed in two clock cycles in pipeline fashion so that a new i...
	3.2.1 Data ALU Input Registers (X1, X0, Y1, Y0)
	X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treated as four i...

	3.2.2 Multiplier-Accumulator (MAC) Unit
	The Multiplier-Accumulator (MAC) unit is the main arithmetic processing unit of the DSP56300 core...
	The operation of the MAC unit occurs independently and in parallel with XDB and YDB activity, and...
	The 56-bit sum is stored back in the same accumulator. The multiply/accumulate operation is fully...
	The arithmetic unit’s result going into the accumulator can be saturated so that it fits into 48 ...

	3.2.3 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)
	The six Data ALU registers (A2, A1, A0, B2, B1, and B0) form two general-purpose, 56-bit accumula...
	The overflow protection is performed after the contents of the accumulator are shifted according ...
	Automatic sign extension of the 56-bit accumulators is provided when the A or B register is writt...

	3.2.4 Accumulator Shifter
	The accumulator shifter is an asynchronous parallel shifter with a 56-bit input and a 56-bit outp...
	No shift (unmodified)
	24-bit right shift (arithmetic) for DMAC
	16-bit right shift (arithmetic) for DMAC in Sixteen-bit Arithmetic mode
	Force to zero

	3.2.5 Bit Field Unit (BFU)
	The Bit Field Unit (BFU) contains a 56-bit parallel bidirectional shifter with a 56-bit input and...
	Multibit left shift (arithmetic or logical) for ASL, LSL
	Multibit right shift (arithmetic or logical) for ASR, LSR
	1-Bit rotate (right or left) for ROR, ROL
	Bit field merge, insert and extract for MERGE, INSERT, EXTRACT and EXTRACTU
	Count leading bits for CLB
	Fast normalization for NORMF
	Logical operations for AND, OR, EOR, and NOT

	3.2.6 Data Shifter/Limiter
	The data shifter/limiter circuits provide special post-processing on data read from the ALU accum...
	3.2.6.1 Scaling
	The data shifters in the shifters/limiters unit can perform the following data shift operations:
	Scale up—shift data one bit to the left
	Scale down—shift data one bit to the right
	No scaling—pass the data unshifted
	Each data shifter has a 24-bit output with overflow indication. These shifters permit dynamic sca...


	3.2.6.2 Limiting
	In the DSP56300 core, the Data ALU accumulators A and B have eight extension bits. Limiting occur...
	If the contents of the selected source accumulator are represented without overflow in the destin...
	$7FFFFF for 24-bit positive numbers
	$7FFFFF FFFFFF for 48-bit positive numbers
	$800000 for 24-bit negative numbers
	$800000 000000 for 48-bit negative numbers
	This process is called transfer saturation. The value in the accumulator register is not shifted ...



	3.3 Data ALU Arithmetic and Rounding
	The following paragraphs describe the Data ALU data representation, rounding modes, and arithmeti...
	3.3.1 Data Representation
	The DSP56300 core uses a fractional data representation for all Data ALU operations. Figure 2 sho...



	2–47
	Figure�3-2. Bit Weighting and Alignment of Operands
	The number representation for integers is between ± 2 (N – 1); whereas, the fractional representa...

	S
	Figure�3-3. Integer/Fractional Multiplication
	The key difference is in the alignment of the 2N – 1 bit product. In fractional multiplication, t...
	Note: Be aware when multiplying integer numbers that since the DSP56300 core incorporates a fract...

	3.3.2 Rounding Modes
	The DSP56300 core Data ALU rounds the accumulator register to single precision if requested in th...
	3.3.2.1 Convergent Rounding
	Convergent rounding (also called round-to-nearest even number) is the default rounding mode. The ...
	Figure�3-4. Convergent Rounding (No Scaling)


	3.3.2.2 Twos Complement Rounding
	When twos complement rounding is selected by setting the Rounding Mode (RM) bit in the SR, all va...
	Figure�3-5. Twos Complement Rounding (No Scaling)



	3.3.3 Arithmetic Saturation Mode
	Setting the Arithmetic Saturation Mode (SM) bit in the SR limits the arithmetic unit’s result to ...
	Table�3-1 Actions of the Arithmetic Saturation Mode (SM = 1)


	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1
	The two saturation constants $007FFFFFFFFFFF and $FF800000000000 are not affected by the Scaling ...
	In Arithmetic Saturation mode, the Overflow bit (V bit) in the SR is set if the Data ALU result i...
	Note: The Arithmetic Saturation mode is always disabled during execution of the following instruc...

	3.3.4 Multiprecision Arithmetic Support
	A set of Data ALU operations facilitate multiprecision multiplications. When these instructions a...
	Table�3-2 Acceptable Signed and Unsigned Twos-Complement Multiplication


	MPY/MAC su
	MPY/MAC uu
	DMACss
	DMACsu
	DMACuu
	Figure 3-6 shows how the DMAC instruction is implemented inside the Data ALU.
	Figure�3-6. DMAC Implementation

	Figure 3-7 illustrates the use of these instructions for a double-precision multiplication. The s...
	Figure�3-7. Double-Precision Multiplication Using DMAC

	3.3.4.1 Double-Precision Multiply Mode
	To support existing DSP56000 code, double-precision multiply operations can also be performed wit...
	The double-precision multiply algorithm is shown in Figure 3-8. The ORI instruction sets the DM m...
	In Double-Precision Multiply mode, the behavior of the four specific operations listed in the dou...
	Note: Since the double-precision multiply algorithm uses the Y0 register for all stages, do not c...

	ori #$40,mr ;enter mode
	move x:(r1)+,x0 y:(r5)+,y0 ;load operands
	mpy y0,x0,a x:(r1)+,x1 y:(r5)+,y1 ;LSP*LSP->a
	mac x1,y0,a a0,y:(r0) ;shifted(a)+
	;���MSP*LSP->a
	mac x0,y1,a ;a+LSP*MSP->a
	mac y1,x1,a a0,x:(r0)+ ;shifted(a)+
	;���MSP*MSP->a
	move a,l:(r0)+
	andi #$bf,mr ;exit mode
	; non-restricted Data ALU operation ;pipeline delay
	Figure�3-8. Double-Precision Algorithm


	3.3.5 Block Floating-Point FFT Support
	The Block Floating Point FFT operation requires the early detection of data growth between FFT bu...
	Data growth detection is implemented as a status bit in the SR. The FFT scaling bit S, Bit 7 of t...

	3.4 Data ALU Programming Model
	The Data ALU features 24-bit input/output data registers that can be concatenated to accommodate ...


	*
	Figure�3-9. Data ALU Core Programming Model
	3.5 Sixteen-Bit Arithmetic Mode
	Setting the SA bit in the SR enables the Sixteen-bit Arithmetic mode of operation. In this mode, ...
	In the Sixteen-bit Arithmetic mode of operation, the source operands can be 16-bit, 32-bit, or 40...
	Notes: 1. When switching to and from Sixteen-bit Arithmetic mode, no arithmetic instruction or a ...
	2. Be cautious about exchanging data between Sixteen-bit Arithmetic mode and 24-bit arithmetic mo...
	Figure�3-10. Sixteen-Bit Arithmetic Mode Data Organization

	3.5.1 Moves in Sixteen-Bit Arithmetic Mode
	In Sixteen-bit Arithmetic mode, the Data ALU registers are still read or written as 24- or 48-bit...
	3.5.1.1 Moves into Registers or Accumulators
	When XDB or YDB are moved into a full Data ALU accumulator (A or B), the 16 LSBs of the bus are p...
	When XDB or YDB is moved into a register (X0, X1, Y0 or Y1) or partial accumulator (A0, A1, B0 or...
	When XDB or YDB is moved into the accumulator extension register (A2 or B2), the 8 LSBs of the bu...
	When XDB and YDB are moved into a 48-bit register (X or Y) or partial accumulator (A10 or B10), t...
	Table�3-3 Moves into Registers or Accumulators

	3.5.1.2 Moves from Registers or Accumulators
	When a partial accumulator (A0, A1, B0 or B1) is moved to the XDB or YDB, the 16 MSBs of the sour...
	When a partial accumulator (A10 or B10) is moved to XDB and YDB, the 16 MSBs of the MSP of the so...
	When a full Data ALU accumulator (A or B) is moved to XDB or YDB, scaling and limiting is perform...
	When a full Data ALU accumulator (A or B) is moved to XDB and YDB, scaling and limiting is perfor...
	When a register (X0, X1, Y0 or Y1) is moved to XDB or YDB, the 16 MSBs of the source are transfer...
	When a 48-bit register (X or Y) is moved to XDB and YDB, the 16 MSBs of the high register (X1 or ...
	Note: When a read operation of a Data ALU register (X, Y, X0, X1, Y0 or Y1) immediately follows a...

	Table�3-4 Moves from Registers or Accumulators (Continued)
	16 MSBs of source into 16 LSBs of bus with eight zeros in MSBs
	No scaling or limiting
	Source occupies 8 LSBs of bus
	Next 16 bits are sign extension of Bit 7
	16 MSB of MSP of source (A1 or B1) transferred to 16 LSBs of XDB with eight zeros in MSBs
	16 MSBs of the LSP of source (A0 or B0) transferred to 16 LSBs of YDB with eight zeros in the MSBs.
	No scaling or limiting
	Scaling and limiting performed
	16-bit scaled word placed on 16 LSBs of bus
	Sign extension placed in eight MSBs of bus
	Scaling and limiting performed
	16 MSBs of 32-bit scaled and limited double word placed on XDB 16 LSBs
	Sign extension placed in eight MSBs on bus
	16 LSBs of 32-bit scaled and limited double word placed on 16 LSBs of YDB with eight zeros on the...
	16 MSBs transferred to 16 LSBs of bus with eight zeros in MSBs
	16 MSBs of high register (X1 or Y1) placed on 16 LSBs of XDB with eight zeros on eight MSBs of bus
	16 LSBs of low register (X0 or Y0) placed on 16 LSBs of YDB with eight zeros on eight MSBs of bus


	3.5.1.3 Short Immediate moves
	When an Immediate Short Data MOVE is performed in Sixteen-bit Arithmetic mode and the destination...
	When the destination register is A, B, X0, X1, Y0, or Y1, the 8-bit immediate short operand is in...

	3.5.1.4 Scaling and Limiting
	If scaling is specified, the data shifter virtually concatenates the 16-bit LSP to the 16-bit MSP...
	During the Sixteen-bit Arithmetic mode of operation, the limiting is affected as described below:
	The maximum positive value is $007FFF ($007FFF00FFFF for double precision).
	The maximum negative value is $008000 ($008000000000 for double precision).


	3.5.2 Sixteen-bit Arithmetic
	When an operand is read from a Data ALU register or accumulator to the arithmetic unit, the 8 LSB...
	The arithmetic unit virtually concatenates the 16-bit LSP with the 16-bit MSP to form a continuou...
	The operand and result widths are 16/32/40 instead of 24/48/56.
	The rounding, if specified by the operation, is performed on the Most Significant Bit of the 16-b...
	The arithmetic saturation detection is unchanged, but the saturated values change to $007FFF00FFF...
	In ADC/SBC instructions, the Carry bit C is added/subtracted to the LSB of the 16-bit LSP.
	Logic operations affect only the 16-bit wide word.
	Rotation in rotate instructions is performed on a 16-bit wide word.
	The possible normalization range changes, thus affecting the CLB instruction.
	The DMAC instruction performs a 16-bit arithmetic right shift of the accumulator before accumulat...
	The double-precision multiplication algorithm is not supported, even if the Double-precision Mult...
	The bit parsing instructions (MERGE, EXTRACT, EXTRACTU, and INSERT) are modified by the Sixteen-b...
	In the read-modify-write instructions (BCHG, BCLR, BSET and BTST) and in the Jump/Branch on bit i...


	3.6 Pipeline Conflicts
	No pipeline dependencies exist when the result of the Data ALU is used as a source operand for th...
	3.6.1 Arithmetic Stall
	Since every Data ALU instruction completes in two clock cycles, an interlock condition occurs dur...
	Figure�3-11. Pipeline Conflicts—Arithmetic Stall


	3.6.2 Status Stall
	A second interlock condition, named status stall, occurs during an attempt to read the Status Reg...
	Note: Read Status Register implies a MOVE from SR. Bit manipulation instructions (for example, BS...

	Figure 3-12 describes the cases in which the pipelined nature of the Data ALU generates a status ...
	Figure�3-12. Pipeline Conflicts—Status Stall


	3.6.2.1 Transfer Stall
	A third interlock condition, transfer stall, occurs when the source Data ALU accumulator of the m...
	Figure�3-13. Pipeline Conflicts—Transfer Stall
	Note: A special case of interlock occurs when a 24-bit logic instruction is used and a write oper...

	or x1,a y1,a0




	Chapter�4 Address Generation Unit
	The Address Generation Unit (AGU) is one of three execution units on the DSP56300 core. The AGU p...
	Linear
	Modulo
	Multiple wrap-around modulo
	Reverse-carry
	4.1 AGU Architecture
	The AGU is divided into halves, each with its own Address Arithmetic Logic Unit (Address ALU). Ea...
	Plus one
	Minus one
	Plus the contents of the respective offset register N
	Minus the contents of the respective offset register N
	A second full adder—a modulo adder—adds the summed result of the first full adder to a modulo val...

	Plus one
	Minus one
	The offset N (stored in the respective offset register)
	Minus N to the selected address register
	The offset adder and the reverse-carry adder operate in parallel and share common inputs. The onl...
	Figure 4-1 AGU Block Diagram

	Each Address ALU can update one address register from its respective address register file during...
	The two Address ALUs can generate up to two addresses every instruction cycle:

	One for the PAB, or
	One for the XAB, or
	One for the YAB, or
	One for the XAB and one for the YAB
	The AGU can directly address 16,777,216 locations on each of the XAB, YAB, and PAB. Using a regis...
	The registers are:

	Address Registers R0 – R3 on the Low Address ALU and R4 – R7 on the High Address ALU
	Offset Registers N0 – N3 on the Low Address ALU and N4 – N7 on the High Address ALU
	Modifier Registers M0 – M3 on the Low Address ALU and M4 – M7 on the High Address ALU
	These registers are referred to as Rn for any address register, Nn for any offset register, and M...

	Low Address ALU register triplets
	— R0:N0:M0
	— R1:N1:M1
	— R2:N2:M2
	— R3:N3:M3

	High Address ALU register triplets
	— R4:N4:M4
	— R5:N5:M5
	— R6:N6:M6
	— R7:N7:M7
	The Global Data Bus (GDB) can read from or write to each register. The address output multiplexer...



	4.2 Sixteen-bit Compatibility Mode
	When the Sixteen-bit Compatibility (SC) mode bit is set in the Status Register (SR), AGU operatio...
	MOVE operations to/from any of the AGU registers (R0 – R7, N0 – N7 and M0 – M7) clear the eight M...
	The eight MSBs of any AGU address calculation result are cleared.
	The sign bit of the selected N register is Bit 15 instead of Bit 23.
	The eight MSBs of the address are ignored in the calculations of memory regions.
	In Sixteen-bit Compatibility (SC) mode, proper memory access is not guaranteed for an address reg...


	4.3 Programming Model
	The programmer views the AGU as eight sets of three registers, as shown in Figure 4-2. These regi...
	Figure 4-2 AGU Programming Model

	4.3.1 Address Register Files
	The eight 24-bit address registers R0 – R7 can contain addresses or general-purpose data. The 24-...
	In addition, an address register (Rn) can be pre-updated or post-updated according to the address...
	The address register modification is performed by one of the two modulo arithmetic units. Most ad...

	4.3.2 Stack Extension Pointer
	The hardware stack is an area in internal memory that provides temporary storage during program e...
	The contents of the 24-bit stack Extension Pointer (EP) register point to the stack extension whe...

	4.3.3 Offset Register Files
	The eight 24-bit offset registers, N[0 – 7], contain offset values to increment or decrement addr...

	4.3.4 Modifier Register Files
	The eight 24-bit modifier registers, M0–M7, define the type of address arithmetic performed for a...


	4.4 Addressing Modes
	As listed in Table 4-5, the DSP56300 family core provides four different addressing modes:
	Register Direct
	Address Register Indirect
	PC-relative
	Special
	Table�4-5 Addressing Modes Summary (Continued)


	Data or Control Register
	No
	÷
	÷
	Address Register Rn
	No
	÷
	Address Modifier Register Mn
	No
	÷
	Address Offset Register Nn
	No
	÷
	No Update
	No
	÷
	÷
	÷
	÷
	÷
	(Rn)
	Post-increment by 1
	Yes
	÷
	÷
	÷
	÷
	÷
	(Rn) +
	Post-decrement by 1
	Yes
	÷
	÷
	÷
	÷
	÷
	(Rn) –
	Post-increment by Offset Nn
	Yes
	÷
	÷
	÷
	÷
	÷
	(Rn) + Nn
	Post-decrement by Offset Nn
	Yes
	÷
	÷
	÷
	÷
	(Rn) – Nn
	Indexed by Offset Nn
	Yes
	÷
	÷
	÷
	÷
	(Rn + Nn)
	Pre-decrement by 1
	Yes
	÷
	÷
	÷
	÷
	– (Rn)
	Short/Long Displacement
	Yes
	÷
	÷
	÷
	(Rn + displ)
	Short/Long Displacement
	PC-relative
	No
	÷
	(PC + displ)
	Address Register
	No
	÷
	(PC + Rn)
	Short/Long Immediate Data
	No
	÷
	Absolute Address
	No
	÷
	÷
	÷
	÷
	Absolute Short Address
	No
	÷
	÷
	÷
	Short Jump Address
	No
	÷
	I/O Short Address
	No
	÷
	÷
	Implicit
	No
	÷
	÷
	÷
	4.4.1 Register Direct Modes
	The Register Direct addressing modes specify that the operand is in one or more of the ten Data A...
	Data or Control Register Direct: The operand is in one, two, or three Data ALU register(s), as sp...
	Address Register Direct: The operand is in one of the 24 address registers specified by an effect...

	4.4.2 Address Register Indirect Modes
	The Address Register Indirect modes specify that the address register points to a memory location...
	No Update (Rn)—The operand address is in the address register. The contents of the address regist...
	Example: MOVE x:(Rn),x0
	Post-Increment By One (Rn) + —The operand address is in the address register. After the operand a...
	Example: MOVE x:(Rn)+,x0
	Post-Decrement By One (Rn) – —The operand address is in the address register. After the operand a...
	Example: MOVE x:(Rn)-,x0
	Post-Increment By Offset Nn (Rn) + Nn—The operand address is in the address register. After the o...
	Example: MOVE x:(Rn)+Nn,x0
	Post-Decrement By Offset Nn (Rn) – Nn—The operand address is in the address register. After the o...
	Example: MOVE x:(Rn)-Nn,x0
	Indexed By Offset Nn (Rn + Nn)—The operand address is the sum of the contents of the address regi...
	Example: MOVE x:(Rn+Nn),x0
	Pre-Decrement By One -(Rn)—The operand address is the contents of the address register decremente...
	Example: MOVE x:-(Rn),x0
	Short Displacement (Rn + Short Displacement)—The operand address is the sum of the contents of th...
	Example: MOVE x:(Rn+63),x0
	Long Displacement (Rn + Long Displacement)—This addressing mode requires one word (label) of inst...
	Example: MOVE x:(Rn+64),x0

	4.4.3 PC-relative Modes
	In the PC-relative addressing modes, the operand address is obtained by adding a displacement, re...
	Short Displacement PC-relative—The short displacement occupies nine bits in the instruction opera...
	Long Displacement PC-relative—This addressing mode requires one word of instruction extension. Th...
	Address Register PC-relative—The operand address is the sum of the contents of the PC and the add...

	4.4.4 Special Address Modes
	The special address modes do not use an address register in specifying an effective address. Thes...
	Immediate Data—This addressing mode requires one word of instruction extension. The immediate dat...
	Immediate Short Data—The 8-bit or 12-bit operand is part of the instruction operation word. An 8-...
	Absolute Address—This addressing mode requires one word of instruction extension. The operand add...
	Absolute Short Address—The operand address occupies six bits in the instruction operation word, a...
	Short Jump Address—The operand occupies 12 bits in the instruction operation word. The address is...
	I/O Short Address—The operand address occupies 6 bits in the instruction operation word, and it i...
	Implicit Reference—Some instructions make implicit reference to the Program Counter (PC), System ...

	4.5 Address Modifier Types
	The DSP56300 family core Address ALU supports linear, reverse-carry, modulo, and multiple wrap-ar...
	Linear addressing—Useful for general-purpose addressing
	Reverse-carry addressing—Useful for 2k-point FFT addressing
	Modulo addressing—Useful for creating circular buffers for FIFO queues, delay lines and sample bu...
	Multiple wrap-around modulo addressing—Useful for decimation, interpolation, and waveform generat...
	Table 4-6 lists the address modifier types.


	.
	Table�4-6 Address Modifier Type Encoding Summary �


	$XX0000
	Reverse-Carry (Bit-Reverse)
	$XX0001
	Modulo 2
	$XX0002
	Modulo 3
	:
	:
	$XX7FFE
	Modulo 32767 (215-1)
	$XX7FFF
	Modulo 32768 (215)
	$XX8001
	Multiple Wrap-Around Modulo 2
	$XX8003
	Multiple Wrap-Around Modulo 4
	$XX8007
	Multiple Wrap-Around Modulo 8
	:
	:
	$XX9FFF
	Multiple Wrap-Around Modulo 213
	$XXBFFF
	Multiple Wrap-Around Modulo 214
	$XXFFFF
	Linear (Modulo 224)
	Notes: 1. All other combinations are reserved.
	2. XX can be any value.
	4.5.1 Linear Modifier (Mn = $XXFFFF)
	Address modification is performed using normal 24-bit linear (modulo 16,777,216) arithmetic. A 24...

	4.5.2 Reverse-Carry Modifier (Mn = $000000)
	Reverse carry is selected by setting the modifier register to zero. Address modification is perfo...

	4.5.3 Modulo Modifier (Mn = Modulus – 1)
	Address modification is performed using modulo M, where M ranges from 2 to +32,768. Modulo M arit...
	The value m = M – 1 is stored in the modifier register. The lower boundary (base address) value m...
	The address pointer is not required to start at the lower address boundary or to end on the upper...
	If an offset, Nn, is used in the address calculations, the 24-bit absolute value, |Nn|, must be l...
	This technique is useful in sequentially processing multiple tables or N-dimensional arrays. The ...

	4.5.4 Multiple Wrap-Around Modulo Modifier
	The Multiple Wrap-Around Addressing mode is selected by setting bit 15 of the Mn register to one ...
	The address pointer is not required to start at the lower address boundary and may begin anywhere...



	Chapter�5 Program Control Unit
	The Program Control Unit (PCU) of the DSP56300 family core coordinates execution of program instr...
	5.1 Overview
	The PCU coordinates execution of instructions using three hardware blocks: the Program Address Ge...
	Fetch instructions
	Decode instructions
	Execute instructions
	Control hardware DO loops and REP
	Process interrupts and exceptions
	Operation of the seven-stage pipeline depends on the current core processing state. The seven sta...

	Fetch-I
	Fetch-II
	Decode
	Address gen-I
	Address gen-II
	Execute-I
	Execute-II
	To preserve current operation and status values while processing exceptions and interrupts, the P...
	To perform its functions, the PCU uses a number of programmable registers. The organization of th...

	General configuration and status:
	— Operating Mode Register (OMR)—24-bit, read/write
	— Status Register (SR)—24-bit, read/write

	System Stack configuration and operation:
	— System Stack (SS) register file—hardware stack, 48-bit ¥ 16 locations, read/write
	— System Stack High (SSH) Register—24-bit, read/write
	— System Stack Low (SSL) Register—24-bit, read/write
	— Stack Pointer (SP) Register—24-bit, read/write
	— Stack Counter (SC) Register—5-bit, read/write
	— Stack Size (SZ) Register—24-bit, read/write
	Note: The stack Extension Pointer (EP) Register is also used with the System Stack, but is physic...


	Program/Loop/Exception processing control
	— Program Counter (PC) Register—24-bit, read/write
	— Loop Address (LA) Register—24-bit, read/write
	— Loop Counter (LC) Register—24-bit, read/write
	— Vector Base Address (VBA) Register—24-bit, read/write


	5.2 PCU Hardware Architecture
	The three PCU hardware blocks are:
	Program Address Generator (PAG)—Contains all the hardware needed for program address generation, ...
	Program Decode Controller (PDC)
	— Decodes the 24-bit instruction loaded into the instruction latch
	— Generates all signals for pipeline control
	— Performs required data transfers between the Data Arithmetic Logic Unit (Data ALU) and memory

	Program Interrupt Controller (PIC)—Arbitrates among all interrupt requests (internal interrupts a...
	Figure 5-1 shows a block diagram of the PCU.


	Program
	Figure 5-1. PCU Architecture
	5.3 Instruction Pipeline
	Within the seven-stage pipelined architecture of the PCU, instructions execute concurrently. Exec...
	Table�5-1 Seven-Stage Pipeline �


	Fetch-I
	Address generation for Program Fetch
	Increment PC register

	Fetch-II
	Instruction word read from memory

	Decode
	Instruction Decode

	AddressGen-I
	Address generation for Data Load/Store operations

	AddressGen-II
	Address pointer update

	Execute-I
	Read source operands to Multiplier and Adder
	Read source register for memory store operations
	Multiply
	Write destination register for memory load operations

	Execute-II
	Read source operands for Adder if written by previous ALU operation
	Add
	Write Adder results to the Adder destination operand
	Write Multiplier results to the Multiplier destination operands
	Figure 5-2. Seven-Stage Pipeline

	5.4 Programming Model
	The PCU programming model comprises three functional areas:
	Configuration and status registers
	System Stack configuration and operation registers
	Program/Loop/Exception processing control registers
	Figure 5-3 shows the PCU programming model with the registers and the System Stack. The following...
	Notes: 1. The Extension Pointer (EP) Register is also used with the System Stack, but it is physi...
	2. SSH and SSL point to the upper and lower halves of the stack location specified by the SP.
	Figure 5-3. PCU Programming Model


	5.4.1 Configuration and Status Registers
	Note: Bits that are listed as reserved in the following sections can be defined for specific devi...
	The PCU contains two registers that configure and report the current status of the PCU:
	Operating Mode Register (OMR)
	Status Register (SR)
	5.4.1.1 Operating Mode Register
	The OMR (Figure 5-4) is a 24-bit register that is partitioned into the following three bytes:
	OMR[23 – 16], System Stack Control/Status (SCS) Byte: Controls and monitors the stack extension i...
	OMR[15 – 8], Extended Chip Operating Mode (EOM) Byte: Determines the operating mode of the chip. ...
	OMR[7 – 0], Chip Operating Mode (COM) Byte: Determines the operating mode of the chip. This byte ...
	The following sections describe all defined bit functions; however, not all defined functions are...





	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	PEN
	MSW[1:0]
	SEN
	WRP
	EOV
	EUN
	XYS
	ATE
	APD
	ABE
	BRT
	TAS
	BE
	CDP[1:0]
	MS
	SD
	EBD
	MD
	MC
	MB
	MA
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	*
	*
	*
	*
	Figure 5-4. Operating Mode Register (OMR)
	Table�5-2 Operating Mode Register Bit Definitions (Continued)

	23
	PEN
	0
	22 – 21
	MSW
	0
	20
	SEN
	0
	19
	WRP
	0
	18
	EOV
	0
	17
	EUN
	0
	16
	XYS
	0
	15
	ATE
	0
	14
	APD
	0
	13
	ABE
	0
	12
	BRT
	0
	11
	TAS
	0
	10
	BE
	0
	9 – 8
	CDP[1 – 0]
	1
	00
	01
	10
	11
	7
	MS
	0
	1. For some DSP56300 family chip products, program data placed into the Program RAM/Instruction C...
	2. To ensure proper operation, place six NOP instructions after the instruction that changes the ...
	3. To ensure proper operation, do not change the MS bit while the Instruction Cache is enabled (C...
	4. Actual memory configuration is device-specific; refer to the device-specific technical data sh...

	6
	(SD)
	0
	5
	0
	4
	EBD
	0
	3 – 0
	MD–MA
	*
	5.4.1.2 Status Register (SR)
	The Status Register (SR) (Figure 5-5) is a 24-bit register that consists of the following three 8...
	Extended Mode Register (EMR) (SR[23 – 16]): Defines the current system state of the processor. Th...
	Mode Register (MR) (SR[15 – 8]): Defines the current system state of the processor. The MR bits a...
	Condition Code Register (CCR) (SR[7 – 0]): Defines the results of previous arithmetic computation...
	The SR is pushed onto the System Stack when:

	Program looping is initialized
	A JSR is performed, including long interrupts
	The three 8-bit registers are defined within the SR primarily for compatibility with other Motoro...



	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	CP1 – 0
	RM
	SM
	CE
	SA
	FV
	LF
	DM
	SC
	S1 – 0
	I1 – 0
	S
	L
	E
	U
	N
	Z
	V
	C
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	CP1
	LF
	S
	CP0
	DM
	L
	RM
	SC
	E
	SM
	S1
	U
	CE
	S0
	N
	SA
	I1
	Z
	FV
	I0
	V
	C
	Figure 5-5. Status Register (SR)
	Table�5-3 Status Register Bit Definitions (Continued)

	23 – 22
	CP[1 – 0]
	1
	Dynamic
	0 (Lowest)
	Determined by DCRn (DPR[1 – 0]) for active DMA channel
	00
	00
	1
	00
	01
	2
	00
	10
	3 (Highest)
	00
	11
	Static
	core < DMA
	01
	xx
	core = DMA
	10
	xx
	core > DMA
	11
	xx
	21
	RM
	0
	20
	SM
	0
	19
	CE
	0
	Note: To ensure proper operation, do not clear Cache Enable mode (CE bit in SR) while Burst mode ...

	18
	0
	17
	SA
	0
	16
	FV
	0
	15
	LF
	0
	14
	DM
	0
	13
	SC
	0
	Note: Due to pipelining, a change in the SC bit takes effect only after three instruction cycles....

	12
	0
	11 – 10
	S[1 – 0]
	0
	0
	0
	No scaling
	23
	0
	1
	Scale down
	24
	1
	0
	Scale up
	22
	1
	1
	Reserved
	—
	9 – 8
	I[1 – 0]
	1
	Lowest
	0
	0
	0
	1
	1
	0
	Highest
	1
	1
	7
	S
	0
	6
	L
	0
	5
	E
	0
	0
	0
	No Scaling
	0
	1
	Scale Down
	1
	0
	Scale Up
	4
	U
	0
	0
	0
	No Scaling
	U = (Bit 47 xor Bit 46)
	0
	1
	Scale Down
	U = (Bit 48 xor Bit 47)
	1
	0
	Scale Up
	U = (Bit 46 xor Bit 45)
	3
	N
	0
	2
	Z
	0
	1
	V
	0
	0
	C
	0
	5.4.2 Stack and Stack Extension
	The following registers control the operation of the System Stack:
	System Stack High (SSH) and System Stack Low (SSL) registers
	Stack Pointer (SP)
	Stack Counter (SC)
	Stack Size Register (SZ) (used for stack extension)
	Extension Pointer (EP) Register (used for stack extension)
	The 24-bit stack Extension Pointer (EP) register points to the stack extension in data memory whe...


	5.4.3 System Stack Configuration and Operation Registers
	The PCU hardware System Stack is a 16-level by 48-bit separate internal memory that stores the PC...
	Storing return address and status for subroutine calls (including long interrupts)
	Storing LA, LC, PC and SR for the hardware DO loops
	When a subroutine is called (for example, using the JSR instruction), the return address (PC) is ...
	The System Stack is also used to implement no-overhead nested hardware DO loops. When a hardware ...
	Note: Moving data to or from SSH increments or decrements the SP. The SSL does not affect the SP.

	The System Stack can be extended into 24-bit wide X or Y data memory via control hardware that mo...
	When enabled, a stack extension algorithm is applied to all accesses to the stack:

	If an explicit (for example, MOVE to SSH) or implicit (for example, JSR) push operation is perfor...
	If an explicit (for example, MOVE from SSH) or implicit (for example, RTS) pull operation is perf...
	External memory can be used for stack extension, and wait states affect it in the same way as the...
	5.4.3.1 Stack Pointer (SP) Register
	The 24-bit Stack Pointer (SP) register indicates the location of the top of the System Stack. The...
	Figure 5-6. Stack Pointer (SP) Register Format

	Immediately after hardware reset, the SP bits are cleared (SP = 0), so SP points to location 0, i...
	Table�5-4 Stack Pointer (SP) Register Bit Definitions (Continued)



	23 – 6
	P[23 – 6]
	0
	5
	UF
	0
	4
	SE
	0
	1
	1
	1
	1
	1
	0
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	*
	*
	*
	*
	0
	0
	1
	1
	1
	0
	0
	0
	1
	1
	1
	1
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	3 – 0
	P[3 – 0]
	0
	5.4.3.2 Stack Counter (SC) Register
	The 5-bit Stack Counter (SC) register monitors how many entries of the hardware stack are in use....

	5.4.3.3 Stack Size (SZ) Register
	The 24-bit Stack Size (SZ) register determines the number of data words allocated in memory for t...
	Note: A stack exception can occur only when the stack is used in Non-extended mode.

	The SZ register is not initialized during hardware reset, and must be set, using a MOVEC instruct...

	5.4.4 Program, Loop, and Exception Processing Control
	The code execution flow control is performed using four registers in the PCU:
	Program Counter (PC)
	Loop Address (LA) Register
	Loop Counter (LC) Register
	Vector Base Address (VBA) Register
	5.4.4.1 Program Counter (PC) Register
	The Program Counter Register (PC) is a special-purpose 24-bit address register that contains the ...

	5.4.4.2 Loop Address (LA) Register
	The contents of the 24-bit Loop Address (LA) register indicate the location of the last instructi...

	5.4.4.3 Loop Counter (LC) Register
	The Loop Counter (LC) register is a special read/write 24-bit counter that specifies the number o...

	5.4.4.4 Vector Base Address (VBA) Register
	The Vector Base Address Register (VBA) is a 24-bit register. Eight of the bits VBA[7 – 0] are rea...



	Chapter�6 PLL and Clock Generator
	The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central processing mo...
	Phase Locked Loop (PLL) that performs:
	— Clock input division
	— Frequency multiplication
	— Skew elimination

	Clock Generator (CLKGEN) that performs:
	— Low-power division
	— Internal and external clock generation


	Notes: The clock source can be either an external source applied to EXTAL, or a crystal connected...
	Figure�6-1. PLL Clock Generator Block Diagram

	6.1 PLL and Clock Signals
	The PLL and clock pin configuration for each DSP56300 family member is available in the device-sp...
	PCAP: Connects an off-chip capacitor to the PLL filter. One terminal of the capacitor connects to...
	CLKOUT: Provides a 50 percent duty cycle output clock synchronized to the internal processor cloc...
	PINIT: During assertion of hardware reset, the value of the PINIT input pin is written into the P...
	PLOCK: Originates from the Phase Detector. The device asserts PLOCK when the PLL is enabled and l...


	6.2 PLL Block
	Figure 6-2 shows the PLL block diagram. This section describes the PLL control mechanisms.
	Figure�6-2. PLL Block Diagram

	6.2.1 Frequency Predivider
	Clock input frequency division is accomplished by means of a frequency predivider of the input fr...

	6.2.2 Phase Detector and Charge Pump Loop Filter
	The Phase Detector (PD) detects any phase difference between the external clock (EXTAL) and the p...

	6.2.3 Voltage Controlled Oscillator (VCO)
	The Voltage Controlled Oscillator (VCO) can oscillate at frequencies from the minimum speed up to...
	Note: When the PLL is enabled, the device operating frequency is half of the VCO oscillating freq...

	If EXTAL is less than the VCO minimum working frequency, the hardware design should hold the PINI...
	6.2.3.1 Divide by 2
	The output of the VCO is divided by 2. This results in a constant ¥ 2 multiplication of the PLL c...

	6.2.3.2 Frequency Divider
	The Frequency Divider, which connects to the feedback loop of the PLL, multiplies the incoming ex...

	6.2.3.3 PLL Control Elements
	The PLL uses three major control elements in its circuitry:
	Clock input division
	Frequency multiplication
	Skew elimination


	6.2.3.3.1 Clock Input Division
	The PLL can divide the input frequency by any integer between 1 and 16. The combination of input ...

	6.2.3.3.2 Frequency Multiplication
	The PLL can multiply the input frequency by any integer between 1 and 4096. The Multiplication Fa...

	6.2.3.3.3 Skew Elimination
	The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL an...
	Note: Skew elimination is assured only if EXTAL is greater than the minimum frequency specified i...


	6.2.3.3.4 Clock Generator
	Figure 6-3 on page 6-5 shows the Clock Generator block diagram. The components of the Clock Gener...
	Figure�6-3. CLKGEN Block Diagram


	6.2.3.3.5 Low-Power Divider (LPD)
	The Clock Generator has a divider connected to the output of the PLL. The Low-Power Divider (LPD)...

	6.2.3.3.6 Internal and External Clock Pulse Generator
	The output stage of the Clock Generator generates the clock signals to the core and the device pe...
	EXTAL (PEN = 0, PLL disabled), which generates a device frequency defined by the following formula:
	Low-Power Divider output (PEN = 1, PLL enabled), which generates a device frequency defined by th...


	6.2.3.3.7 Operating Frequency
	When PEN = 1, the operating frequency of the core is governed by the frequency control bits in th...
	where:
	MF is the Multiplication Factor defined by MF[11 – 0]
	PDF is the Predivider Factor defined by PD[3 – 0]
	DF is the Division Factor defined by DF[2 – 0]
	FCORE is the device operating frequency
	FEXTAL is the external EXTAL input




	6.3 PLL Programming Model
	The PLL clock generator uses a single register, the PCTL Register. The PCTL is an X I/O mapped 24...

	PD3
	PD2
	PD1
	PD0
	COD
	PEN
	PSTP
	XTLD
	XTLR
	DF2
	DF1
	DF0
	MF11
	MF10
	MF9
	MF8
	MF7
	MF6
	MF5
	MF4
	MF3
	MF2
	MF1
	MF0
	Figure�6-4. PLL Control Register (PCTL)
	Table�6-1. PLL Control Register (PCTL) Bit Definitions (Continued)

	23 – 20
	PD
	0000
	1
	0001
	2
	0010
	3
	0011
	4
	0100
	5
	0101
	6
	0110
	7
	0111
	8
	1000
	9
	1001
	10
	1010
	11
	1011
	12
	1100
	13
	1101
	14
	1110
	15
	1111
	16
	19
	COD
	0
	18
	PEN
	17
	PSTP
	0
	0
	x
	Disabled
	Disabled
	Long
	Minimal
	1
	0
	Disabled
	Enabled
	Short
	Lower
	1
	1
	Enabled
	Enabled
	Short
	Higher
	16
	XTLD
	15
	XTLR
	14 – 12
	DF
	0
	000
	20
	001
	21
	010
	22
	011
	23
	100
	24
	101
	25
	110
	26
	111
	27
	11 – 0
	MF
	$000
	1
	$001
	2
	$002
	3
	•
	•
	•
	•
	•
	•
	$FFE
	4095
	$FFF
	4096
	6.4 Clock Synchronization
	When the PLL is enabled, (the PEN bit in the PCTL register is set), low clock skew between EXTAL ...

	6.5 Design Guidelines for Ripple and PCAP
	The voltage noise on the VCCP pin is critical to the PLL operation, since the PLL loop filter cap...
	The PLL power supply should be very well regulated and noise-free. Here are some recommendations ...
	— The Wn (bandwidth) of the PLL is 2MHz/(Multiplication Factor). The cutoff frequency of the Vcc ...
	— The maximum allowed accumulated noise at frequencies from Wn/10 to infinity is 6mV. The maximum...
	— The filter should have as low as possible impedance for DC, in order to minimize voltage drop t...
	— Take care to ensure that no more than 0.5V voltage differential exists between the PLL power su...


	In the PLL filter circuit in Figure 6-5:
	Note that the 0.1µF capacitor should be in parallel with the 22mF, since the high frequency curre...
	Wn = 2MHz / 8 = 125kHz, so the noise attenuation is expected to be about 50dB near DC, meaning th...
	Figure�6-5. PLL Filter Circuit


	NOTES:
	1. FB = Ferrite Bead with 600W impedance at 100 MHz, 12W at DC.
	2. PCAP value calculated according to datasheet.





	Chapter�7 Debugging Support
	The DSP56300 modules and features for debugging applications during system development are as fol...
	JTAG Test Access Port (TAP): Provides the TAP and Boundary Scan functionality based on the IEEE S...
	OnCE module: Debugs software used with a DSP56300 family device and tests the hardware interface....
	Address Trace Mode: This feature, enabled by the ATE bit in the Operating Mode Register (OMR), al...
	The debugging interface uses six interface signals. As described in the IEEE 1149.1 standard, the...
	Table 7-1. Debugging Control Signals (Continued)

	7.1 JTAG Test Access Port
	The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the IEEE S...
	7.1.1 Boundary Scan Architecture Overview
	The test logic includes a TAP consisting of four dedicated signal pins, a 16-state controller, an...
	Perform boundary scan operations to test circuit-board electrical continuity (EXTEST)
	Bypass the DSP56300 core for a given circuit board test by effectively reducing the BSR to a sing...
	Sample the DSP56300 core-based device system pins during operation and transparently shift out th...
	Disable the output drive to pins during circuit-board testing (HIGHZ)
	Access the OnCE controller and circuits to control a target system (ENABLE_ONCE)
	Enter the Debug mode of operation (DEBUG_REQUEST)
	Query identification information on manufacturer, part number, and version from a DSP56300 core-b...
	Force test data onto the outputs of a DSP56300 core-based device while replacing its BSR in the s...
	This section discusses aspects of the JTAG implementation that are specific to the DSP56300 core ...


	7.1.2 TAP Controller
	The TAP controller interprets the sequence of logical values on the TMS signal. It is a synchrono...
	Figure�7-1. Test Access Port with OnCE Module Block Diagram
	Figure�7-2. TAP Controller State Machine


	7.1.3 Boundary Scan Register
	The Boundary Scan Register (BSR) in the DSP56300 core JTAG implementation contains bits for all d...

	7.1.4 Instruction Register
	The DSP56300 core JTAG implementation includes the three mandatory public instructions (EXTEST, S...
	Figure�7-3. JTAG Instruction Register Format

	The four bits decode the eight instructions shown in Table 7-2. The 0101 code is reserved for fut...
	Table 7-2. JTAG Instructions �


	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	1
	0
	1
	1
	0
	0
	1
	1
	1
	1
	1
	1
	1
	Notes: 1. The ENABLE_ONCE and DEBUG_REQUEST public instructions are not part of the IEEE 1149.1 s...
	2. x = either 1 or 0
	The parallel output of the instruction register is reset to 0010 in the Test-Logic-Reset controll...

	7.1.4.1 EXTEST (B[3 – 0] = 0000)
	The external test (EXTEST) instruction selects the BSR. EXTEST also asserts internal reset for th...
	Scan user-defined values into the output buffers
	Capture values presented to input pins
	Control the direction of bidirectional pins
	Control the output drive of tri-stateable output pins
	For details on the function and use of EXTEST, refer to the IEEE 1149.1 standards document.


	7.1.4.2 SAMPLE/PRELOAD (B[3 – 0] = 0001)
	The SAMPLE/PRELOAD instruction performs two separate functions. First, it obtains a snapshot of s...
	Note: Since no internal synchronization exists between the JTAG clock (TCK) and the system clock ...

	Secondly, SAMPLE/PRELOAD can initialize the BSR output cells prior to selection of EXTEST. This i...

	7.1.4.3 IDCODE (B[3 – 0] = 0010)
	The IDCODE instruction selects the ID register. This public instruction allows identification of ...
	Figure�7-3. Identification Register Configuration

	One application of the ID register is to distinguish the manufacturer(s) of components on a board...
	The major revision or mask set change of the device (for example, 0000 = Revision 0; 0001 = Revis...
	Note that there are no revision changes for individual masks of a chip. Revision changes apply to...
	The Motorola Design Center Number (bits 27 – 22). The Motorola Semiconductor Israel Ltd (MSIL) De...
	Once the IDCODE instruction is decoded, it selects the ID register, which is a 32-bit data regist...

	7.1.4.4 CLAMP (B[3 – 0] = 0011)
	CLAMP is an optional instruction defined by the IEEE 1149.1 standard. It selects the 1-bit Bypass...

	7.1.4.5 HI-Z (B[3 – 0] = 0100)
	HI-Z is a manufacturer’s optional public instruction to prevent the need to backdrive the output ...

	7.1.4.6 ENABLE_ONCE(B[3:0] = 0110)
	ENABLE_ONCE is not included in the IEEE 1149.1 standard. It is a public instruction that enables ...

	7.1.4.7 DEBUG_REQUEST(B[3 – 0] = 0111)
	DEBUG_REQUEST is not included in the IEEE 1149.1 standard. It is a public instruction that enable...

	7.1.4.8 BYPASS (B[3 – 0] = 1111)
	BYPASS selects the single-bit Bypass register, as shown in Figure 7-4. This creates a shift-regis...
	Figure�7-4. Bypass Register


	7.1.5 DSP56300 JTAG Restrictions
	The control afforded by the output enable signals using the BSR and the EXTEST instruction requir...
	Two constraints relate to the JTAG interface. First, the TCK input does not include an internal p...
	1. The TAP controller must be in the Test-Logic-Reset state to either enter or remain in the low-...
	2. The TCK input is not blocked in low-power Stop mode. To consume minimal power, the TCK input s...
	3. The TMS and TDI pins include on-chip pull-up resistors. In low-power Stop mode, these two pins...
	During Stop mode all DSP56300 core clocks are disabled, so the JTAG interface provides the means ...



	7.2 OnCE‘ Module
	The DSP56300 core On-Chip Emulation (OnCE‘) module interacts with the DSP56300 core and its perip...
	The OnCE module controller functionality is accessed through the JTAG test access port (TAP). In ...
	Figure�7-5. OnCE Block Diagram

	The OnCE module controller functionality is accessed through the JTAG port. The JTAG TCK, TDI, an...
	Figure�7-6. OnCE Multiprocessor Configuration

	7.2.1 OnCE Controller
	The OnCE Controller contains the following blocks: OnCE Command Register (OCR), OnCE Decoder, and...
	Figure�7-7. OnCE Controller

	7.2.1.1 OnCE Command Register (OCR)
	The OnCE Command Register (OCR) is a shift register that receives its serial data from the TDI pi...
	Figure�7-8. OnCE Command Register (OCR) Format

	Table 7-3. OnCE Command Register (OCR) Bit Definitions (Continued)




	7
	R/W
	0
	1
	6
	GO
	5
	EX
	4 – 0
	RS
	00000
	00001
	00010
	00011
	00100
	00101
	00110
	00111
	01000
	01001
	01010
	01011
	01100
	01101
	01110
	01111
	10000
	10001
	10010
	10011
	101xx
	11xx0
	11x0x
	110xx
	11111
	7.2.1.2 OnCE Decoder (ODEC)
	The OnCE Decoder (ODEC) supervises the entire OnCE module activity. It receives as input the 8-bi...

	7.2.1.3 OnCE Status and Control Register (OSCR)
	The OnCE Status and Control Register (OSCR) enables the Trace mode of operation and indicates the...


	OS1
	OS0
	HIT
	TO
	MBO
	SWO
	IME
	TME
	Figure�7-9. OnCE Status and Control Register (OSCR)
	Table 7-4. OnCE Status and Control Register (OSCR) Bit Definitions (Continued)

	23 – 0
	0
	7 – 6
	OS
	0
	0
	0
	0
	1
	1
	0
	1
	1
	5
	HIT
	0
	4
	TO
	0
	Trace Counter = 0
	Trace mode is enabled
	Debug mode of operation is entered

	3
	MBO
	0
	2
	SWO
	0
	1
	IME
	0
	0
	TME
	0
	7.2.2 OnCE Memory Breakpoint Logic
	Memory breakpoints can be set on program memory or data memory locations. In addition, the breakp...
	Figure�7-10. OnCE Memory Breakpoint Logic 0

	7.2.2.1 OnCE Memory Address Latch (OMAL)
	The OnCE Memory Address Latch (OMAL) is a 24-bit register that latches the PAB, XAB or YAB on eve...

	7.2.2.2 OnCE Memory Limit Register 0 (OMLR0)
	The OnCE Memory Limit Register 0 (OMLR0) is a 24-bit register that stores the memory breakpoint l...

	7.2.2.3 OnCE Memory Address Comparator 0 (OMAC0)
	The OnCE Memory Address Comparator 0 (OMAC0) compares the current memory address (stored in OMAL)...

	7.2.2.4 OnCE Memory Limit Register 1 (OMLR1)
	The OnCE Memory Limit Register 1 (OMLR1) is a 24-bit register that stores the memory breakpoint l...

	7.2.2.5 OnCE Memory Address Comparator 1 (OMAC1)
	The OnCE Memory Address Comparator 1 (OMAC1) compares the current memory address (stored in OMAL)...

	7.2.2.6 OnCE Breakpoint Control Register (OBCR)
	The OnCE Breakpoint Control Register (OBCR) defines the memory breakpoint events. The OBCR can be...



	BT1
	BT0
	CC11
	CC10
	RW11
	RW10
	CC01
	CC00
	RW01
	RW00
	MBS1
	MBS0
	Figure�7-11. OnCE Breakpoint Control Register (OBCR)
	Table 7-5. OnCE Breakpoint Control Register (OBCR) Bit Definitions (Continued)

	23 – 12
	0
	11 – 10
	BT
	0
	00
	01
	10
	11
	9 – 8
	CC1
	0
	00
	01
	10
	11
	7 – 6
	RW1
	0
	00
	01
	10
	11
	4 – 5
	CC0
	0
	00
	01
	10
	11
	3 – 2
	RW0
	0
	00
	01
	10
	11
	1 – 0
	MBS
	0
	00
	01
	10
	11
	7.2.2.7 OnCE Memory Breakpoint Counter (OMBC)
	The OnCE Memory Breakpoint Counter is a 24-bit counter that is loaded with a value equal to the n...

	7.2.3 Cache Support
	To keep track of the cache contents and status, the eight Tag values, Tag lock/unlock status, and...
	At any time, at least one LRU bit in the LRU/Lock Status Register is set, but multiple LRU bits c...
	Figure�7-12. Circular Tags Buffer (TAGB)

	7.2.3.1 OnCE Trace Logic
	The 24-bit OnCE Trace Counter (OTC) can be read or written through the JTAG port. If N instructio...
	Figure�7-13. OnCE Trace Logic Block Diagram

	Trace mode has an associated counter so that more than one instruction can be executed before ret...
	To enable Trace mode, the counter is loaded with a value, the program counter is set to the start...
	When Debug mode is exited, the counter decrements after each execution of an instruction. Interru...


	7.2.4 Methods of Entering Debug Mode
	The chip acknowledges entering Debug mode by setting the Core Status bits OS1 and OS0 and asserti...
	Following is a list of ways to enter Debug mode:
	External Debug Request During RESET Assertion: Holding the DE line asserted during the assertion ...
	External Debug Request During Normal Activity: Holding the DE line asserted during normal chip ac...
	Executing the JTAG DEBUG_REQUEST Instruction: Executing the JTAG instruction DEBUG_REQUEST assert...
	External Debug Request During Stop: Executing the JTAG instruction DEBUG_REQUEST (or asserting DE...
	External Debug Request During Wait: Executing the JTAG instruction DEBUG_REQUEST (or asserting DE...
	Software Request During Normal Activity: Upon executing the DSP56300 core instruction DEBUG (or D...
	Enabling Trace Mode: When the Trace mode mechanism is enabled and the Trace Counter is greater th...
	Enabling Memory Breakpoints: When the memory breakpoint mechanism is enabled with a Breakpoint Co...
	To restore the pipeline and to resume normal chip activity upon returning from the Debug mode, a ...
	Figure�7-14. OnCE Pipeline Information and GDB Registers


	OnCE PDB Register (OPDBR): A 24-bit latch that stores the value of the Program Data Bus generated...
	OnCE PIL Register (OPILR): A 24-bit latch that stores the value of the Instruction Latch before D...
	OnCE GDB Register (OGDBR): A 24-bit latch that can only be read through the JTAG port. The OGDBR ...

	7.2.5 Trace Buffer
	To ease debugging activity and keep track of program flow, the DSP56300 core provides a number of...
	OnCE PAB Register for Fetch (OPABFR): A 24-bit register that stores the address of the last instr...
	PAB Register for Decode (OPABDR): A 24-bit register that stores the address of the instruction cu...
	PAB Register for Execute (OPABEX): A 24-bit register that stores the address of the instruction c...
	The Trace Buffer stores the addresses of the last twelve change of flow instructions that execute...
	Note: To ensure Trace Buffer coherence, a complete set of twelve reads of the Trace Buffer must b...
	Note: On any change of flow instruction, the Trace Buffer stores both the address of the change o...



	7.2.6 OnCE Commands and Serial Protocol
	To permit an efficient means of communication between the external command controller and the DSP...
	Figure�7-15. OnCE Trace Buffer Block Diagram

	The OnCE commands are classified as follows:
	Read commands (when the chip delivers the required data)
	Write commands (when the chip receives data and writes the data in one of the OnCE registers)
	Commands that do not have data transfers associated with them
	The commands are 8 bits long and have the format shown in Figure 7-8, "OnCE Command Register (OCR...


	7.2.7 OnCE Module Examples
	The following examples of debugging procedures using the OnCE module assume that the DSP is the o...
	7.2.7.1 Checking Whether the Chip Has Entered Debug Mode
	There are two methods of verifying that the chip has entered Debug mode:
	Every time the chip enters Debug mode, a pulse is generated on the DE line. A pulse is also gener...
	An external command controller can poll the JTAG instruction shift register for the status bits O...
	In the following paragraphs, the ACK notation denotes the operation performed by the command cont...


	7.2.7.2 Polling the JTAG Instruction Register
	To poll the core status bits in the JTAG Instruction Register, the following sequence must be per...

	1. Select shift-IR. Passing through capture-IR loads the core status bits into the instruction sh...
	2. Shift in ENABLE_ONCE. While shifting-in the new instruction the captured status information is...
	3. Return to Run-Test/Idle.
	The external command controller can analyze the information shifted out and detect whether the ch...

	7.2.7.3 Saving Pipeline Information
	The debugging activity is accomplished by DSP56300 core instructions supplied from the external c...


	1. Select shift-DR. Shift in the Read PDB. Pass through update-DR.
	2. Select shift-DR. Shift out the 24-bit OPDB register. Pass through update-DR.
	3. Select shift-DR. Shift in the Read PIL. Pass through update-DR.
	4. Select shift-DR. Shift out the 24-bit OPILR register. Pass through update-DR.
	You do not need to verify acknowledge between Steps 1 and 2 or between Steps 3 and 4, because com...

	7.2.7.4 Reading the Trace Buffer
	An optional step during debugging activity is reading the information associated with the Trace B...


	1. Select shift-DR. Shift in the Read PABFR. Pass through update-DR.
	2. Select shift-DR. Shift out the 24-bit OPABFR register. Pass through update-DR.
	3. Select shift-DR. Shift in the Read PABDR. Pass through update-DR.
	4. Select shift-DR. Shift out the 24-bit OPABDR register. Pass through update-DR.
	5. Select shift-DR. Shift in the Read PABEX. Pass through update-DR.
	6. Select shift-DR. Shift out the 24-bit OPABEX register. Pass through update-DR.
	7. Select shift-DR. Shift in the Read FIFO. Pass through update-DR.
	8. Select shift-DR. Shift out the 25 bit FIFO register. Pass through update-DR.
	9. Repeat Steps 7 and 8 for the entire FIFO (12 times).
	You must read the entire FIFO since each read increments the FIFO pointer thus pointing to the ne...

	7.2.7.5 Displaying a Specified Register
	The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must have been ex...


	1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24-bit opcode: MOVE reg, X:OGDB. Pass through update-DR to actua...
	3. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this selects OGDBR as ...
	5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. Wait for next command.
	7.2.7.6 Displaying X Memory Area Starting at Address $xxxxxx
	The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must have been ex...


	1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24-bit opcode: MOVE R0, X:OGDB. Pass through update-DR to actual...
	3. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this selects OGDBR as ...
	5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. R0 is now saved.
	6. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.
	7. Select shift-DR. Shift in the 24-bit opcode: MOVE #$xxxxxx,R0. Pass through update-DR to actua...
	8. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	9. Select shift-DR. Shift in the second word of the 24-bit opcode: MOVE #$xxxxxx,R0 (the $xxxxxx ...
	10. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	11. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.
	12. Select shift-DR. Shift in the 24-bit opcode: MOVE X:(R0)+, X:OGDB. Pass through update-DR to ...
	13. Wait for DSP to reenter Debug mode (wait for DE or poll core status).
	14. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this selects OGDBR as...
	15. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. The memory contents of...
	16. Select shift-DR. Shift in the NO SELECT with GO no-EX. Pass through update-DR. This re-execut...
	17. Repeat from Step 14 to complete the reading of the entire block. When finished, restore the o...
	7.2.7.7 Returning From Debug Mode to Normal Mode to Current Program
	When you have finished examining the current state of the machine, changed some of the registers,...


	1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24 bits of saved PIL (instruction latch value). Pass through upd...
	3. Select shift-DR. Shift in the Write PDB with GO and EX. Pass through update-DR.
	4. Select shift-DR. Shift in the 24 bits of saved PDB. Pass through update-DR to actually write t...
	7.2.7.8 Returning from Debug Mode to Normal Mode to a New Program
	When you have finished examining the current state of the machine, changed some of the registers ...


	1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.
	2. Select shift-DR. Shift in the 24 bits of $0AF080 which is the opcode of the JUMP instruction. ...
	3. Select shift-DR. Shift in the Write PDB-GO-TO with GO and EX. Pass through update-DR.
	4. Select shift-DR. Shift in the 24 bits of $xxxxxx. Pass through update-DR to actually write the...
	If Debug mode entry occurred during a DO LOOP, REP instruction, or other special case (that is, i...



	7.3 Examples of JTAG-OnCE Interaction
	This section presents the details of the JTAG-OnCE interaction by describing the TMS sequencing r...
	Table 7-6. TMS Sequencing for DEBUG_REQUEST and Poll the Status (Continued)


	a
	0
	Run-Test/Idle
	Idle
	b
	1
	Select-DR-Scan
	Idle
	c
	1
	Select-IR-Scan
	Idle
	d
	0
	Capture-IR
	Idle
	e
	0
	Shift-IR
	Idle
	..................................................................
	e
	0
	Shift-IR
	Idle
	f
	1
	Exit1-IR
	Idle
	g
	1
	Update-IR
	Idle
	h
	1
	Select-DR-Scan
	Idle
	i
	1
	Select-IR-Scan
	Idle
	j
	0
	Capture-IR
	Idle
	k
	0
	Shift-IR
	Idle
	..................................................................
	k
	0
	Shift-IR
	Idle
	l
	1
	Exit1-IR
	Idle
	m
	1
	Update-IR
	Idle
	n
	0
	Run-Test/Idle
	Idle
	................................................
	n
	0
	Run-Test/Idle
	Idle
	In Step n the external command controller verifies that OS[1 – 0] = 11, indicating that the chip ...
	Table 7-7. TMS Sequencing for ENABLE_ONCE (Continued)

	a
	1
	Test-Logic-Reset
	Idle
	b
	0
	Run-Test/Idle
	Idle
	c
	1
	Select-DR-Scan
	Idle
	d
	1
	Select-IR-Scan
	Idle
	e
	0
	Capture-IR
	Idle
	f
	0
	Shift-IR
	Idle
	g
	0
	Shift-IR
	Idle
	h
	0
	Shift-IR
	Idle
	i
	0
	Shift-IR
	Idle
	j
	1
	Exit1-IR
	Idle
	k
	1
	Update-IR
	Idle
	l
	0
	Run-Test/Idle
	Idle
	................................................
	l
	0
	Run-Test/Idle
	Idle
	Table 7-8. TMS Sequencing for Reading Pipeline Register (Continued)

	a
	0
	Run-Test/Idle
	Idle
	b
	1
	Select-DR-Scan
	Idle
	c
	0
	Capture-DR
	Idle
	d
	0
	Shift-DR
	Idle
	..................................................................
	d
	0
	Shift-DR
	Idle
	e
	1
	Exit1-DR
	Idle
	f
	1
	Update-DR
	Execute “Read PIL”
	g
	1
	Select-DR-Scan
	Idle
	h
	0
	Capture-DR
	Idle
	i
	0
	Shift-DR
	Idle
	..................................................................
	i
	0
	Shift-DR
	Idle
	j
	1
	Exit1-DR
	Idle
	k
	1
	Update-DR
	Idle
	l
	1
	Select-DR-Scan
	Idle
	m
	0
	Capture-DR
	Idle
	n
	0
	Shift-DR
	Idle
	..................................................................
	n
	0
	Shift-DR
	Idle
	o
	1
	Exit1-DR
	Idle
	p
	1
	Update-DR
	Execute “Read PDB”
	q
	1
	Select-DR-Scan
	Idle
	r
	0
	Capture-DR
	Idle
	s
	0
	Shift-DR
	Idle
	..................................................................
	s
	0
	Shift-DR
	Idle
	t
	1
	Exit1-DR
	Idle
	u
	1
	Update-DR
	Idle
	v
	0
	Run-Test/Idle
	Idle
	................................................
	v
	0
	Run-Test/Idle
	Idle
	During Step v, the external command controller stores the pipeline information and afterwards it ...
	7.3.1 Address Trace Mode
	Address Trace mode allows you to determine the address of internal accesses. The mode is disabled...


	Chapter�8 Instruction Cache
	This chapter describes the structure and function of the Instruction Cache. The Instruction Cache...
	Software-controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the Status Regis...
	Eight-way, fully associative Instruction Cache with sectored placement policy
	1- to 4-word transfer granularity
	Least Recently Used (LRU) sector replacement algorithm
	Transparent operation (that is, no user management is required)
	Individual sector locking/unlocking
	Global cache flush controlled by software
	Cache controller status observable via the JTAG/OnCE port
	Note: Supported Instruction Cache size is device-dependent. Refer to the device-specific technica...

	8.1 Instruction Cache Architecture
	The Instruction Cache is composed of the following:
	Memory Array: The actual memory space defined for use by the Cache Controller is 1024 24-bit word...
	— VBIT field: 7 LSBs (for 1K cache) for the word displacement in the sector
	— TAG field: 17 MSBs (for 1K cache) for the sector base address

	Tag Register File: Contains the TAG fields of the base addresses of the memory sectors currently ...
	Valid Bit Array: Contains a set of valid bits for each possible address in a referenced memory se...
	Cache Controller: When the Program Control Unit (PCU) initiates a program fetch request, the Cach...
	Sector Replacement Unit (SRU): When a sector miss occurs, the SRU determines which sector is flus...
	Figure 8-1 shows a block diagram of the Instruction Cache.
	TAG Field 17 MSBs (for 1K cache
	Figure�8-1. Instruction Cache Block Diagram



	8.2 Cache Programming Model
	The Instruction Cache is controlled by two control bits:
	Cache Enable (CE) bit in the Extended Mode Register (EMR) part of the Status Register (SR Bit 19)
	When CE is cleared, the Instruction Cache is disabled. When CE is set, the Instruction Cache is e...
	Burst Enable (BE) bit in the Extended Operating Mode (EOM) part of the Operating Mode Register (O...
	When BE is cleared, the Instruction Cache transfer on a miss is one word. When BE is set, the Ins...
	Note: To ensure proper operation, do not clear the Cache Enable mode (CE bit in SR) while Burst m...

	The instruction set supports the Instruction Cache via the following instructions:
	— PLOCK
	— PLOCKR
	— PUNLOCK
	— PUNLOCKR
	— PFREE
	— PFLUSH
	— PFLUSHUN

	8.2.1 Cache Operation
	When enabled, the cache is involved in every instruction fetch. Its actions depend on several con...
	8.2.1.1 Program Fetch
	When the core generates an address for an instruction fetch, the cache controller compares its TA...

	8.2.1.2 Cache Hit
	If a tag match (that is, sector hit) exists, then the valid bit of the corresponding word in that...

	8.2.1.3 Cache Word Miss When Burst Mode Is Disabled
	If a tag match (that is, sector hit) exists, and Burst Mode is disabled, but the desired word is ...

	8.2.1.4 Cache Word Miss When Burst Mode Is Enabled
	If a tag match (that is, sector hit) exists, and Burst Mode is enabled, but the desired word is n...
	Table 8-1. Determining the Number of Required Fetches in Burst Mode



	00
	01
	10
	11
	These external read accesses introduce wait states into the pipeline. The number of wait states f...
	8.2.1.5 Sector Miss
	If there is no match between the TAG field and all sector Tag registers, meaning that the memory ...

	8.2.2 Default Mode After Hardware Reset
	After hardware reset, the Instruction Cache is disabled. The cache is initialized as follows:
	All valid bits are cleared.
	All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1K Cache (17-bit Tag Regis...
	The LRU stack holds a default descending order of sectors (from seven to zero).
	All cache sectors are in the unlocked state.

	8.3 Cache Locking
	Cache locking is useful for locking some time-critical code parts in the cache memory. When a cac...
	Note: PLOCK and PLOCKR are detected as illegal opcodes when the Instruction Cache is not enabled....


	8.4 Cache Unlocking
	A locked sector can be unlocked to allow sector replacement from that cache sector. Unlocking can...
	A locked sector is unlocked by the PFREE, PUNLOCK, or PUNLOCKR instructions. The operands of the ...
	All locked sectors are unlocked simultaneously using the instruction PFREE, which allows you to r...
	The locked sectors are unlocked by the PFLUSH instruction. Unlocking the sectors via PFLUSH clear...
	Note: PFREE, PUNLOCK and PUNLOCKR are detected as illegal opcodes when the Instruction Cache is n...


	8.5 Flushing the Cache
	Executing the PFLUSH or PFLUSHUN instructions flushes the cache. Executing PFLUSH causes a global...
	All valid bits are cleared.
	All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1K Cache (17-bit Tag Regis...
	The LRU stack holds a default descending order of sectors (from 7 to 0).
	All cache sectors are in the unlocked state.
	Executing PFLUSHUN causes a flush only to the unlocked sectors and initializes the cache as follows:

	All valid bits of the unlocked sectors are cleared.
	All Tag Registers of the unlocked sectors are initialized to ‘all ones,’ that is, $1FFFF for a 1K...
	The LRU stack holds a default descending order of sectors (from 7 to 0).
	Note: Coherency between Program RAM mode and Cache mode is not supported by the Instruction Cache...
	Note: PFLUSH and PFLUSHUN are detected as illegal opcodes when the Instruction Cache is not enabl...


	8.6 Data Transfers to/from Instruction Cache
	Data transfers to/from the program memory can be accomplished by the DMA or by software, using MO...
	8.6.1 DMA Transfers
	DMA transfers have no effect on the Tag Register File, Valid Bit Array and LRU Stack, even when t...

	8.6.2 Software-Controlled Transfers
	The term “PMOVE” indicates use of a MOVE instruction to transfer data between the program memory ...
	When the cache is disabled, the Instruction Cache memory space is considered part of the internal...
	If the cache controller generates a hit on the program memory space address, the data is read fro...
	If the cache controller generates a miss on the program memory space address, the data is read fr...
	When the cache is enabled, the cache controller checks the PMOVEW transfers for a hit or miss:

	If the cache controller generates a sector hit on the program memory space address, the data is w...
	If the cache controller generates a sector miss on the program memory space address, the data is ...
	Note: For proper operation, none of the three instructions before a PMOVE transfer should clear o...



	8.7 Using the Instruction Cache in Real-Time Applications
	The following tips help you to use the Instruction Cache in real-time applications:
	Each sector (out of the 8, 128 words) can be individually locked.
	Locking a sector prevents its replacement in case of a miss even if it would have been its turn t...
	It is typical to lock the interrupt vector tables and routines to ensure the fastest response. Fu...
	The cache can be globally flushed (for example, for task switching) with one instruction.
	The cache can be globally unlocked (that is any sector can be replaced in case of a miss) or any ...
	The penalty incurred for a cache miss is identical with the one for a regular instruction fetch f...
	The software simulator permits application tailoring since it provides clock exact behavior.
	In general, an algorithm that requires N clocks to execute and is repeated M times, requires (WS ...
	(N + N x WS)M = N x M(WS + 1) clocks.
	In a cache environment, the same algorithm requires:
	N(WS + 1) + N(M - 1) = N(M + WS) clocks.

	8.8 Debugging Instruction Cache Operation
	While the cache is enabled, full non-intrusive system debug capability in Debug mode includes bei...
	What memory sectors are currently mapped into cache
	Which cache sectors are locked
	Which cache sector is the LRU
	When cache hits occur
	Debug mode allows you to read the Tag register contents, lock bits, LRU bits, and hit-status seri...
	Note: Each read of the cache status via the OnCE module should occur only when the device is in t...





	Chapter�9 External Memory Interface (Port A)
	The external memory expansion port, Port A, can be used either for memory expansion or for memory...
	External memory is divided into three possible 16 M ¥ 24-bit spaces: X data, Y data, and program ...
	Note: The AA lines can operate as memory-mapped chip selects or address lines to external devices...

	9.1 Signal Description
	Table 9-1 through Table 9-3 show the signals that the external memory interface uses for controll...
	Table�9-1 External Address Bus�Signals
	Note: The total number of address lines is device-specific.

	Table�9-2 External Data Bus Signals
	Table�9-3 External Bus Control Signals (Continued)
	deasserted at the start of a bus cycle
	asserted to enable completion of the bus cycle
	deasserted before the next bus cycle


	9.2 Port Operation
	External bus timing is defined by the operation of the Address Bus, Data Bus, and Bus Control pin...
	The external memory address is defined by the Address Bus (A[0 – 17]/A[0 – 23]) and the memory Ad...
	9.2.1 SRAM Support
	The DSP56300 core can interface easily with SRAMs. Because the address must remain stable during ...
	SRAM access consists of the following steps:
	1. Address Bus (A[0 – 17]/A[0 – 23]), Address Attributes (AA[0 – 3), and Bus Strobe (BS) are asse...
	2. Write enable (WR) is asserted with the falling edge of CLKOUT (for a single wait state access)...
	3. For a write operation, data is driven in the middle of CLKOUT high phase. For a read operation...
	For accessing slower memories, wait states (from the BCR or by the TA signal) postpone the disapp...
	Figure�9-1. SRAM Access with One Wait State Example
	Figure�9-2. Example SRAM Connection Diagram
	Note: The assertion of WR depends on the number of wait states programmed in the BCR. If one wait...



	9.2.2 DRAM Support
	DRAMs are becoming the preferred external memory choice for many reasons, including:
	Low cost per bit due to dynamic storage cell density
	Increasing packaging density due to multiplexed address and control pins
	Improved price-performance relative to SRAMs due to Fast Access mode (Page mode)
	Commodity pricing due to high-volume production
	Port A bus control signals are an efficient interface to DRAM devices in both random read/write c...
	External bus timing is controlled by the DRAM Control Register (DCR) described in Section 9.6.3. ...

	An out-of-page access is detected
	An access to another bank of dynamic memory is attempted
	A refresh access is attempted (CAS before RAS)
	A write to one of the following registers is detected:
	— BCR
	— DCR
	— AAR3
	— AAR2
	— AAR1
	— AAR0

	A loss of bus mastership is detected while the BME bit in the DCR register is cleared
	WAIT or STOP instruction is detected
	Hardware or software reset is detected
	Figure 9-3 and Figure 9-4 show DRAM in-page access timing examples. For detailed timing informati...
	Figure�9-3. DRAM Read Access (In-Page) with Two Wait States
	Figure�9-4. DRAM Write Access (In-Page) with Two Wait States Example
	Figure�9-5. Typical DRAM Connection Diagram


	9.2.2.1 DRAM In-Page Access
	A DRAM in-page access consists of the following steps:

	1. Column address (a subset of A[0 – 23]/A17, as determined by the BPS bits in the DCR) and Bus S...
	2. Write (WR) or Read (RD) is asserted with the CLKOUT falling edge.
	3. CAS assertion timing depends on the number of in-page wait states selected by the DCR[BCW] bit...
	4. CAS is deasserted before the end of the external access in order to meet the CAS precharge tim...
	Note: In all cases, DRAM access requires at least one wait state.

	9.2.2.2 DRAM Out-of-Page Access
	An out-of-page access consists of the following steps:


	1. Deassertion of RAS
	2. Assertion of the control signals (WR/RD)
	3. After RAS precharge time, the assertion of RAS. RAS assertion and CAS timing depend on the num...



	9.3 Port A Disable
	In applications sensitive to power consumption, Port A may not be required because the memory tha...
	Note: To prevent improper operation when OMR[EBD] is set, do not access external memory, and alwa...


	9.4 Bus Handshake and Arbitration
	Bus transactions are governed by a single bus master. Bus arbitration determines which device bec...

	9.5 Bus Arbitration Signals
	There are three bus arbitration signals. Two of them (BR and BG) are local arbitration signals be...
	Bus Request (BR)—Asserted by a device to request use of the bus; it is held asserted until the de...
	Bus Grant (BG)—Asserted by the bus arbitration controller to signal the requesting device that it...
	Bus Busy (BB)—This signal is driven by the current bus master and controls the hand-over of bus o...
	9.5.1 The Arbitration Protocol
	The bus is arbitrated by a central bus arbiter, using individual request/grant lines to each bus ...
	1. Bus Requested by Device—All candidates for bus ownership assert their respective BR signals as...
	2. Bus Granted by Arbiter—The arbitration logic designates a bus master-elect by asserting the BG...
	3. Bus Released by Current Master—The master-elect tests BB to ensure that the previous master ha...
	4. Bus Control Assumed by New Master—The new bus master begins its bus transfers after asserting BB.
	5. Bus Grant Withdrawn by Arbiter—The arbitration logic signals the new bus master to relinquish ...
	6. Bus Released by Current Master—A DSP56300 core bus master releases its ownership (drives BB hi...
	Note: The three packing accesses, the two accesses of a read-modify-write instruction (BSET, BCLR...
	The DSP56300 core has two control bits (BRH and BLH) and one status bit (BBS), in the Bus Control...

	BRH Bit—If the BCR[BRH] bit is cleared, the DSP56300 core asserts its BR signal only as long as r...
	BLH Bit—If the BCR[BLH] bit is cleared, the DSP56300 core asserts its BL signal only during a rea...
	BBS Bit—This read-only bit in the BCR is set when the DSP is the bus master and cleared when it i...
	The DSP56300 core uses the OMR[BRT] bit control bit to enable Fast or Slow Bus Release mode. In F...
	Note: During the execution of WAIT and STOP instructions, the DSP56300 releases the bus (that is,...




	9.5.2 Arbitration Scheme
	Bus arbitration is implementation-dependent. Figure 9-6 illustrates a common bus arbitration sche...
	Figure�9-6. Example Bus Arbitration Scheme


	9.5.3 Bus Arbitration Example Cases
	The following paragraphs describe various bus arbitration examples.
	9.5.3.1 Case 1—Normal
	The BB signal is high, indicating that no device is controlling the bus (that is, the bus is not ...

	9.5.3.2 Case 2—Bus Busy
	The BB signal is asserted indicating that a device is already the bus master. If a second device ...

	9.5.3.3 Case 3—Low Priority
	If multiple devices assert BR at the same time, the arbiter grants the bus to the device with the...

	9.5.3.4 Case 4—Default
	The arbiter design may specify a default bus master. Such a design asserts BG for the default dev...

	9.5.3.5 Case 5—Bus Lock during Read-Modify-Write Instructions
	Typically, if a device asserts BR to request bus mastership and the arbiter then asserts BG to th...
	Note: During external read-modify-write instruction execution, BL is asserted.


	9.5.3.6 Case 6—Bus Parking
	As described in Section 9.5.3.4, bus parking is a strategy that permits a device to take control ...



	9.6 Port A Control
	Port A control consists of four Address Attribute Registers (AAR0–AAR3), the Bus Control Register...
	9.6.1 Address Attribute Registers (AAR0–AAR3)
	The four Address Attribute Registers (AAR0–AAR3) are 24-bit read/write registers that control the...
	Notes: 1. A priority mechanism exists among the four AAR control registers in order to resolve se...
	2. When a selection conflict occurs, that is the external address matches the address and the spa...
	Figure�9-7. Address Attribute Registers (AAR0–AAR3)

	Table�9-4 AAR Bit Definitions (Continued)


	23 – 12
	BAC
	0
	11 – 8
	BNC
	0
	20
	BPAC
	0
	6
	BAM
	0
	5
	BYEN
	0
	4
	BXEN
	0
	3
	BPEN
	0
	2
	BAAP
	0
	1 – 0
	BAT
	0
	9.6.2 Bus Control Register
	The Bus Control Register (BCR) is a 24-bit read/write register that controls the external bus act...
	Figure�9-8. Bus Control Register (BCR)

	Table�9-5 Bus Control Register (BCR) Bit Definitions (Continued)


	23
	BRH
	0
	22
	BLH
	0
	21
	BBS
	0
	20 – 16
	BDFW
	11111
	(31 wait states)
	15 – 13
	BA3W
	1 (7 wait states)
	12 – 10
	BA2W
	111 (7 wait states)
	9 – 5
	BA1W
	11111 (31 wait states)
	4 – 0
	BA0W
	11111 (31 wait states)
	9.6.3 DRAM Control Register
	The DRAM controller is an efficient interface to dynamic RAM devices in both random read/write cy...
	Note: To prevent improper device operation, you must guarantee that all the DCR bits except BSTR ...
	Figure�9-9. DRAM Control Register (DCR)


	Table�9-6 DRAM Control Register (DCR) Bit Definitions (Continued)


	23
	BRP
	0
	22 – 15
	BRF
	0
	14
	BSTR
	0
	13
	BREN
	0
	12
	BME
	0
	11
	BPLE
	0
	10
	0
	9 – 8
	BPS
	0
	7 – 4
	0
	3 – 2
	BRW
	0
	1 – 0
	BCW
	0


	Chapter�10 DMA Controller
	Direct Memory Access (DMA) is one of several methods for coordinating the timing of data transfer...
	DMA saves core MIPS because the core can operate in parallel.
	DMA saves power because it requires less circuitry than the core to move data.
	DMA saves pointers because core AGU pointer registers are not needed.
	DMA has no modulo block size restrictions, unlike the core AGU.
	Traditionally, DMA uses the same internal address and data buses as the core. Consequently, when ...
	In addition to data moves between I/O and internal or external memory, the DMA in the DSP56300 ca...
	Table�10-1 DMA Controller Data Transfers
	The DMA unit contains the necessary counters, offset registers, and pointers to transparently han...


	DMA Source Address Register (DSR): A read/write register that contains the source address for the...
	DMA Destination Address Register (DDR): A read/write register that contains the destination addre...
	DMA Counter (DCO): A read/write register that contains the number of DMA data transfers to be per...
	DMA Control Register (DCR): A read/write register that controls the operation of a DMA channel. E...
	The DMA Controller also has supporting 24-bit registers available to all the DMA channels:

	DMA Offset Register (DOR): Each DOR is a read/write register that contains the offset value to be...
	DMA Status Register (DSTR): This read-only register reflects the overall operating status of all ...
	In summary, the DSP56300 DMA can perform I/O and memory accesses that are independent of and freq...

	10.1 DMA Operational Overview
	The following subsections describe how the DSP56300 DMA operates. These subsections are organized...
	10.1.1 Basic Address Modes
	The DSP56300 DMA can deal with the following basic types of data structures:
	Constant Addressing: This mode uses a single address throughout the data transfer. Typically this...
	One-dimensional: A one-dimensional matrix consisting of one item or a “line” of items located in ...
	Two-dimensional: A two-dimensional matrix or table that is stored in row-column order with equal ...
	Three-dimensional: A three-dimensional matrix or collection of tables that are equally spaced in ...
	The type of data structure is specified in the counter mode for the DMA channel. The counter mode...


	10.1.2 Special Address Modes
	The counter and offset registers can be loaded with special values to produce variants of the bas...
	Circular buffer: Use a two-dimensional counter and a negative offset that wraps back to the buffe...
	Linear buffer with non-unit stride: Use a two-dimensional counter with one word per row. This met...
	A larger-than-normal field width in a two-dimensional counter: Concatenate two fields in a three-...

	10.1.3 Unmatched Source and Destination Dimensions
	The source and destination data structures can have different dimensions. The data structure with...
	The data structure on the low-dimension side of the transfer is fully described by a right-justif...

	10.1.4 DMA Triggers (Request Sources)
	Data movement in by a particular DMA channel is initiated by either a hardware or a software trig...
	Hardware triggers
	— External interrupt pins (IRQA - IRQD)
	— DMA channel block transfer completion (by this or a different DMA channel)
	— Peripheral status bits
	— Receiver has new datum to be read by DMA
	— Transmitter needs new datum from DMA to send
	— Timer compare event


	Software triggers
	— DMA Enable bit for this DMA channel
	A peripheral status bit that triggers an enabled DMA transfer also typically can trigger an enabl...



	10.1.5 Transfer Mode
	When a DMA channel is enabled and receives a trigger from its configured trigger source, it begin...


	10.2 Timing (Core Clock Cycles)
	This section describes the timing of core and DMA data transfers in the context of integral core ...
	Source read (at least one cycle)
	Destination write (at least one cycle)
	Any wait states incurred during external memory accesses are added to the DMA word transfer time ...
	Some peripherals (generally those using first-in-first-out (FIFO) for data transfer) may act as “...

	10.2.1 Non-Overlap Between DMA Channels
	Data movement can never be performed by more than one DMA channel within a given core clock cycle...
	One channel needs to read (write) from external memory, and another channel needs to write (read)...
	One of the DMA channels is waiting on the Bus Interface Unit (BIU) for an external access to comp...
	— Static wait states (determined by Bus Control Register)
	— Dynamic wait states (controlled by TA pin)
	— Byte packing
	This limitation is necessary because there is only one internal DMA address bus and one internal ...



	10.2.2 Overlap between DMA Channel and Core
	Since the core and DMA use separate address and data buses, both can perform data movement in a g...
	The core is accessing internal memory while DMA is accessing a different internal memory partition:
	— RAM: 1/4 Kword partition size (this size is device-dependent)
	— ROM: 2, 3, or 4 Kword device-specific partition size

	If the core and DMA try to access the same internal memory partition, the core has priority and D...
	The core is accessing internal (external) memory while DMA is accessing external (internal) memory


	10.3 Channel Priority
	DMA channel priority determines if and when a DMA channel can be interrupted during a block trans...
	10.3.1 Priority Between DMA Channels
	Each DMA channel can be independently assigned one of four possible priority levels. The treatmen...
	Channels with different priorities
	A higher-priority DMA channel can interrupt a lower-priority DMA channel and complete its block t...
	Channels with the same priority, one of two different modes can be selected:
	— Continuous mode: A DMA channel cannot interrupt another DMA channel of the same priority.
	— Non-continuous mode: Control is transferred in a round-robin fashion between each channel of th...
	DMA channels cannot interrupt each other in the middle of word transfers, regardless of their rel...



	10.3.2 Priority Between a DMA Channel and the Core
	If the core and a DMA channel are both contending for the same partition of internal memory, but ...
	If the DMA channel and the core are each attempting to access a different internal memory partiti...
	Static DMA/Core Prioritizing mode — The core priority is configured to have a constant fixed rela...
	Dynamic DMA/Core Prioritizing mode — The priority of each DMA channel is individually compared wi...
	Note: Even though DMA and the core have separate address and data buses, there is only one extern...
	The core cannot interrupt a DMA channel in the middle of a word transfer to or from a contended r...



	10.4 Special Uses of DMA With the Bus Interface Unit
	The following subsections describe Bus Interface Unit (BIU) operations that can only be performed...
	10.4.1 Byte Packing
	Byte packing is used when the 24-bit data width DSP core interfaces with an 8-bit wide external m...
	10.4.1.1 DRAM In-Page Accesses using DMA
	When a DMA channel handles several consecutive in-page DRAM word accesses, a special situation ca...

	10.4.1.2 End-of-Block-Transfer Interrupt
	Upon completion of a block transfer by a DMA channel, an optional end-of-block-transfer DMA inter...



	10.5 DMA Controller Programming Model
	Figure 10-1 shows the DMA Controller programming model. The following paragraphs describe the reg...
	10.5.1 DMA Source Address Registers (DSR0–DSR5)
	The DSR stores the initial source address specified by and loaded from the DMA requesting device....
	Figure�10-1. DMA Controller Programming Model


	10.5.2 DMA Destination Address Registers (DDR[5 – 0])
	The DDR stores the initial destination address specified by and loaded from the DMA requesting de...

	10.5.3 DMA Counters (DCO[5 – 0])
	During DMA operation, a Source Address Register (DSR) is associated with one of the counter modes...
	10.5.3.1 DMA Counter Mode A—Single Counter
	Figure 10-2 shows that in DMA Counter Mode A, the DCO operates as a single counter.



	DCO
	Figure�10-2. DMA Counter Mode A Layout
	The number of transfers is equal to the value loaded into DCO plus one (DCO + 1). Before each DMA...
	DCO > 0
	A transfer is initiated with an address equal to the address register. Then DCO is decremented by...
	DCO = 0
	The last transfer is initiated with an address equal to the address register, the address registe...
	For example, if the DCO is preloaded with the value 5, the DSR is loaded with the value S, and th...
	Table�10-2 Interaction Between the DSR and DCO in Mode A


	S
	5
	S + 1
	4
	S + 1
	4
	S + 2
	3
	S + 2
	3
	S + 3
	2
	S + 3
	2
	S + 4
	1
	S + 4
	1
	S + 5
	0
	S + 5
	0
	S + 6
	5
	10.5.3.2 DMA Counter Mode B—Dual Counter
	Figure 10-3 shows that in DMA Counter Mode B, which is useful for two-dimensional block transfers...


	DCOH
	DCOL
	Figure�10-3. DMA Counter Mode B Layout
	Before each DMA transfer, DCOH and DCOL are tested for zero, and the following actions occur base...
	DCOH > 0 and DCOL > 0
	A transfer is initiated with an address equal to the address register. Then DCOL is decremented b...
	DCOH > 0 and DCOL = 0
	A transfer is initiated with an address equal to the address register. The address register is in...
	DCOH = 0 and DCOL = 0
	The last transfer is initiated with an address equal to the address register. The address registe...
	The number of transfers in this mode is equal to (DCOL + 1) ¥ (DCOH + 1). For example, assume DCO...
	Table�10-3 Interaction Between the DSR and DCO in Mode B


	S
	1
	2
	S + 1
	1
	1
	S + 1
	1
	1
	S + 2
	1
	0
	S + 2
	1
	0
	S + T + 2
	0
	2
	S + T + 2
	0
	2
	S + T + 3
	0
	1
	S + T + 3
	0
	1
	S + T + 4
	0
	0
	S + T + 4
	0
	0
	S + 2T + 4
	1
	2
	10.5.3.3 Circular Buffer (Length Less Than or Equal to 4K)
	In Dual Counter mode, a DMA channel can function as a circular buffer. A negative offset causes t...
	The 12-bit DCOL field is set to (BUFFER_SIZE - 1), providing a maximum buffer length of 4096 word...

	10.5.3.3.1 DMA Counter Modes C, D and E—Triple Counter
	In DMA Counter Modes C, D, and E, which are useful for three-dimensional block transfers, the DCO...


	DCOH
	DCOM
	DCOL
	DCOH
	DCOM
	DCOL
	DCOH
	DCOM
	DCOL
	Figure�10-4. DMA Counter Modes C, D, and E Layouts
	Before each DMA transfer, DCOH, DCOM, and DCOL are tested for zero, and the following actions occ...
	DCOH > 0, DCOM > 0, and DCOL > 0
	A transfer is initiated with an address equal to the address register. Then DCOL decrements by on...
	DCOH > 0, DCOM > 0, and DCOL = 0
	A transfer is initiated with an address equal to the address register. Then the address register ...
	DCOH > 0, DCOM = 0, and DCOL = 0
	A transfer is initiated with an address equal to the address register. The address register then ...
	DCOH = 0, DCOM = 0, and DCOL = 0
	The last transfer is initiated with an address equal to the address register. The address registe...
	Assume that DCOH is preloaded with the value 1, DCOM is also preloaded with the value 1, DCOL is ...
	Table�10-4 Interaction Between the DSR and DCO in Mode C, D, or E


	S
	1
	1
	2
	S + 1
	1
	1
	1
	S + 1
	1
	1
	1
	S + 2
	1
	1
	0
	S + 2
	1
	1
	0
	S + T0 + 2
	1
	0
	2
	S + T0 + 2
	1
	0
	2
	S + T0 + 3
	1
	0
	1
	S + T0 + 3
	1
	0
	1
	S + T0 + 4
	1
	0
	0
	S + T0 + 4
	1
	0
	0
	S + T0 + T1 + 4
	0
	1
	2
	S + T0 + T1 + 4
	0
	1
	2
	S + T0 + T1 + 5
	0
	1
	1
	S + T0 + T1 + 5
	0
	1
	1
	S + T0 + T1 + 6
	0
	1
	0
	S + T0 + T1 + 6
	0
	1
	0
	S + 2T0 + T1 + 6
	0
	0
	2
	S + 2T0 + T1 + 6
	0
	0
	2
	S + 2T0 + T1 + 7
	0
	0
	1
	S + 2T0 + T1 + 7
	0
	0
	1
	S + 2T0 + T1 + 8
	0
	0
	0
	S + 2T0 + T1 + 8
	0
	0
	0
	S + 2T0 + 2T1 + 8
	1
	1
	2
	10.5.3.4 Circular Buffer (Length Greater Than 4K)
	A circular buffer of length greater than 4096 words can be implemented using a DMA channel in Cou...

	10.5.3.5 DMA Control Registers (DCR[5 – 0])
	The DMA Control Registers (DCR[5 – 0]) are read/write registers that control the DMA operation fo...


	DE
	DIE
	DTM2
	DTM1
	DTM0
	DPR1
	DPR0
	DCON
	DRS4
	DRS3
	DRS2
	DRS1
	DRS0
	D3D
	DAM5
	DAM4
	DAM3
	DAM2
	DAM1
	DAM0
	DDS1
	DDS0
	DSS1
	DSS0
	Figure�10-5. DMA Control Register (DCR)
	Table�10-5 DMA Control Register (DCR) Bit Definitions (Continued)

	23
	DE
	0
	22
	DIE
	0
	21 – 19
	DTM
	0
	000
	request
	Yes
	001
	request
	Yes
	010
	request
	Yes
	011
	DE
	Yes
	100
	request
	No
	101
	request
	No
	110
	Reserved
	111
	Reserved
	18 – 17
	DPR
	00
	01
	10
	11
	If all or some channels have the same priority, then channels are activated in a round-robin fash...
	If channels have different priorities, the highest priority channel executes DMA transfers and co...
	If a lower-priority channel is executing DMA transfers when a higher priority channel receives a ...
	If some channels with the same priority are active in a round-robin fashion and a new higher-prio...
	The DPR bits also determine the DMA priority relative to the core priority for external bus acces...

	00
	00
	0 (lowest)
	00
	01
	1
	00
	10
	2
	00
	11
	3 (highest)
	01
	xx
	10
	xx
	11
	xx
	18 – 17 cont.
	DPR
	If DMA priority > core priority (for example, if CDP = 01, or CDP = 00 and DPR > CP), the DMA per...
	If DMA priority = core priority (for example, if CDP = 10, or CDP�= 00 and DPR = CP), the core pe...
	If DMA priority < core priority (for example, if CDP=11, or CDP�= 00 and DPR < CP), the core perf...
	In Dynamic Priority mode (CDP = 00), the DMA channel can be halted before executing both the sour...

	16
	DCON
	15 – 11
	DRS
	00000
	00001
	00010
	00011
	00100
	00101
	00110
	00111
	01000
	01001
	01010
	...
	11111
	10
	D3D
	9 – 4
	DAM
	3 – 2
	DDS
	0
	0
	0
	1
	1
	0
	1
	1
	1 – 0
	DSS
	0
	0
	0
	1
	1
	0
	1
	1
	10.5.3.5.1 Non-3D Addressing Modes (D3D = 0)
	If D3D = 0, the DAM bits are separated into two groups as described in Table 10-6:
	DAM[5 – 3]: Defines the destination address generation mode
	DAM[2 – 0]: Defines the source address generation mode
	Note: The destination and source address modes can be chosen independently, but they always use t...
	Table�10-6 Address Generation Mode (D3D = 0)



	000
	000
	2D
	B
	DOR0
	001
	001
	2D
	B
	DOR1
	010
	010
	2D
	B
	DOR2
	011
	011
	2D
	B
	DOR3
	100
	100
	No Update
	A
	None
	101
	101
	Postincrement-by-1
	A
	None
	110
	110
	Reserved
	111
	111
	Reserved
	1. If the destination address generation mode specifies a different counter mode than the source ...
	2. In Mode A, the counter is a single 24-bit register (DCO). In Mode B, the counter is two 12-bit...
	The address generation mode can be one of the following:
	No Update mode: The DMA accesses a constant address for the entire transfer. This addressing mode...
	Postincrement-by-1 mode: The DMA accesses consecutive addresses. This addressing mode is useful w...
	Two-dimensional mode: The DMA accesses data at consecutive addresses for a given number of times ...
	10.5.3.5.2 3D Modes (D3D = 1)
	When D3D = 1 (three-dimensional mode), the source addressing mode, the destination addressing mod...
	DAM[5 – 3]: Defines the address generation mode (See Table 10-7)
	DAM[2]: Defines the address mode select (See Table 10-8)
	DAM[1 – 0]: Defines the DMA counter mode (See Table 10-9)
	Table�10-7 Address Generation Mode (D3D = 1)



	000
	Two-dimensional
	DOR0
	001
	Two-dimensional
	DOR1
	010
	Two-dimensional
	DOR2
	011
	Two-dimensional
	DOR3
	100
	No Update
	None
	101
	Postincrement-by-1
	None
	110
	Three-dimensional
	DOR0: DOR1
	111
	Three-dimensional
	DOR2: DOR3
	Table�10-8 Address Mode Select (D3D = 1)

	0
	1
	Table�10-9 Counter Mode (D3D = 1)

	00
	Mode C
	DCOH bits (23–12)
	DCOM bits (11–6)
	DCOL bits (5–0)
	01
	Mode D
	DCOH bits (23–18)
	DCOM bits (17–6)
	DCOL bits (5–0)
	10
	Mode E
	DCOH bits (23–18)
	DCOM bits (17–12)
	DCOL bits (11–0)
	11
	—
	Reserved
	In Three-dimensional Address Generation mode, the DMA accesses data at consecutive addresses for ...
	10.5.3.6 DMA Offset Registers (DOR[3 – 0])
	The DMA Offset Registers (DOR[3 – 0]) are four 24-bit read/write registers that store the offset ...

	10.5.3.7 DMA Status Register (DSTR)
	The DMA Status Register (DSTR) is a 24-bit read only register that reflects the status of the DMA...


	DCH2
	DCH1
	DCH0
	DACT
	DTD5
	DTD4
	DTD3
	DTD2
	DTD1
	DTD0
	Figure�10-6. DMA Status Register (DSTR)
	Table�10-10 DMA Status Register (DSTR) Bit Definitions (Continued)

	23 – 12
	0
	11 – 9
	DCH
	0
	000
	001
	010
	011
	100
	101
	110
	111
	8
	DACT
	0
	7 – 6
	0
	5 – 0
	DTD
	1
	Because of pipeline dependencies, after the DCR[DE] bit is set, the corresponding DTDx bit is cle...
	If the DMA channel is in a word transfer mode, clearing DE sets the corresponding DTD bit only af...
	When any DMA channel is set in the infinitive transfer mode (DE is not cleared at end of block) t...
	10.6 DMA Restrictions
	The following restrictions apply to the DMA operation:
	1. Before executing the STOP instruction, poll the DACT status bit until it is read as zero. When...
	2. The core exits the Wait state when a DMA channel accepts a trigger that is programmed as the s...
	3. The DMA Controller can access only the Transmit/Receive Data registers of peripheral interface...
	4. If a DMA channel access to external memory is delayed due to bus arbitration or memory wait, t...
	5. The internal RAM is divided into 256/1024-word banks. If the core and DMA access different ban...
	6. Write to the DMA Address Registers and the DMA Counter only when the channel that uses them is...
	7. A change in the request source should be initiated only when the corresponding DMA channel is ...
	8. If a DMA channel is programmed to perform accesses in the word transfer mode, the correspondin...
	Note: If the channel priority is low, the DTD is set only when it receives the priority to perfor...

	9. While a DMA channel is enabled (DE = 1), do not modify any of the channel DCR bits, except for...
	10. Due to pipelining, after the DE bit in DCRx is set, the corresponding DTDx bit in DSTR is not...



	Chapter�11 Operating Modes and Memory Spaces
	The DSP56300 family core mode pins (MODA, MODB, MODC, and MODD) determine the reset vector addres...
	Table�11-1. DSP Core Operating Modes�

	0000
	0
	Expanded Mode 0
	RESET1
	0001–0111
	1–7
	System Configuration Mode 1–7
	RESET3
	1000
	8
	Expanded Mode 8
	RESET2
	1001–1111
	9–F
	System Configuration Mode 9–F
	RESET3
	Table�11-2. DSP Core Reset Vectors, Possible Values�

	$000000
	$004000
	$000000
	$C00000
	$008000
	$FF0000
	In Expanded Modes 0 and 8, a hardware reset causes the DSP56300 family core to jump to the mask-p...
	In the System Configuration Modes 1–7 and 9–F, a hardware reset causes the DSP56300 family core t...
	11.1 DSP56300 Family Core Memory Map
	The memory space of the DSP56300 family core is partitioned into program memory space (P), X data...
	Figure�11-1. DSP56300 Core Memory Map
	Note: Individual members of the DSP56300 family can have different amounts of X data, Y data, and...

	11.1.1 X Data Memory Space
	The X data memory space is divided into five parts:
	Internal X I/O space
	Switchable internal or external X I/O memory space
	Reserved space for X ROM or RAM
	External X data memory
	Internal X data RAM

	11.1.2 Internal X I/O Space
	The on-chip X I/O peripheral registers occupy the top 128 locations of the X data memory space ($...
	Table�11-3. Internal X I/O Space Map (Continued)




	IPRC
	PIC
	IPRP
	PCTL
	PLL
	OGDB
	OnCE
	BCR
	PORT A
	DCR
	AAR0
	AAR1
	AAR2
	AAR3
	IDR
	DSTR
	DMA
	DOR0
	DOR1
	DOR2
	DOR3
	DSR0
	DMA Channel 0
	DDR0
	DCO0
	DCR0
	DSR1
	DMA Channel 1
	DDR1
	DCO1
	DCR1
	DSR2
	DMA Channel 2
	DDR2
	DCO2
	DCR2
	DSR3
	DMA Channel 3
	DDR3
	DCO3
	DCR3
	DSR4
	DMA Channel 4
	DDR4
	DCO4
	DCR4
	DSR5
	DMA Channel 5
	DDR5
	DCO5
	DCR5
	Reserved
	On-Chip X-I/O mapped Registers
	11.1.3 Switchable Internal or External X I/O Memory
	The X memory space $FFF000 – $FFFF7F is device-specific and is either external X data memory or i...
	11.1.3.1 Reserved Space for X ROM or RAM
	The X memory space $FF0000 – $FFEFFF is reserved for inclusion of X data ROM or RAM modules (2048...

	11.1.3.2 External X Data Memory
	The X memory space $000000 – $FEFFFF is for expanding to external X memory. The starting address ...

	11.1.3.3 Internal X Memory
	The X memory space $000000 – $00FFFF is for internal X RAM modules (256 locations each). The last...


	11.1.4 Y Data Memory Space
	The Y data memory space is divided into five parts:
	Internal/External Y I/O space
	Switchable internal or external Y I/O memory space
	Reserved space for Y ROM or RAM
	External Y data memory
	Internal Y data RAM
	11.1.4.1 Internal/External Y I/O Space
	The off-chip or on-chip Y I/O peripheral registers occupy the top 128 locations of the Y data mem...

	11.1.4.2 Switchable Internal or External Y I/O Memory
	The Y memory space $FFF000 – $FFFF7F is device-specific and is either external Y data memory or i...

	11.1.4.3 Reserved Space for Y ROM or RAM
	The Y memory space $FF0000 – $FFEFFF is reserved for inclusion of Y data ROM or RAM modules (2048...

	11.1.4.4 External Y Data Memory
	The Y data memory space $000000 –$FEFFFF is for expanding to external Y data memory. The starting...

	11.1.4.5 Internal Y Memory
	The Y memory space $000000 – $00FFFF is for internal Y RAM modules (256 locations each). The last...


	11.1.5 Program Memory
	The Program memory space is divided into five parts:
	Bootstrap ROM (192 words)
	Reserved space for Program ROM
	External program memory
	Internal program memory
	Internal instruction cache memory
	11.1.5.1 Bootstrap ROM Space
	The program memory space $FF0000 – $FF00BF is for the internal bootstrap ROM. The ROM contains 19...

	11.1.5.2 Reserved Space for Program ROM
	The program memory space $FF00C0 – $FFFFFF is reserved for inclusion of Program ROM modules (2048...

	11.1.5.3 External Program Memory
	The program memory space $000000 – $FEFFFF is for expanding to external program memory. The start...

	11.1.5.4 Internal Program Memory
	The program memory space $000000 – $00FFFF is for internal Program RAM modules (256 locations for...

	11.1.5.5 Internal Instruction Cache RAM
	The program memory space $000000 – $00FFFF is for internal Instruction Cache RAM modules (256 loc...


	11.2 Sixteen-Bit Compatibility Mode
	When the Sixteen Bit Compatibility (SC) mode bit is set, the memory map is changed to allow easy ...
	Figure�11-2. DSP56300 Core Memory Map (SC = 1)

	For details on this mode, how it affects AGU operations, and functional restrictions, see Chapter...
	11.3 Memory Switch Mode
	When the Memory Switch (MS) mode bit is set, some of the internal data memory addresses (X, Y, or...
	Due to pipelining, a change in the MS bit takes affect only after the four consecutive instructio...




	Chapter 12 Guide to the Instruction Set
	This chapter presents the DSP56300 instruction format as well as partial encodings for use in ins...
	12.1 Instruction Formats and Syntax
	The DSP56300 core instructions consist of one or two 24-bit words—an operation word and an option...
	Figure 12-1. General Formats of an Instruction Word

	The Data Bus Movement field provides the operand reference type, which selects the type of memory...
	The Opcode field of the operation word specifies the Data ALU operation or the Program Control Un...
	The instruction syntax has two formats—parallel and non-parallel, as Table 12-1 and Table 12-2 sh...
	Table 12-1. Parallel Instruction Format


	Example 1
	MAC
	X0,Y0,A
	X:(R0)+,X0
	Y:(R4)+,Y0
	Example 2
	MOVE
	X:-(R1),X1
	Example 3
	MAC
	X1,Y1,B
	Example 4
	MPY
	X0,Y0,A
	IFeq
	Assembly-language source codes for some typical one-word instructions are shown in Table 12-1. Be...
	A non-parallel instruction is organized into two columns: opcode and operands. Assembly-language ...
	Table 12-2. Non-Parallel Instruction Format


	Example 1:
	JEQ
	(R5)
	Example 2:
	MOVEP
	#data,X:ipr
	Example 3:
	RTS
	12.2 Operand Lengths
	Operand lengths are defined as follows: a byte is 8 bits, a word is 16 bits, a long word is 48 bi...
	Figure 12-2. Operand Lengths

	In Sixteen-Bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a word is 16...
	Figure 12-3. Operand Lengths in Sixteen-Bit Mode

	Table 12-3 shows the operand lengths supported by the registers of the DSP56300 core.
	Table 12-3. Register Operand Lengths



	10
	8
	8
	8
	1
	1
	1
	1
	1
	12.2.1 Data ALU Registers
	The eight main data registers are 24 bits wide. Word operands occupy one register; long-word oper...
	The two accumulator extension registers are 8 bits wide. When an accumulator extension register i...
	When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator value is o...
	Figure 12-4. Reading and Writing the ALU Extension Registers

	When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit source dat...

	12.2.2 AGU Registers
	The twenty-four 24-bit AGU registers can be accessed as word operands for address, address offset...

	12.2.3 Program Control Registers
	Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM) register occupies ...
	Within the 24-bit SR, the user condition code register (CCR) occupies the low-order 8 bits, the s...
	Figure 12-5. Reading and Writing Control Registers


	12.2.4 Data Organization in Memory
	The 24-bit program memory can store both 24-bit instruction words and instruction extension words...

	12.3 Instruction Groups
	The instruction set is divided into the following groups:
	Arithmetic
	Logical
	Bit Manipulation
	Loop
	Move
	Program Control

	Each instruction group is described in the following paragraphs.
	12.3.1 Arithmetic Instructions
	The arithmetic instructions perform all of the arithmetic operations within the Data ALU. These i...
	Table 12-4. Arithmetic Instructions (Continued)




	ABS
	÷
	ADC
	÷
	ADD
	÷
	ADD (imm.)
	ADDL
	÷
	ADDR
	÷
	ASL
	÷
	ASL (mb.)
	ASL (mb., imm.)
	ASR
	÷
	ASR (mb.)
	ASR (mb., imm.)
	CLR
	÷
	CMP
	÷
	CMP (imm.)
	CMPM
	÷
	CMPU
	DEC
	DIV
	DMAC
	INC
	MAC
	÷
	MAC (su,uu)
	MACI
	MACR
	÷
	MACRI
	MAX
	÷
	MAXM
	÷
	MPY
	÷
	MPY (su,uu)
	MPYI
	MPYR
	÷
	MPYRI
	NEG
	÷
	NORMF
	RND
	÷
	SBC
	÷
	SUB
	÷
	SUB (imm.)
	SUBL
	÷
	SUBR
	÷
	Tcc
	TFR
	÷
	TST
	÷
	12.3.2 Logical Instructions
	The logical instructions execute in one instruction cycle and perform all logical operations with...
	Table 12-5. Logical Instructions (Continued) (Continued)



	AND
	÷
	AND (imm.)
	ANDI
	CLB
	EOR
	÷
	EOR (imm.)
	EXTRACT
	EXTRACT (imm.)
	EXTRACTU
	EXTRACTU (imm.)
	INSERT
	INSERT (imm.)
	LSL
	÷
	LSL (mb.)
	LSL (mb., imm.)
	LSR
	÷
	LSR (mb.)
	LSR (mb.,imm.)
	MERGE
	NOT
	÷
	OR
	÷
	OR (imm.)
	ORI
	ROL
	÷
	ROR
	÷
	12.3.3 Bit Manipulation Instructions
	The bit manipulation instructions test the state of any single bit in a memory location and then ...
	Table 12-6. Bit Manipulation Instructions �



	BCHG
	BCLR
	BSET
	BTST
	12.3.4 Loop Instructions
	The hardware DO loop executes with no overhead cycles—that is, it runs as fast as straight-line c...
	Table 12-7. Loop Instructions �



	BRKcc
	DO
	DO FOREVER
	ENDDO
	12.3.5 Move Instructions
	The move instructions perform data movement over the XDB and YDB or over the GDB. Move instructio...
	Table 12-8. Move Instructions �



	LUA
	LRA
	MOVE
	÷
	MOVEC
	MOVEM
	MOVEP
	U MOVE
	÷
	VSL
	12.3.6 Program Control Instructions
	The program control instructions include jumps, conditional jumps, and other instructions affecti...
	Table 12-9. Program Control Instructions (Continued)



	IFcc.U
	IFcc
	Bcc
	BRA
	BScc
	BSR
	DEBUGcc
	DEBUG
	Jcc
	JMP
	JCLR
	JSET
	JScc
	JSR
	JSCLR
	JSSET
	NOP
	REP
	RESET
	RTI
	RTS
	STOP
	TRAPcc
	TRAP
	WAIT
	12.4 Guide to Instruction Descriptions
	The following information is included in each instruction description:
	Name and Mnemonic: Highlighted in bold type for easy reference.
	Assembler Syntax and Operation: The syntax line for each instruction symbolically describes the c...
	Description: Includes any special cases and/or condition code anomalies.
	Condition Codes: The Status Register (SR) is depicted with the condition code bits that can be af...
	Instruction Format: The instruction fields, the instruction opcode, and the instruction extension...

	12.4.1 Notation
	Each instruction description contains symbols to abbreviate certain operands and operations. Tabl...
	Table 12-10. Instruction Description Notation (Continued)




	Xn
	Yn
	An
	Bn
	X
	Y
	A
	B
	AB
	BA
	A10
	B10
	PC
	MR
	CCR
	SR
	EOM
	COM
	OMR
	SZ
	SC
	VBA
	LA
	LC
	SP
	SSH
	SSL
	SS
	ea
	eax
	eay
	xxxxxx
	xxx
	xxx
	aaa
	aa
	pp
	qq
	<. . .>
	X:
	Y:
	L:
	P:
	S, Sn
	D, Dn
	D [n]
	#n
	#xx
	#xxx
	#xxxxxx
	r
	#bbbbb
	–
	—
	PUSH
	PULL
	READ
	PURGE
	| |
	+
	–
	*
	¸, /
	+
	•
	Å
	ﬁ
	:
	<<
	<
	>
	#
	#>
	#<
	LF
	DM
	SB
	RM
	S1, S0
	I1, I0
	S
	L
	E
	U
	N
	Z
	V
	C
	( )
	(º)
	EXT
	LS
	LSP
	MS
	MSP
	S/L
	Sign Ext
	Zero
	Rn
	Nn
	Mn
	12.4.2 Condition Code Computation
	The Condition Code Register (CCR) portion of the Status Register (SR) consists of eight bits (see...
	Figure 12-6. Condition Code Register (CCR)

	Every instruction contains an illustration showing how the instruction affects the various condit...
	Table 12-11. Instruction Effect on Condition Code



	—
	÷
	*
	Table 12-12. Condition Code Register (CCR) Bit Definitions (Continued)

	7
	S
	0
	0
	0
	0
	1
	1
	0
	1
	1
	7 cont.
	S
	0
	6
	L
	0
	5
	E
	0
	0
	0
	0
	1
	1
	0
	4
	U
	0
	0
	0
	No Scaling
	U = (Bit 47 xor Bit 46)
	0
	1
	Scale Down
	U = (Bit 48 xor Bit 47)
	1
	0
	Scale Up
	U = (Bit 46 xor Bit 45)
	3
	N
	0
	2
	Z
	0
	1
	V
	0
	0
	C
	0
	12.5 Instruction Partial Encoding
	This section gives the encodings for the following:
	Various groupings of registers used in the instruction encodings
	Condition Code combinations
	Addressing
	Addressing modes

	The symbols used in decoding the various fields of an instruction are identical to those used in ...
	12.5.1 Partial Encodings for Use in Instruction Encoding
	Table 12-13. Partial Encodings for Use in Instruction Encoding



	A
	0
	X
	0
	X0
	00
	B
	1
	Y
	1
	Y0
	01
	X1
	10
	Y1
	11
	(Rn)–Nn
	0 0 0 r r r
	MR
	00
	B/A*
	0 0 1
	(Rn)+Nn
	0 0 1 r r r
	CCR
	01
	X
	0 1 0
	(Rn)–
	0 1 0 r r r
	COM
	10
	Y
	0 1 1
	(Rn)+
	0 1 1 r r r
	EOM
	11
	X0
	1 0 0
	(Rn)
	1 0 0 r r r
	Y0
	1 0 1
	(Rn+Nn)
	1 0 1 r r r
	X1
	1 1 0
	–(Rn)
	1 1 1 r r r
	Y1
	1 1 1
	Absolute address
	1 1 0 0 0 0
	Immediate data
	1 1 0 1 0 0
	000
	reserved
	000
	reserved
	000
	B/A*
	001
	reserved
	001
	reserved
	001
	reserved
	010
	A1
	010
	A0
	010
	reserved
	011
	B1
	011
	B0
	011
	reserved
	100
	X0
	100
	X0
	100
	X0
	101
	Y0
	101
	Y0
	101
	Y0
	110
	X1
	110
	X1
	110
	X1
	111
	Y1
	111
	Y1
	111
	Y1
	X Memory
	0
	(Rn)–Nn
	0 0 0 r r r
	(Rn)–Nn
	0 0 0 r r r
	Y Memory
	1
	(Rn)+Nn
	0 0 1 r r r
	(Rn)+Nn
	0 0 1 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)
	1 0 0 r r r
	(Rn)
	1 0 0 r r r
	(Rn+Nn)
	1 0 1 r r r
	(Rn+Nn)
	1 0 1 r r r
	–(Rn)
	1 1 1 r r r
	–(Rn)
	1 1 1 r r r
	Absolute address
	1 10 0 0 0
	(Rn)–Nn
	0 0 r r r
	(Rn)+Nn
	0 1 r r r
	(Rn)–
	1 0 r r r
	(Rn)+
	1 1 r r r
	Table 12-14. Triple-Bit Register Encoding �

	000
	—
	A0
	R0
	N0
	M0
	—
	VBA
	SZ
	001
	—
	B0
	R1
	N1
	M1
	—
	SC
	SR
	010
	—
	A2
	R2
	N2
	M2
	EP
	—
	OMR
	011
	—
	B2
	R3
	N3
	M3
	—
	—
	SP
	100
	X0
	A1
	R4
	N4
	M4
	—
	—
	SSH
	101
	X1
	B1
	R5
	N5
	M5
	—
	—
	SSL
	110
	Y0
	A
	R6
	N6
	M6
	—
	—
	LA
	111
	Y1
	B
	R7
	N7
	M7
	—
	—
	LC
	Table 12-15. Long Move Register Encoding �

	A10
	A1
	A0
	no
	A10
	A1
	A0
	no
	no
	0 0 0
	B10
	B1
	B0
	no
	B10
	B1
	B0
	no
	no
	0 0 1
	X
	X1
	X0
	no
	X
	X1
	X0
	no
	no
	0 1 0
	Y
	Y1
	Y0
	no
	Y
	Y1
	Y0
	no
	no
	0 1 1
	A
	A1
	A0
	yes
	A
	A1
	A0
	A2
	no
	1 0 0
	B
	B1
	B0
	yes
	B
	B1
	B0
	B2
	no
	1 0 1
	AB
	A
	B
	yes
	AB
	A
	B
	A2,B2
	A0,B0
	1 1 0
	BA
	B
	A
	yes
	BA
	B
	A
	B2,A2
	B0,A0
	1 1 1
	Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

	B/A*
	000
	R0-R7
	onnn
	X0
	100
	N0-N7
	1nnn
	Y0
	101
	X1
	110
	Y1
	111
	X0,X0
	0 0 0
	X0,Y1
	1 0 0
	Y1
	0 0
	Y0,Y0
	0 0 1
	Y0,X0
	1 0 1
	X0
	0 1
	X1,X0
	0 1 0
	X1,Y0
	1 1 0
	Y0
	1 0
	Y1,Y0
	0 1 1
	Y1,X1
	1 1 1
	X1
	1 1
	X0
	0 0
	X0,X0
	0 0 0 0
	X0,Y1
	0 1 0 0
	Y0
	0 1
	Y0,Y0
	0 0 0 1
	Y0,X0
	0 1 0 1
	X1
	1 0
	X1,X0
	0 0 1 0
	X1,Y0
	0 1 1 0
	Y1
	1 1
	Y1,Y0
	0 0 1 1
	Y1,X1
	0 1 1 1
	X1,X1
	1 0 0 0
	Y1,X0
	1 1 0 0
	Y1,Y1
	1 0 0 1
	X0,Y0
	1 1 0 1
	+
	0
	X0,X1
	1 0 1 0
	Y0,X1
	1 1 1 0
	–
	1
	Y0,Y1
	1 0 1 1
	X1,Y1
	1 1 1 1
	X0
	0 0 1 0 0
	B2
	0 1 0 1 1
	X1
	0 0 1 0 1
	A1
	0 1 1 0 0
	Y0
	0 0 1 1 0
	B1
	0 1 1 0 1
	Y1
	0 0 1 1 1
	A
	0 1 1 1 0
	A0
	0 1 0 0 0
	B
	0 1 1 1 1
	0 1 D D
	B0
	0 1 0 0 1
	R0-R7
	1 0 r r r
	1 D D D
	A2
	0 1 0 1 0
	N0-N7
	1 1 n n n
	1
	00001
	010000000000000000000000
	0
	2
	00010
	001000000000000000000000
	1
	3
	00011
	000100000000000000000000
	4
	00100
	000010000000000000000000
	5
	00101
	000001000000000000000000
	0 1 D D
	6
	00110
	000000100000000000000000
	1 D D D
	7
	00111
	000000010000000000000000
	8
	01000
	000000001000000000000000
	9
	01001
	000000000100000000000000
	10
	01010
	000000000010000000000000
	(Rn)+Nn
	0 1 s s s
	11
	01011
	000000000001000000000000
	(Rn)–
	1 0 s s s
	12
	01100
	000000000000100000000000
	(Rn)+
	1 1 s s s
	13
	01101
	000000000000010000000000
	(Rn)
	0 0 s s s
	14
	01110
	000000000000001000000000
	15
	01111
	00000000000000010000000000
	(Rn)+Nn
	0 1 t t
	16
	10000
	00000000000000001000000000
	(Rn)–
	1 0 t t
	17
	10001
	000000000000000001000000
	(Rn)+
	1 1 t t
	18
	10010
	000000000000000000100000
	(Rn)
	0 0 t t
	19
	10011
	000000000000000000010000
	20
	10100
	000000000000000000001000
	21
	10101
	000000000000000000000100
	22
	10110
	000000000000000000000010
	X0
	0 0
	Y0
	0
	ss
	00
	X1
	0 1
	Y1
	1
	su
	10
	A
	1 0
	uu
	11
	B
	1 1
	(Reserved)
	01
	D1
	e
	S2,D2
	f f
	X0
	0
	Y0
	0 0
	su
	0
	X1
	1
	Y1
	0 1
	uu
	1
	A
	1 0
	B
	1 1
	0
	A Æ X:<ea> , X0 Æ A
	Y0 Æ A , A Æ Y:<ea>
	M0-M7
	00nnn
	1
	B Æ X:<ea> , X0 Æ B
	Y0 Æ B , B Æ Y:<ea>
	EP
	01010
	VBA
	10000
	S1,D1
	e e
	S2,D2
	f f
	SC
	10001
	X0
	0 0
	Y0
	0 0
	SZ
	11000
	X1
	0 1
	Y1
	0 1
	SR
	11001
	A
	1 0
	A
	1 0
	OMR
	11010
	B
	1 1
	B
	1 1
	SP
	11011
	SSH
	11100
	SSL
	11101
	LA
	11110
	LC
	11111
	Table 12-17. Condition Code Computation Equation�

	CC(HS)
	Carry Clear (higher or same)
	C = 0
	CS(LO)
	Carry Set (lower)
	C = 1
	EC
	Extension Clear
	E = 0
	EQ
	Equal
	Z = 1
	ES
	Extension Set
	E=1
	GE
	Greater than or Equal
	N Å V=0
	GT
	Greater Than
	Z+(N Å V)=0
	LC
	Limit Clear
	L=0
	LE
	Less than or Equal
	Z+(N Å V)=1
	LS
	Limit Set
	L=1
	LT
	Less Than
	N Å V=1
	MI
	Minus
	N=1
	NE
	Not Equal
	Z=0
	NR
	Normalized
	Z+(U·E)=1
	PL
	Plus
	N=0
	NN
	Not Normalized
	Z+(U·E)=0
	Å denotes the logical Exclusive OR operator.
	Table 12-18. Condition Codes Encoding (Continued)


	NN
	0 1 0 0
	NR
	1 1 0 0
	EC
	0 1 0 1
	ES
	1 1 0 1
	LC
	0 1 1 0
	LS
	1 1 1 0
	GT
	0 1 1 1
	LE
	1 1 1 1
	12.5.2 Parallel Instruction Encoding of the Operation Code
	The operation code encoding for the instructions that allow parallel moves is divided into the mu...
	12.5.2.1 Multiply Instruction Encoding
	The 8-bit operation code for multiply instructions allowing parallel moves has different fields t...
	QQQ =selects the inputs to the multiplier (see Table�12-17, “Condition Code Computation Equation,...
	kkk = three unencoded bits k2, k1, k0
	d = destination accumulator d = 0 Æ A d = 1 Æ B
	Table 12-19. Operation Code K0–2 Decode �





	0
	positive
	mpy only
	don’t round
	1
	negative
	mpy and acc
	round
	12.5.2.2 Non-Multiply Instruction Encoding
	The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields defin...
	J J J = 1/2 instruction number
	k k k = 1/2 instruction number
	D = 0 Æ A D = 1 Æ B
	Table 12-20. Non-Multiply Instruction Encoding �




	0 0 0
	B
	A
	MOVE1
	TFR
	ADDR
	TST
	*
	CMP
	SUBR
	CMPM
	0 0 1
	B
	A
	ADD
	RND
	ADDL
	CLR
	SUB
	*
	SUBL
	NOT
	0 1 0
	B
	A
	—
	—
	ASR
	LSR
	—
	—
	ABS
	ROR
	0 1 1
	B
	A
	—
	—
	ASL
	LSL
	—
	—
	NEG
	ROL
	0 1 0
	X1 X0
	X1 X0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	0 1 1
	Y1 Y0
	Y1 Y0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	1 0 0
	X0_0
	X0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 0 1
	Y0_0
	Y0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 0
	X1_0
	X1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 1
	Y1_0
	Y1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	Table 12-21. Special Case1

	0 0 0 0 0 0 0 0
	MOVE
	0 0 0 0 1 0 0 0
	reserved

	Chapter 13 Instruction Set
	This chapter describes each instruction in the DSP56300 (family) core instruction set in detail. ...
	Table 13-1. DSP56300 Instruction Summary (Continued)

	ABS Absolute Value ABS
	Destination accumulator [A,B] (see Table 12-13 on page 12-22)
	Description�Take the absolute value of the destination operand D and store the result in the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	0
	Optinal Effective Address Extension

	ADC Add Long With Carry ADC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Add the source operand S and the Carry bit (C) of the Condition Code Register to the ...
	Changed according to the standard definition.
	Unchanged by the instruction.

	ADD Add ADD
	JJJ
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	d
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	iiiiii
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Add the source operand S to the destination operand D and store the result in the des...
	Condition Codes
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.


	ADD Add ADD
	ADDL Shift Left and Add Accumulators ADDL
	d
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to two times the destination operand D and store the result ...
	V
	Set if overflow has occurred in A or B result or the MSB of the destination operand is changed as...

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.


	ADDR Shift Right and Add Accumulators ADDR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to one-half the destination operand D and store the result i...
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	where • denotes the logical AND operator
	Source input register [X0,X1,Y0,Y1] (see Table�12-13 on page 12-22)
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically AND the source operand S with bits 47–24 of the destination operand D and s...
	Set if bit 47 of the result is set.
	Set if bits 47-24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	ANDI AND Immediate With Control Register ANDI
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically AND the 8-bit immediate operand (#xx) with the contents of the destination ...
	Cleared if Bit 7 of the immediate operand is cleared.
	Cleared if Bit 6 of the immediate operand is cleared.
	Cleared if Bit 5 of the immediate operand is cleared.
	Cleared if Bit 4 of the immediate operand is cleared.
	Cleared if Bit 3 of the immediate operand is cleared.
	Cleared if Bit 2 of the immediate operand is cleared.
	Cleared if Bit 1 of the immediate operand is cleared.
	Cleared if Bit 0 of the immediate operand is cleared.
	The condition codes are not affected using these operands.

	ASL Arithmetic Shift Accumulator Left ASL
	ASL D (parallel move) ASL D #ii,S2,D ASL S1,S2,D
	Source accumulator [A,B] ()
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B] ()
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0–40] denoting the shift amount
	In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination accumulator D one bit to the left and stor...
	Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bits. Bits shifte...

	This is a 56-bit operation.

	ASL Arithmetic Shift Accumulator Left ASL
	V
	Set if Bit 55 is changed any time during the shift operation, cleared otherwise.

	C
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	0
	S
	s
	s
	s
	D

	ASR Arithmetic Shift Accumulator Right ASR
	ASR D (parallel move) ASR D #ii, S2,D ASR S1,S2,D
	Source accumulator [A,B]
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0-40] denoting the shift amount
	In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination operand D one bit to the right and store t...
	Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii bits. Bits shift...

	This is a 56- or 40-bit operation, depending on the SA bit value in the SR.
	Note: If the number of shifts indicated by the 6 LSBs of the control register or by the immediate...


	ASR Arithmetic Shift Accumulator Right ASR
	V
	This bit is always cleared.

	C
	This bit is set if the last bit shifted out of the operand is set, cleared for a shift count of 0...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	1
	S
	s
	s
	s
	D

	Bcc Branch Conditionally Bcc
	Condition code (see Table�12-13 on page 12-22)
	24-bit PC Relative Long Displacement
	Signed PC Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, program execution continues at location PC + disp...
	Unchanged by the instruction.

	BCHG Bit Test and Change BCHG
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22 )
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers] (see Table�12-13 on page 12-22)
	Description�Test the nth bit of the destination operand D, complement it, and store the result in...

	BCHG Bit Test and Change BCHG
	For destination operand SR:
	Complemented if bit 0 is specified, unaffected otherwise.
	Complemented if bit 1 is specified, unaffected otherwise.
	Complemented if bit 2 is specified, unaffected otherwise.
	Complemented if bit 3 is specified, unaffected otherwise.
	Complemented if bit 4 is specified, unaffected otherwise.
	Complemented if bit 5 is specified, unaffected otherwise.
	Complemented if bit 6 is specified, unaffected otherwise.
	Complemented if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BCHG Bit Test and Change BCHG
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	b
	b
	b
	b
	b

	BCLR Bit Test and Clear BCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, clear it and store the result in the d...

	BCLR Bit Test and Clear BCLR
	For destination operand SR:
	Cleared if bit 0 is specified, unaffected otherwise.
	Cleared if bit 1 is specified, unaffected otherwise.
	Cleared if bit 2 is specified, unaffected otherwise.
	Cleared if bit 3 is specified, unaffected otherwise.
	Cleared if bit 4 is specified, unaffected otherwise.
	Cleared if bit 5 is specified, unaffected otherwise.
	Cleared if bit 6 is specified, unaffected otherwise.
	Cleared if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	This bit is set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	This bit is set according to the standard definition.
	This bit is set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.

	BCLR Bit Test and Clear BCLR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	0
	b
	b
	b
	b

	BRA Branch Always BRA
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description�Program execution continues at location PC + displacement. The displacement is a two’...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	1
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	1
	0
	0
	0
	0
	0
	0

	BRCLR Branch if Bit Clear BRCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
	Source register [all on-chip registers])
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, program ex...

	BRCLR Branch if Bit Clear BRCLR
	÷
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BRKcc Exit Current DO Loop Conditionally BRKcc
	Condition code (see Table�12-18 on page 12-28)
	Description�Exits conditionally the current hardware DO loop before the current Loop Counter (LC)...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	C
	C
	C
	C

	BRSET Branch if Bit Set BRSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y] )
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is set, program execut...

	BRSET Branch if Bit Set BRSET
	Changed according to the standard definition
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BScc Branch to Subroutine Conditionally BScc
	Condition code (see Table 12-18 on�page�12�28)
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, the address of the instruction immediately follow...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.


	BScc Branch to Subroutine Conditionally BScc
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	C
	C
	C
	C
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	C
	C
	C
	C
	0
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	0
	0
	0
	0
	C
	C
	C
	C

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, the addres...

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	one; if the condition is true, the push operation writes over the stack level where the SSH value...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BSET Bit Set and Test BSET
	Bit number [0–23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, set it, and store the result in the de...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	BSET Bit Set and Test BSET
	For destination operand SR:
	Set if bit 0 is specified, unaffected otherwise.
	Set if bit 1 is specified, unaffected otherwise.
	Set if bit 2 is specified, unaffected otherwise.
	Set if bit 3 is specified, unaffected otherwise.
	Set if bit 4 is specified, unaffected otherwise.
	Set if bit 5 is specified, unaffected otherwise.
	Set if bit 6 is specified, unaffected otherwise.
	Set if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BSET Bit Set and Test BSET
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	BSR Branch to Subroutine BSR
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description� The address of the instruction immediately following the BSR instruction and the SR ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0

	BSSET Branch to Subroutine if Bit Set BSSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description� The nth bit in the source operand is tested. If the tested bit is set, the address o...

	BSSET Branch to Subroutine if Bit Set BSSET
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BTST Bit Test BTST
	Bit number [0 – 23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description� Test the nth bit of the destination operand D. The state of the nth bit is stored in...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	Set if bit tested is set, and cleared otherwise.
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	For destination operand SSH:SP, decrement the SP by 1.
	For other destination operands, the SPis not affected.


	BTST Bit Test BTST
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	CLB Count Leading Bits CLB
	Destination accumulator [A,B]
	See Table�12-13 on page 12-22
	Source accumulator [A,B]
	Description� Count leading 0s or 1s according to Bit 55 of the source accumulator. Scan bits 55–0...
	Note:

	1. If the source accumulator is all 0s, the result is 0.
	2. In Sixteen-Bit Arithmetic mode, the count ignores the unused 8 Least Significant Bits of the M...
	3. CLB can be used in conjunction with NORMF instruction to specify the shift direction and amoun...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set, and cleared otherwise.

	*
	Z
	Set if bits 47–24 of the result are all 0.

	*
	V
	Always cleared.

	—
	Unchanged by the instruction.


	CLB Count Leading Bits CLB
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	S
	D

	CLR Clear Accumulator CLR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Clear the destination accumulator. This is a 56-bit clear instruction.
	*
	E
	Always cleared.

	*
	U
	Always set.

	*
	N
	Always cleared.

	*
	Z
	Always set.

	*
	V
	Always cleared.

	*
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	1
	1
	Optional Effective Address Extension

	CMP Compare CMP
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source one operand from the source two accumulator, S2, and update the C...
	This instruction subtracts 56-bit operands. When a word is specified as the source one operand, i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	CCR
	÷
	Changed according to the standard definition.


	CMP Compare CMP
	23
	16
	15
	8
	7
	0
	CMP S1, S2
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	CMP #xx, S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	1
	23
	16
	15
	8
	7
	0
	CMP #xxxx,S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	1
	Immediate Data Extension

	CMPM Compare Magnitude CMPM
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Subtract the absolute value (magnitude) of the source one operand, S1, from the absol...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	1
	1
	Optional Effective Address Extension

	CMPU Compare Unsigned CMPU
	Source one register [A,B,X0,Y0,X1,Y1]
	See Table�12-13 on page 12-22
	Source two accumulator [A,B]
	Description�Subtract the source one operand, S1, from the source two accumulator, S2, and update ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	÷
	*
	*
	÷
	CCR
	Always cleared.
	Set if bits 47–0 of the result are 0.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	g
	g
	g
	d

	DEBUG Enter Debug Mode DEBUG
	Instruction Fields None
	Description�Enter the Debug mode and wait for OnCE commands.
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	DEBUGcc DEBUGcc Enter Debug Mode Conditionally
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, enter the Debug mode and wait for OnCE commands. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	C
	C
	C
	C

	DEC Decrement by One DEC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Decrement by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	d

	DIV Divide Iteration DIV
	where Å denotes the logical exclusive OR operator.
	Source input register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Description�Divide the destination operand D by the source operand S and store the result in the ...
	DIV calculates one quotient bit based on the divisor and the previous partial remainder. To produ...

	DIV Divide Iteration DIV
	DIV uses a nonrestoring fractional division algorithm that consists of the following operations:
	1. Compare the source and destination operand sign bits: An exclusive OR operation is performed o...
	2. Shift the partial remainder and the quotient: The 39-bit destination accumulator D is shifted ...
	3. Calculate the next quotient bit and the new partial remainder: The 24-bit source operand S (si...
	For extended precision division (e.g., N-bit quotients where N > 24), the DIV instruction is no l...



	DIV Divide Iteration DIV
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	*
	—
	—
	—
	—
	*
	*
	CCR
	Set if the Overflow bit (V) is set.
	Set if the MSB of the destination operand is changed as a result of the instruction’s left shift ...
	Set if Bit 55 of the result is cleared.
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	J
	J
	d
	0
	0
	0

	DMAC DMAC Double-Precision Multiply-Accumulate With Right Shift
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table�12-16 on page 12-24)
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Sign [+,–] (see Table�12-16 on page 12-24)
	[ss,su,uu] (see Table�12-16 on page 12-24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	s
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	DO Start Hardware Loop DO
	Effective Address
	See Table�12-13 on page 12-22
	Memory Space [X,Y]
	24-bit Absolute Address in 16-bit extension word
	Absolute Address [0–63]
	Immediate Short Data [0–4095]
	Source register [all on-chip registers, except SSH]
	For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter (LC) is th...
	Description�Begin a hardware DO loop that is to be repeated the number of times specified in the ...

	DO Start Hardware Loop DO
	During the first instruction cycle, the current contents of the Loop Address (LA) and the Loop Co...
	During the second instruction cycle, the current contents of the Program Counter (PC) register an...
	During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated comparison...
	When a DO loop executes , the instructions are actually fetched each time through the loop. There...
	During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL) of the Stack...

	DO Start Hardware Loop DO
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The Loop Flag (LF) is cleared by a hardware reset.

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	Set if the instruction sends A/B accumulator contents to XDB or YDB.
	Set if data limiting occurred [see Note].
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	h
	h
	h
	h
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word

	DO FOREVER DO FOREVER Start Infinite Loop
	None
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. Thus, the PC...
	Because the instructions are fetched each time through the DO FOREVER loop, the loop can be inter...

	DO FOREVER DO FOREVER Start Infinite Loop
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The LC register is never tested by the DO FOREVER instruction, and the only way of terminating...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	Absolute Address Extension Word

	DOR Start PC-Relative Hardware Loop DOR
	Effective Address (see Table�12-13 on page 12-22)
	Memory Space [X,Y] (see Table�12-13 on page 12-22 )
	24-bit Address Displacement in 24-bit extension word
	Absolute Address [0-63]
	Immediate Short Data [0-4095]
	Source register [all on-chip registers except SSH] (see Table�12-13 on page 12-22)
	Description�Initiates the beginning of a PC-relative hardware program loop. The loop address (LA)...
	During hardware loop operation, each instruction is fetched each time through the program loop. T...

	DOR Start PC-Relative Hardware Loop DOR
	instruction after the DOR instruction. This value is read from the top of the system stack to ret...
	The assembler calculates the end of loop address LA (PC-relative address extension word xxxx) by ...
	Since the end of loop comparison occurs at fetch time ahead of the end of loop execution, instruc...
	DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP before the DOR instr...
	DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the DOR instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	*
	Set if the instruction sends A/B accumulator contents to XDB or YDB.

	*
	Set if data limiting occurred

	—
	Unchanged by the instruction


	DOR Start PC-Relative Hardware Loop DOR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	1
	h
	h
	h
	h
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Instruction Fields None.
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. As a result,...
	When a DOR FOREVER loop executes, the instructions are fetched each time through the loop. Theref...

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Note: The assembler calculates the end of loop address LA (PC-relative address extension word xxx...
	The DOR FOREVER instruction never tests the loop counter (LC) register . The only way to terminat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	PC-Relative Displacement

	ENDDO End Current DO Loop ENDDO
	None
	Description�Terminate the current hardware DO loop before the current Loop Counter (LC) equals on...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	1
	0
	0

	EOR Logical Exclusive OR EOR
	where Å denotes the logical XOR operator.
	Source register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A/B]
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically exclusive OR the source operand S with bits 47:24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.


	EOR Logical Exclusive OR EOR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	1
	J
	J
	d
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	0
	1
	1

	EXTRACT Extract Bit Field EXTRACT
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension.
	Description�Extract a bit-field from source accumulator S2. The bit-field width is specified by b...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result will be undefined.
	3. If offset + width exceeds the value of 56, the result is undefined.


	EXTRACT Extract Bit Field EXTRACT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension
	Description�Extract an unsigned bit-field from source accumulator S2. The bit-field width is spec...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. If offset + width exceeds the value of 56, the result is undefined.


	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	IFcc Execute Conditionally Without CCR Update IFcc
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, execute and store result of the specified Data AL...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	C
	C
	C
	C
	Instruction opcode

	IFcc.U Execute Conditionally With CCR Update IFcc.U
	Condition code (see Table�12-18 on page 12-28)
	If the specified condition is true, execute and store result of the specified Data ALU operation ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	*
	If the specified condition is true, changes are made according to the instruction. Otherwise, it ...
	Instruction Formats and opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	C
	C
	C
	C
	Instruction opcode

	ILLEGAL Illegal Instruction Interrupt ILLEGAL
	None
	Description�The ILLEGAL instruction executes as if it were a NOP instruction. Normal instruction ...
	If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is being interrupt...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1

	INC Increment by One INC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Increment by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	d

	INSERT Insert Bit Field INSERT
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Source register [X0,X1,Y0,Y1,A0,B0] (see Table 12-16 on�page�12�24)
	Control word extension
	Description�Insert a bit-field into the destination accumulator D. The bit-field whose width is s...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-Bit Arithmetic mode, the offset value, located in the offset field, should be the n...
	3. If offset + width > 56, the result is undefined.


	INSERT Insert Bit Field INSERT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	q
	q
	q
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	q
	q
	q
	0
	0
	0
	D
	Control Word Extension

	Jcc Jump Conditionally Jcc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	0
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C
	Optional Effective Address Extension

	JCLR Jump if Bit Clear JCLR
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22 )
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JCLR Jump if Bit Clear JCLR
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JMP Jump JMP
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JScc Jump to Subroutine Conditionally JScc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	1
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	Bit number [0–23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers]
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSET Jump if Bit Set JSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22 )
	24-bit Absolute Address in extension word
	Absolute Address [0 – 63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JSET Jump if Bit Set JSET
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSR Jump to Subroutine JSR
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JSSET Jump to Subroutine if Bit Set JSSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22 )
	24-bit PC absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSSET Jump to Subroutine if Bit Set JSSET
	state of the nth bit. All address register indirect addressing modes can be used to reference the...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	LRA Load PC-Relative Address LRA
	Address register [R0–R7]
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	24-bit PC Long Displacement
	Description�The PC is added to the specified displacement and the result is stored in destination...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	d
	d
	d
	d
	d
	Long Displacement

	LSL Logical Shift Left LSL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–16] denoting the shift amount
	Single-bit shift: Logically shift Bits 47–24 of the destination operand D one bit to the left and...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted left #ii...

	This is a 24-bit operation. The remaining bits of the destination accumulator are not affected. T...

	LSL Logical Shift Left LSL
	Set if Bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	D
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	1
	0
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	1
	s
	s
	s
	D

	LSR Logical Shift Right LSR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–23] denoting the shift amount
	Description�
	Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit to the right an...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted right #i...

	This is a 24-bit operation. The remaining bits of the destination register are not affected. The ...

	LSR Logical Shift Right LSR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	Set if Bit 47 of the result is set.
	Set if Bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of zero, and cle...
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	1
	s
	s
	s
	D

	LUA Load Updated Address LUA
	Effective address (see Table 12-13 on�page�12�22)
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	Destination address register [R0–R7,N0–N7] (see Table 12-16 on�page�12�24)
	7-bit sign extended short displacement address
	Source address register [R0–R7]
	Note: RRR refers to a source address register (R0–R7), while dddd/ddddd refer to a destination ad...

	Description�Load the updated address into the destination address register D. The source address ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.


	LUA Load Updated Address LUA
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	a
	a
	a
	R
	R
	R
	a
	a
	a
	a
	d
	d
	d
	d
	Note: LEA is a synonym for LUA. The simulator on-line disassembly translates the opcodes into LUA.


	MAC Signed Multiply Accumulate MAC
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	0
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1] (see Table 12-16 on�page...
	Destination accumulator [A,B] (see Table 12-16 on�page�12�24)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	0
	Source register [Y1,X0,Y0,X1]] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...


	MAC Signed Multiply Accumulate MAC
	Note that when the processor is in the Double Precision Multiply mode, the following instructions...
	MAC X1, Y0, A MAC X1, Y0, B
	MAC X0, Y1, A MAC X0, Y1, B
	MAC Y1, X1, A MAC Y1, X1, B
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.


	MACI MACI Signed Multiply Accumulate With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S and add/subtract the produ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	0
	Immediate Data Extension

	MAC(su,uu) MAC(su,uu) Mixed Multiply Accumulate
	Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MACR Signed Multiply Accumulate and Round MACR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	1
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	3
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	1
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...


	MACR Signed Multiply Accumulate and Round MACR
	destination accumulator D are loaded with 0s to maintain an unbiased accumulator value that the n...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.


	MACRI MACRI Signed MAC and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,-] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, add/subtract the product ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	1
	Immediate Data Extension

	MAX Transfer by Signed Value MAX
	Description�Subtract the signed value of the source accumulator from the signed value of the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	This bit is cleared if the conditional transfer is performed, and set otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	1
	1
	0
	1
	Optional Effective Address Extension

	MAXM Transfer by Magnitude MAXM
	Description�Subtract the absolute value (magnitude) of the source accumulator from the absolute v...
	This bit is cleared if the conditional transfer was performed, and set otherwise.
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	0
	1
	0
	1
	Optional Effective Address Extension

	MERGE Merge Two Half Words MERGE
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Description�The contents of bits 11–0 of the source register are concatenated to the contents of ...
	Note:

	1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to concatenate width and ...
	2. In Sixteen-bit Arithmetic mode, the contents of bits 15-8 of the source register are concatena...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Unchanged by the instruction.


	MERGE Merge Two Half Words MERGE
	MOVE Move Data MOVE
	The DSP56300 (family) core provides a set of MOVE instructions. Table 12-14 lists these instructi...
	Table 12-14. Move Instructions

	MOVE
	Move Data
	page�12-110
	NO Parallel Data Move
	page�12-112
	I
	Immediate Short Data Move
	page�12-113
	R
	Register-to-Register Data Move
	page�12-116
	U
	Address Register Update
	page�12-117
	X:
	X Memory Data Move
	page�12-118
	X: R
	X Memory and Register Data Move
	page�12-120
	Y
	Y Memory Data Move
	page�12-122
	R: Y
	Register and Y Memory Data Move
	page�12-124
	L:
	Long Memory Data Move
	page�12-126
	X: Y
	X Memory Data Move
	page�12-128

	MOVE Move Data MOVE
	Description�Move the contents of the specified data source S to the specified destination D. This...
	Changed according to the standard definition.
	Unchanged by the instruction.
	Instruction Fields/ Parallel Move Description�Thirty of the sixty-two instructions allow an optio...

	NO Parallel Data Move
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	Description�Many instructions in the instruction set allow parallel moves. The parallel moves hav...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	(. . .)
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	Instruction opcode
	Instruction Format � (defined by instruction)


	I Immediate Short Data Move I
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	8-bit Immediate Short Data
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�page�12�22)
	Description�Move the 8-bit immediate data value (#xx) into the destination operand D. If the dest...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.


	I Immediate Short Data Move I
	23
	16
	15
	8
	7
	0
	0
	0
	1
	d
	d
	d
	d
	d
	i
	i
	i
	i
	i
	i
	i
	i
	Instruction opcode

	R Register-to-Register Data Move R
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves.
	Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	See Table 12-13 on�page�12�22
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	Description�Move the source register S to the destination register D. If the arithmetic or logica...
	If the opcode-operand portion of the instruction specifies a given source or destination register...

	R Register-to-Register Data Move R
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	e
	e
	e
	e
	e
	d
	d
	d
	d
	d
	Instruction opcode

	U Address Register Update U
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Update the specified address register according to the specified effective addressing...
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	Instruction opcode

	X: X Memory Data Move X:
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves.
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	6-bit Absolute Short Address

	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	0
	W
	D
	D
	D
	D

	X: X Memory Data Move X:
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to X memory. All memory addressing modes can be ...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.


	X:R X Memory and Register Data Move X:R
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	f
	f
	d
	F
	W
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Read S1/Write D1 bit (see Table 12-16 on�page�12�24)
	S1/D1 register [X0,X1,A,B] (see Table 12-16 on�page�12�24)
	S2 accumulator [A,B] (see Table 12-13 on�page�12�22)
	D2 input register [Y0,Y1] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	0
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)


	X:R X Memory and Register Data Move X:R
	Class I: Move a one-word operand from/to X memory and move another word operand from an accumulat...
	Class II: Move one-word operand from a Data ALU accumulator to X memory and one-word operand from...
	For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.


	Y Y Memory Data Move Y
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	Absolute Short Address

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	1
	W
	D
	D
	D
	D

	Y Y Memory Data Move Y
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to Y memory. All memory addressing modes can be ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.


	R:Y Register and Y Memory Data Move R:Y
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	d
	e
	f
	f
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address
	See Table 12-13 on�page�12�22
	Read S2/Write D2 bit
	Table 12-16 on�page�12�24
	S1 accumulator [A,B]
	D1 input register [X0,X1]
	S2/D2 register [Y0,Y1,A,B]

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	1
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	ea = 6-bit Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)


	R:Y Register and Y Memory Data Move R:Y
	Description�
	Class I: Move a one-word operand from an accumulator (S1) to an input register (D1) and move anot...
	Class II: Move a one-word operand from a Data ALU accumulator to Y memory and a one-word operand ...

	For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.


	L: Long Memory Data Move L:
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address
	Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Two Data ALU registers
	Absolute Short Address
	Description�Move one 48-bit long-word operand from/to X and Y memory. Two Data ALU registers are ...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	L: Long Memory Data Move L:
	instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only for a 32-bit long...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	As a result of the MOVE A,L:ea operation, a 48-bit positive or negative saturation constant is st...

	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode

	X: Y: XY Memory Data Move X: Y:
	where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves
	5-bit X Effective Address (R0–R3 or R4–R7)
	4-bit Y Effective Address (R4–R7 or R0–R3)
	S1/D1 register [X0,X1,A,B]
	S2/D2 register [Y0,Y1,A,B]
	See Table 12-13 on�page�12�22
	X move Operation Control (See Table 12-16 on�page�12�24)
	Y move Operation Control (See Table 12-16 on�page�12�24)
	Description�Move a one-word operand from/to X memory and move another word operand from/to Y memo...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	X: Y: XY Memory Data Move X: Y:
	If the instruction specifies an access to an internal X I/O and internal Y I/O modules (reflected...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	1
	w
	m
	m
	e
	e
	f
	f
	W
	r
	r
	M
	M
	R
	R
	R
	Instruction opcode

	MOVEC Move Control Register MOVEC
	Effective Address
	See Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Memory Space [X,Y]
	Program Controller register [M0–M7, VBA, SR, OMR, SP, SSH,SSL,LA,LC]
	aa = 6-bit Absolute Short Address
	S2/D2 register [all on-chip registers]
	#xx = 8-bit Immediate Short Data
	Description�Move the contents of the specified source control register S1 or S2 to the specified ...
	If the System Stack register SSH is specified as a source operand, the Stack Pointer (SP) is post...

	MOVEC Move Control Register MOVEC
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	e
	e
	e
	e
	e
	e
	1
	0
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	d
	d
	d
	d
	d

	MOVEM Move Program Memory MOVEM
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Absolute Short Address
	Description�Move the specified operand from/to the specified Program (P) memory location. This is...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	MOVEM Move Program Memory MOVEM
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	1
	0
	d
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	0
	d
	d
	d
	d
	d
	d

	MOVEP Move Peripheral Data MOVEP
	Effective Address (see Table 12-13 on�page�12�22)
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Memory space [X,Y] (see Table 12-13 on�page�12�22)
	Peripheral space [X,Y] (see Table 12-13 on�page�12�22)
	Read/write-peripheral (see Table 12-13 on�page�12�22)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified operand to or from the specified X or Y I/O peripheral. The I/O Sh...

	MOVEP Move Peripheral Data MOVEP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For D1 or D2 = SR operand:

	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth is detected.

	*
	L
	Set if data limiting occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	1
	S
	p
	p
	p
	p
	p
	p
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	M
	M
	M
	R
	R
	R
	1
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension

	MOVEP Move Peripheral Data MOVEP
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	0
	1
	p
	p
	p
	p
	p
	p
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	W
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	d
	d
	d
	d
	d
	d
	0
	0
	p
	p
	p
	p
	p
	p
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	1
	q
	0
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	0
	q
	1
	q
	q
	q
	q
	q

	MPY Signed Multiply MPY
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 and store the resulting prod...
	MPY Y0,X0,A MPY Y0, X0,B

	MPY Signed Multiply MPY
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.


	MPY(su,uu) Mixed Multiply MPY(su,uu)
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and store the resulting product in ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	1
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MPYI Signed Multiply With Immediate Operand MPYI
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	16-bit Immediate Long Data extension word
	Description�Multiply the immediate 24-bit source operand #xxxx with the 24-bit register source op...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	0
	0
	Immediate Data Extension

	MPYR Signed Multiply and Round MPYR
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 16-bit source...

	MPYR Signed Multiply and Round MPYR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	s
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	0
	1

	MPYRI MPYRI Signed Multiply and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, round the result using ei...
	÷
	This bit is changed according to the standard definition.

	—
	This bit is unchanged by the instruction.


	NEG Negate Accumulator NEG
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Negate the destination operand D and store the result in the destination accumulator....
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	NEG
	D
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	NOP No Operation NOP
	None
	Description�Increment the Program Counter (PC). Pending pipeline actions, if any, are completed. ...
	This bit is unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	NORM Norm Accumulator Iterations NORM
	where E denotes the logical complement of E and · denotes the logical AND operator
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Address register [R0-R7]
	Description�Perform one normalization iteration on the specified destination operand D, update th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	Set if bit 55 is changed as a result of a left shift

	÷
	This bit is changed according to the standard definition

	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	1
	R
	R
	R
	0
	0
	0
	1
	d
	1
	0
	1

	NORMF Fast Accumulator Normalization NORMF
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Arithmetically shift the destination accumulator either left or right as specified by...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Set if bit 39 is changed any time during the shift operation, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	If the base exponent is stored in R1 it can be updated by the following commands:


	NORMF Fast Accumulator Normalization NORMF
	Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The CLB instructio...
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	0
	s
	s
	s
	D

	NOT Logical Complement NOT
	where “—” denotes the logical NOT operator.
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Take the one’s complement of bits 47–24 of the destination operand D and store the re...
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	OR Logical Inclusive OR OR
	where Å denotes the logical inclusive OR operator.
	Source input register [X0,X1,Y0,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically inclusive OR the source operand S with bits 47–24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.


	OR Logical Inclusive OR OR
	ORI OR Immediate With Control Register ORI
	where + denotes the logical inclusive OR operator.
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically OR the 8-bit immediate operand (#xx) with the contents of the destination c...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For CCR Operand:
	Set if bit 7 of the immediate operand is set.
	Set if bit 6 of the immediate operand is set.
	Set if bit 5 of the immediate operand is set.
	Set if bit 4 of the immediate operand is set.
	Set if bit 3 of the immediate operand is set.
	Set if bit 2 of the immediate operand is set.
	Set if bit 1 of the immediate operand is set.
	Set if bit 0 of the immediate operand is set.
	For MR and OMR Operands: The condition codes are not affected using these operands.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	1
	1
	1
	1
	0
	E
	E

	PFLUSH Program Cache Flush PFLUSH
	None
	Description�Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and ta...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1

	PFLUSHUN PFLUSHUN Program Cache Flush Unlocked Sections
	None
	Description�Flush the instruction cache sectors that are unlocked, set the LRU stack to its defau...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	PFREE Program Cache Global Unlock PFREE
	None
	Description�Unlock all the locked cache sectors in the instruction cache. The PFREE instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0

	PLOCK PLOCK Lock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Lock the cache sector to which the specified effective address belongs. If the specif...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PLOCKR PLOCKR Lock Instruction Cache Relative Sector
	None
	Description�Lock the cache sector to which the sum PC + specified displacement belongs. If the su...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	ADDRESS EXTENSION WORD

	PUNLOCK PUNLOCK Unlock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Unlock the cache sector to which the specified effective address belongs. If the spec...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PUNLOCKR PUNLOCKR Unlock Instruction Cache Relative Sector
	None
	Description�Unlock the cache sector to which the sum PC + specified displacement belongs. If the ...
	Condition Codes
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction
	Instruction Formats and Opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	Address Extension Word

	REP Repeat Next Instruction REP
	Effective Address
	See Table 12-13 on�page�12�22
	Memory Space [X,Y]
	Absolute Short Address
	Immediate Short Data
	Source register [all on-chip registers]
	Description�Repeat the single-word instruction immediately following the REP instruction the spec...
	If the System Stack register SSH is specified as a source operand, the system Stack Pointer (SP) ...

	REP Repeat Next Instruction REP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	0
	h
	h
	h
	h
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	d
	d
	d
	d
	d
	d
	0
	0
	1
	0
	0
	0
	0
	0

	RESET Reset On-Chip Peripheral Devices RESET
	None.
	Description�Reset the interrupt priority register and all on-chip peripherals. This is a software...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0

	RND Round Accumulator RND
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Round the 56-bit value in the specified destination operand D and store the result in...
	Two types of rounding can be used: convergent rounding (also called round to nearest (even)) or t...
	0
	0
	No Scaling
	23
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	24
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	22
	0. . . .0
	0
	0
	1
	0. . . .0
	If convergent rounding is used, the result of this addition is tested and if all the bits of the ...
	In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is rounded ...


	RND Round Accumulator RND
	boundary between the lower portion and upper portion is in a different position then in 24 bit mo...
	0
	0
	No Scaling
	31
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	32
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	30
	0. . . .0
	0
	0
	1
	0. . . .0
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	0
	1
	Optional Effective Address Extension

	ROL Rotate Left ROL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the left and store the resu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	This bit is always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	ROR Rotate Right ROR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the right and store the res...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	1
	Optional Effective Address Extension

	RTI Return From Interrupt RTI
	None.
	Description�Pull the Program Counter (PC) and the Status Register (SR) from the system stack. The...
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

	RTS Return From Subroutine RTS
	None.
	Description�Pull the Program Counter (PC) from the system stack. The previous PC value is lost. T...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0

	SBC Subtract Long With Carry SBC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Subtract the source operand S and the Carry bit(C) from the destination operand D and...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	J
	d
	1
	0
	1
	Optional Effective Address Extension

	STOP Stop Instruction Processing STOP
	None
	Description�Enter the Stop processing state. All activity in the processor is suspended until the...
	If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles
	If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles
	If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles

	During the clock stabilization count delay, all peripherals and external interrupts are cleared a...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.


	STOP Stop Instruction Processing STOP
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	1

	SUB Subtract SUB
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source operand from the destination operand D and store the result in th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.


	SUB Subtract SUB
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	0
	Immediate Data Extension

	SUBL Shift Left and Subtract Accumulators SUBL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from two times the destination operand D and store the ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	÷
	CCR
	*
	V
	Set if overflow has occurred in the result or if the MS bit of the destination operand is changed...

	÷
	Changed according to the standard definition

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	SUBR Shift Right and Subtract Accumulators SUBR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from one-half the destination operand D and store the r...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	1
	1
	0
	Optional Effective Address Extension

	Tcc Transfer Conditionally Tcc
	Condition code (see Table 12-16 on�page�12�24)
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Source address register [R0–R7]
	Destination Address register [R0–R7]
	Description�Transfer data from the specified source register S1 to the specified destination accu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.


	Tcc Transfer Conditionally Tcc
	TFR Transfer Data ALU Register TFR
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Description�Transfer data from the specified source Data ALU register S to the specified destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	0
	0
	1
	Optional Effective Address Extension

	TRAP Software Interrupt TRAP
	None
	Description�Suspend normal instruction execution and begin TRAP exception processing. The Interru...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0

	TRAPcc Conditional Software Interrupt TRAPcc
	Condition code (see Table 12-18 on�page�12�28)
	Description�If the specified condition is true, normal instruction execution is suspended and sof...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	C
	C
	C
	C

	TST Test Accumulator TST
	Source accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Compare the specified source accumulator S with 0 and set the condition codes accordi...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	0
	1
	1
	Optional Effective Address Extension

	VSL Viterbi Shift Left VSL
	Source register A,B (see Table 12-13 on�page�12�22)
	Bit value, 0 or 1 to be placed in the least significant bit of Y:<ea>
	Effective address (see Table 12-13 on�page�12�22)
	Description� Store the most significant part (24 bits) of the source accumulator at X memory (at ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	S
	1
	1
	M
	M
	M
	R
	R
	R
	1
	1
	0
	i
	0
	0
	0
	0
	Optional Effective Address Extension

	WAIT Wait for Interrupt or DMA Request WAIT
	None
	Description�Enter the low-power standby Wait processing state. The internal clocks to the process...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0


	Appendix A Instruction Timing and Restrictions
	This appendix describes the various aspects of execution timing analysis for each instruction mne...
	Tables showing how to calculate DSP56300 core instruction timing for each instruction mnemonic (i...
	Tables showing the number of instruction program words for each instruction mnemonic (instruction...
	Description of various sequences that cause timing delays and stalls in the execution (instructio...
	Description of various instruction sequences that are forbidden and cause undefined operation (in...

	A.1 Overview
	The number of oscillator clock cycles per instruction depends on many factors, including the numb...
	Table A-1 lists instruction timing and is based on the assumption that all instruction cycles are...
	T: clock cycles for the normal case:

	— All instructions fetched from the internal program memory
	— No interlocks with previous instructions
	— Addressing mode is the Post-Update mode (post-increment, post-decrement and post offset by N) o...
	+ pru: Pre-update specifies clock cycles added for using the pre-update addressing modes (pre-dec...
	+ lab: Long absolute specifies clock cycles added for using the Long Absolute Address mode.
	+ lim: Long immediate specifies clock cycles added for using the long immediate data addressing m...
	Note: A dash under one or more of the columns pru, lab, or lim indicates that this column is not ...
	Table A-1. Instruction Timing, Word Count, and Encoding (Continued)




	ADD
	2
	—
	—
	—
	1
	—
	—
	—
	AND
	2
	—
	—
	—
	1
	—
	—
	—
	ANDI
	3
	—
	—
	—
	ASL
	1
	—
	—
	—
	1
	—
	—
	—
	ASR
	1
	—
	—
	—
	1
	—
	—
	—
	Bcc
	4
	—
	—
	—
	5
	—
	—
	—
	4
	—
	—
	—
	BCHG
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	BCLR
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	BRA
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	BRKcc
	5
	—
	—
	—
	BRSET
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	BScc
	4
	—
	—
	—
	4
	—
	—
	—
	BSCLR
	5
	1
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	BSET
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	BSR
	4
	—
	—
	—
	5
	—
	—
	—
	4
	—
	—
	—
	BSSET
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	5
	—
	—
	—
	BTST
	2
	—
	—
	—
	2
	1
	1
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	CLB
	1
	—
	—
	—
	CMP
	2
	—
	—
	—
	1
	—
	—
	—
	CMPU
	1
	—
	—
	—
	DEBUG/ DEBUGcc
	1
	—
	—
	—
	5
	—
	—
	—
	DEC
	1
	—
	—
	—
	DIV
	1
	—
	—
	—
	DMAC
	1
	—
	—
	—
	DO
	5
	—
	—
	—
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	DO FOREVER
	4
	—
	—
	—
	DOR
	5
	—
	—
	—
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	DOR FOREVER
	ENDDO
	1
	—
	—
	—
	EOR
	2
	—
	—
	—
	1
	—
	—
	—
	EXTRACT
	1
	—
	—
	—
	2
	—
	—
	—
	EXTRACTU
	1
	—
	—
	—
	2
	—
	—
	—
	IFcc
	1
	—
	—
	—
	ILLEGAL
	5
	—
	—
	—
	INC
	1
	—
	—
	—
	INSERT
	1
	—
	—
	—
	2
	—
	—
	—
	Jcc
	4
	—
	—
	—
	4
	0
	0
	—
	JCLR
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	JMP
	3
	—
	—
	—
	3
	1
	1
	—
	JScc
	4
	—
	—
	—
	4
	0
	0
	—
	JSCLR
	4
	—
	—
	—
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	JSET
	4
	—
	—
	—
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	JSR
	3
	—
	—
	—
	3
	1
	1
	—
	JSSET
	4
	—
	—
	—
	4
	1
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	4
	—
	—
	—
	LSL
	1
	—
	—
	—
	1
	—
	—
	—
	LSR
	1
	—
	—
	—
	1
	—
	—
	—
	LRA
	3
	—
	—
	—
	3
	—
	—
	—
	LUA, LEA
	3
	—
	—
	—
	3
	—
	—
	—
	MACI
	2
	—
	—
	—
	MAC
	1
	—
	—
	—
	1
	—
	—
	—
	MACRI
	2
	—
	—
	—
	MACR
	1
	—
	—
	—
	MAX
	1
	—
	—
	—
	MAXM
	1
	—
	—
	—
	MERGE
	1
	—
	—
	—
	MOVE
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	2
	—
	—
	—
	3
	—
	—
	—
	3
	—
	—
	—
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	—
	—
	1
	1
	—
	—
	1
	1
	—
	—
	MOVE cont.
	1
	1
	—
	—
	1
	1
	1
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	MOVEC
	1
	—
	—
	—
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	MOVEM
	6
	1
	1
	—
	6
	1
	1
	—
	6
	—
	—
	—
	6
	—
	—
	—
	MOVEP
	2
	1
	1
	0
	2
	1
	1
	0
	2
	1
	1
	0
	2
	1
	1
	0
	6
	1
	1
	—
	6
	1
	1
	—
	6
	1
	1
	—
	6
	1
	1
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	MPY
	1
	—
	—
	—
	1
	—
	—
	—
	MPYI
	2
	—
	—
	—
	MPYR
	1
	—
	—
	—
	MPYRI
	2
	—
	—
	—
	NOP
	1
	—
	—
	—
	NORM
	5
	—
	—
	—
	NORMF
	1
	—
	—
	—
	OR
	2
	—
	—
	—
	1
	—
	—
	—
	ORI
	3
	—
	—
	—
	PFLUSH
	1
	—
	—
	—
	PFLUSHUN
	1
	—
	—
	—
	PFREE
	1
	—
	—
	—
	PLOCK
	2
	1
	1
	—
	PLOCKR
	4
	—
	—
	—
	PUNLOCK
	2
	1
	1
	—
	PUNLOCKR
	4
	—
	—
	—
	REP
	5
	—
	—
	—
	5
	—
	—
	—
	5
	1
	—
	—
	5
	—
	—
	—
	RESET
	7
	—
	—
	—
	RTI/RTS
	3
	—
	—
	—
	3
	—
	—
	—
	STOP
	10
	—
	—
	—
	SUB
	2
	—
	—
	—
	1
	—
	—
	—
	Tcc
	1
	—
	—
	—
	1
	—
	—
	—
	1
	—
	—
	—
	TRAP/ TRAPcc
	9
	—
	—
	—
	9
	—
	—
	—
	VSL
	1
	1
	1
	—
	WAIT
	10
	—
	—
	—
	A.2 Instruction Sequence Delays
	Because of pipelining in the DSP56300 core, certain instruction sequences can cause a delay in th...
	External bus wait states
	Instruction fetch delays
	Data ALU interlocks
	Address register interlocks
	Stack extension delays
	Pipeline interlocks

	A.2.1 External Bus Wait States
	An external bus wait state is caused by an instruction accessing the external bus for data read o...

	A.2.2 Instruction Fetch Delays
	At an external instruction fetch, the effective number of stall states in the pipeline is the num...

	A.2.3 Data ALU Interlock
	A Data ALU interlock is caused by one of the following sequences:
	Arithmetic stall: Occurs when an instruction uses one of the Data ALU registers (A0, A1, A2, B0, ...
	Transfer stall: Occurs when an instruction uses one of the Data ALU registers (A0, A1, A2, B0, B1...
	Status stall: Occurs when an instruction reads the contents of the Status Register (SR) for eithe...


	A.2.4 Address Register Interlocks
	An address register interlock is caused by one of the following sequences:
	Conditional Transfer Interlock: Occurs when a Transfer On-Condition (Tcc) instruction is followed...
	Address Generation Interlock: Occurs when the move portion of an instruction uses one of the AGU ...

	Example�A-1. Address Generation Interlock
	In this example, instruction I6 causes an address generation interlock because it uses R0 as the ...
	Three types of address generation interlock exist: Type0, Type1, and Type2. These types depend on...
	Figure A-1. Types of Address Generation Interlock

	When a Type0 address generation interlock is detected (during the decoding of I2 in the example),...
	Note: Only clock cycles are counted to determine when interlock cycles should be inserted.

	When an instruction using one of the AGU registers as an address generation enters the decoding s...

	Example�A-2. Detection of Address Generation Interlock
	In this example, a Type1 interlock is detected during the decoding phase of I 3 and two NOP cycle...


	A.2.5 Stack Extension Delays
	Some instructions access the System Stack (SS) as part of their normal activity. When the SS is e...
	Table A-2. Instructions That Access the System Stack �




	JSR, Jcc
	RET
	END-OF-DO
	LOOP
	ENDDO
	SSHWR
	SSHRD
	Table A-3 shows how many clock cycles are added in the various instructions/cases described.
	Table A-3. Stack Extension Delays �


	JSR, Jcc
	2
	—
	RET
	—
	3
	END-OF-DO
	—
	5
	DO
	4
	—
	ENDDO
	—
	5
	SSHWR
	2
	—
	SSHRD
	—
	3
	A.2.6 Program Flow Control Delays
	When flow-control instructions execute, some boundary cases exist and introduce interlocks into t...
	I1: An address of an instruction, where I2, I3, and I4 indicate the next instructions in the prog...
	MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC, BSET, BCHG, BCLR, and BTST
	LA: the last address of a DO LOOP
	(LA – 1): the address of an instruction word located at LA – 1
	CR: Control Register, every one of the registers LA, LC, SR, SP, SSH, SSL, and OMR

	A.2.6.1 JMP to LA or to LA – 1
	When I1 is any type of JMP with its target address equal to LA, the decoding phase of the instruc...

	A.2.6.2 RTI to LA or to LA – 1
	When I1 is an RTI instruction whose return address is LA, the decoding phase of the instruction f...

	A.2.6.3 Conditional Instructions
	When I1 is a conditional change of flow instruction (such as Jcc) and the condition is false, the...

	A.2.6.4 Interrupt Abort
	When I1 is an instruction with a decoding phase that is longer than one cycle, it may be aborted ...

	A.2.6.5 Degenerated DO loop
	When I1 is a DO loop but the loop contains only one instruction, the decoding phase of I1 is leng...

	A.2.6.6 Annulled REP and DO
	If the repeat count of a REP instruction is zero, the decoding phase of the REP instruction is le...


	A.3 Instruction Sequence Restrictions
	Because of the pipelining in the DSP56300 core central processor, certain instruction sequences a...
	MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC
	MOVEM: any type of MOVE to/from the Program space
	LA: the last address of a DO LOOP
	Two-words <inst>: a double-word instruction in which the second word is used as an immediate data...
	Single-word <inst>: an instruction with an addressing mode that does not need a second word exten...

	A.3.1 Restrictions Near the End of DO Loops
	Proper DO loop operation is not guaranteed for an instruction sequence similar to one of the foll...
	At LA – 5: The following instructions should not start at address LA – 5:

	— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	At LA – 4: The following instructions should not start at address LA – 4:

	— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	At LA – 3: The following instructions should not start at address LA – 3:

	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— MOVE from SSH, SSL
	— Two-word JMP, Jcc, JSR, JScc
	— JSET, JCLR, JSSET, JSCLR
	— Two-word MOVEM
	At LA – 2: The following instructions should not start at address LA – 2:

	— DO, DOR, DO FOREVER
	— MOVE to/from {LA, LC, SP,SC, SSH, SSL,SZ, VBA, OMR}
	— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc
	— MOVEM
	— ANDI, ORI on MR
	— BRKcc, ENDDO, REP
	— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL
	At LA – 1: The following instructions should not start at address LA – 1:

	— DO, DOR, DO FOREVER
	— MOVE to/from {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc
	— MOVEM
	— ANDI, ORI on MR
	— BRKcc, ENDDO, REP
	— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL
	Note: A one-word conditional branch instruction at LA-1 is not allowed.

	When two consecutive LAs have a conditional branch instruction at LA-1 of the internal loop, the ...
	Workaround: Put an additional NOP between LABEL2 and LABEL1.
	At LA: The following instructions should not start at address LA:
	— Any two-word instruction
	— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— MOVE from SSH, SSL
	— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
	— BTST on SSH
	— JMP, JSR, BRA, BSR, Jcc, JScc, Bcc, BScc
	— MOVE to/from Program space {MOVEM, MOVEP (only the P space options).
	— RESET
	— RTI, RTS
	— ANDI, ORI on MR
	— BRKcc, ENDDO, REP
	— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL


	A.3.2 General DO Restrictions
	The general restrictions on DO instructions are as follows:
	A DO loop should be initialized and aborted using only the following instructions: DO, DOR, DO FO...
	The LF and the FV bits in the Status Register (SR) should not be explicitly changed using the MOV...
	Proper DO loop operation is not guaranteed if an instruction sequence similar to one of the follo...

	— SSH cannot be used as the source for the Loop-Count for a DO, DOR, or a DO FOREVER instruction.
	— The following instructions should not appear within four words before a DO, DOR, or DO FOREVER:
	• BCHG, BCLR, BSET, MOVE on/to SSH,SSL
	• BCHG, BCLR, BSET, MOVE on/to SP, SC

	— The following instructions should not appear immediately before a DO, DOR, or DO FOREVER:
	• MOVE from SSH
	• BTST on SSH
	• BCHG, BCLR, BSET, MOVE to/on {LA, LC, SP, SC, SSH, SSL}
	• JSR, JScc, JSSET, JSCLR to LA whenever LF is set
	• BSR, BScc, to LA whenever LF is set

	— The following instructions should not appear in a DO, DOR, or DO FOREVER loop:
	• {JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc}
	When Stack Extension mode is enabled, use of the BRKcc or ENDDO instructions inside DO loops may ...
	Example�A-3. Finite DO Loops
	Example�A-4. DO FOREVER Loops
	do #M,label1 ..... .....



	A.3.3 ENDDO Restrictions
	The instructions in the following list should not appear within four words before an ENDDO instru...
	BCHG, BCLR, BSET, MOVE on/to SSH,SSL
	BCHG, BCLR, BSET, MOVE on/to SP, SC

	The instructions in the following list should not appear immediately before an ENDDO instruction:
	ANDI, ORI on MR
	MOVE from SSH
	BTST on SSH
	BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}


	A.3.4 BRKcc Restrictions
	The instructions in the following list should not appear immediately before a BRKcc instruction:
	Every arithmetic instruction
	IFcc, Tcc
	BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}


	A.3.5 RTI and RTS Restrictions
	The instructions in the following list should not appear within four words before an RTI or RTS i...
	BCHG, BCLR, BSET, MOVE on/to SSH,SSL
	BCHG, BCLR, BSET, MOVE on/to SP, SC

	The instructions in the following list should not appear immediately before an RTI instruction:
	MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}
	MOVE, BTST from/on SSH
	ANDI, ORI on {MR, CCR}
	ENDDO

	The instructions in the following list should not appear immediately before an RTS instruction:
	MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}
	MOVE, BTST from/on SSH
	ENDDO


	A.3.6 SR Manipulation Restrictions
	Changing values of bits in the Status Register (SR) should not be done explicitly using one of th...

	A.3.7 SP/SC and SSH/SSL Manipulation Restrictions
	The instructions in List A should not be executed within four instructions before executing any o...
	List A
	MOVE to (SP, SC)
	BCHG, BSET, BCLR on (SP, SC)

	List B
	MOVE to/from {SSH,SSL}
	BTST, BCHG, BSET, BCLR on {SSH,SSL}
	JSET, JCLR, JSSET, JSCLR on {SSH,SSL}


	A.3.8 Fast Interrupt Routines
	The following instructions cannot be used in a fast interrupt routine:
	DO, DO FOREVER, REP
	ENDDO, BRKcc
	RTI, RTS
	STOP, WAIT
	TRAP, TRAPcc
	ANDI, ORI on {MR, CCR}
	MOVE from SSH
	BTST on SSH
	MOVE to {LA, LC, SP, SC, SSH, SSL}
	BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL}


	A.3.9 REP Restrictions
	The REP instruction can repeat any single-word instruction except the REP instruction itself and ...
	REP, DO, DO FOREVER
	ENDDO, BRKcc
	JMP, Jcc, JCLR, JSET
	JSR, JScc, JSCLR, JSSET
	BRA, Bcc
	BSR, BScc
	RTS, RTI
	TRAP, TRAPcc
	WAIT, STOP


	A.3.10 Stack Extension Restrictions
	The following instructions, related to the operation of the on-chip hardware stack extension, can...
	MOVE to EP
	BCHG, BSET, BCLR on EP
	MOVE to SC with a value greater than 15

	The following instructions, related to the operation of the on-chip hardware stack extension, can...
	JSR, JScc, JSCLR, JSSET
	BSR, BScc


	A.3.11 Stack Extension Enable Restrictions
	When stack extansion is enabled, the read result from stack may be improper if two previous execu...
	Case 1:

	— For the first executed instruction: move from SSH or bit manipulation on SSH (i.e., JCLR, BRCLR...
	— For the second executed instruction: move to SSH or bit manipulation on SSH (i.e., JSR, BSR, JS...
	— For the third executed instruction: an SSL or SSH read from the stack result may be improper. M...
	Workaround: Add two NOP instructions before the third executed instruction.
	Case 2:
	— For the first executed instruction: bit manipulation on SSH (i.e., BSET, BCLR, BCJG).
	— For the second executed instruction: an SSL or SSH read from the stack result may be improper. ...

	Workaround: Add two NOP instructions before the second executed instruction.


	A.4 Peripheral Pipeline Restrictions
	The DSP56300 core is based on a highly optimized pipeline engine. Despite the relatively deep pip...
	A.4.1 Polling a Peripheral Device for Write
	When data is written to a peripheral device, there is a two-cycle pipeline delay until any status...
	Example�A-5. Providing a Wait for Proper Data Writes �

	A.4.2 Writing to a Read-Only Register
	Writing to a read-only register is an operation that normally has no effect, but if a read operat...

	A.4.3 XY Memory Data Move
	An XY memory data move does not work properly in either of the following situations:
	The X-memory move destination is internal I/O and the Y-memory move source is a register used as ...
	The Y-memory move destination is a register used as source in the next adjacent move to non Y-mem...

	Example 1:
	Example 2:
	To address this problem, use one of the following alternatives:
	Separate these two consecutive moves by any other instruction.
	Split the XY Data Move to two moves.



	A.5 Sixteen-Bit Compatibility Mode Restrictions
	When there is a return from a long interrupt (by the RTI instruction), and the first instruction ...



	Appendix B Benchmark Programs
	The following benchmarks illustrate the source code syntax and programming techniques for the DSP...
	Table B-1. List of Benchmark Programs (Continued)

	3
	4
	67 ns
	7
	2N + 8
	33.3 N + 133.6 ns
	4
	5
	83 ns
	9
	2N + 8
	33.3N + 133.6 ns
	6
	N + 14
	60/(N + 14) MHz
	9
	2N + 10
	30/(N + 5) MHz
	6
	7
	117 ns
	9
	5N + 9
	66.7N + 150.3 ns
	7
	8
	133 ns
	9
	4N + 9
	66.7N + 150.3 ns
	16
	4N + 13
	30/(2N + 5.5) MHz
	10
	2N + 11
	33.3N + 183.7ns
	7
	9
	150.3 ns
	10
	5N + 10
	12/(N + 2) MHz
	12
	8N + 9
	133.6N + 150.3 ns
	15
	3N + 16
	60/(3N + 17) MHz
	13
	3N + 12
	60/(3N + 12) MHz
	10
	3N + 10
	60/(3N + 10) MHz
	12
	4N + 8
	30/(2N + 4) MHz
	14
	5N + 19
	60/(5N + 19) MHz
	15
	5N + 19
	60/(5N + 19) MHz
	13
	14
	233.8 ns
	19
	11N2 + 8N + 7
	60/(11N2 + 8N + 7) MHz
	7
	2N + 8
	33.3N + 133 ns
	B.1 Benchmarks
	The following benchmarks illustrate the source code syntax and programming techniques for the DSP...
	Table B-2. Example of Assembly Language Source

	The columns of Table B-2 are defined as follows:


	Label
	Opcode
	Operands
	X Bus Data
	Y Bus Data
	Comment
	P
	T
	B.1.1 Real Multiply
	Equation B-1:
	Table B-3. Real Multiply

	B.1.2 N Real Multiplies
	Equation B-2:
	Table B-4. N Real Multiplies Memory Map


	r0
	a(i)
	r4
	b(i)
	r1
	c(i)
	Example�B-1. N Real Multiplies �
	B.1.3 Real Update
	Equation B-3:
	Example�B-2. Real Update �

	B.1.4 N Real Updates
	Equation B-4:
	Table B-5. N Real Updates Memory Map


	r0
	a(i)
	r4
	b(i)
	r1
	c(i)
	r5
	d(i)
	Example�B-3. N Real Updates �
	B.1.5 Real Correlation or Convolution (FIR Filter)
	Equation B-5:
	Table B-6. Real Correlation or Convolution (FIR Filter) Memory Map


	r0
	a(i)
	r4
	b(i)
	Example�B-4. Real Correlation or Convolution (FIR Filter) �
	B.1.6 Real * Complex Correlation or Convolution (FIR Filter)
	Equation B-6:
	Table B-7. Real * Complex Correlation or Convolution (FIR Filter) Memory Map


	r0
	ar(i)
	ai(i)
	r4
	b(i)
	r1
	cr(n)
	ci(n)
	Example�B-5. Real * Complex Correlation or Convolution (FIR Filter) (Continued)

	1
	2
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	11
	2N + 11
	B.1.7 Complex Multiply
	Equation B-7:
	Table B-8. Complex Multiply Memory Map


	r0
	ar
	ai
	r4
	br
	bi
	r1
	cr
	ci
	Example�B-6. Complex Multiply �

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	6
	7
	B.1.8 N Complex Multiplies
	Equation B-8:
	Table B-9. N Complex Multiplies Memory Map


	r0
	ar(i)
	ai(i)
	r4
	br(i)
	bi(i)
	r5
	cr(i)
	ci(i)
	Example�B-7. N Complex Multiplies �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	9
	4N + 9
	B.1.9 Complex Update
	Equation B-9:
	Table B-10. Complex Update Memory Map


	r0
	ar
	ai
	r4
	br
	bi
	r1
	cr
	ci
	r2
	dr
	di
	Example�B-8. Complex Update�

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	7
	8
	B.1.10 N Complex Updates
	Equation B-10:
	Table B-11. N Complex Updates Memory Map


	r0
	ar(i) ; ai(i)
	r4
	br(i) ; bi(i)
	r1
	cr(i) ; ci(i)
	r5
	dr(i) ; di(i)
	Example�B-9. N Complex Updates �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	2 i'lock
	9
	5N + 9
	Table B-12. N Complex Updates Memory Map

	r0
	ar(i)
	ai(i)
	r4
	br(i)
	bi(i)
	r1
	cr(i)
	ci(i)
	r5
	dr(i)
	di(i)
	Example�B-10. N Complex Updates

	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	11
	5N + 9
	B.1.11 Complex Correlation or Convolution (FIR Filter)
	Equation B-11:
	Table B-13. Complex Correlation or Convolution (FIR Filter) Memory Map


	r0
	ar(i)
	ai(i)
	r4
	br(i)
	bi(i)
	r1
	cr(i)
	ci(i)
	Example�B-11. Complex Correlation or Convolution (FIR Filter) (Continued)

	1
	2
	1
	2
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	16
	4N + 13
	B.1.12 Nth Order Power Series (Real)
	Equation B-12:


	r0
	a(i)
	r4
	b
	r1
	c
	Example�B-12. Nth Order Power Series (Real) �

	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	2
	5
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	10
	2N + 11
	B.1.13 Second Order Real Biquad IIR Filter
	Equation B-13:
	Table B-1. Second Order Real Biquad IIR Filter Memory Map


	r0
	w(n-2), w(n-1)
	r4
	a2/2, a1/2, b2/2, b1/2
	Example�B-13. Second Order Real Biquad IIR Filter �

	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	2 i'lock
	7
	9
	B.1.14 N Cascaded Real Biquad IIR Filter
	Equation B-14:
	Table B-2. N Cascaded Real Biquad IIR Filter Memory Map


	r0
	w(n-2)1, w(n-1)1, w(n-2)2, ...
	r4
	(a2/2)1, (a1/2)1, (b2/2)1, (b1/2)1, (a2/2)2, ...
	Table B-3. N Cascaded Real Biquad IIR Filter �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	2 i’lock
	1
	1
	1
	1
	1
	2 i'lock
	10
	5N + 10
	B.1.15 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)
	Equation B-15:
	Table B-4. N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) Memory Map


	r0
	ar(i)
	ai(i)
	r1
	br(i)
	bi(i)
	r6
	cr(i)
	ci(i)
	r4
	ar’(i)
	ai’(i)
	r5
	br’(i)
	bi’(i)
	Example�B-14. N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	2 i'lock
	12
	8N + 9
	B.1.16 True (Exact) LMS Adaptive Filter
	Figure B-1. True (Exact) LMS Adaptive Filter
	Table B-5. System Equations


	e(n) = d(n) – H(n) ¥ (n)
	e(n) = d(n) – H(n) ¥ (n)
	H(n + 1) = H(n) + uX(n)e(n)
	H(n + 1) = H(n) + uX(n – 1)e(n – 1)
	Table B-6. LMS Algorithms �

	Get input sample
	Get input sample
	Save input sample
	Save input sample
	Do FIR
	Do FIR
	Get d(n), find e(n)
	Update coefficients
	Update coefficients
	Get d(n), find e(n)
	Output f(n)
	Output f(n)
	Table B-7. True (Exact) LMS Adaptive Filter Memory Map

	r0
	x(n), x(n – 1), x(n – 2), x(n – 3)
	r4, r5
	h(0), h(1), h(2), h(3)
	Example�B-15. True (Exact) LMS Adaptive Filter (Continued)

	1
	1
	1
	1
	1
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	15
	3N + 16
	B.1.17 Delayed LMS Adaptive Filter
	Error signal is in y1
	FIR sum in a = a + h(k)old * x(n – k)
	h(k)new in b = h(k)old + error * x(n – k – 1)
	Table B-8. Delayed LMS Adaptive Filter Memory Map



	r0
	x(n), x(n – 1), x(n – 2), x(n – 3), x(n – 4)
	r5, r4
	dummy, h(0), h(1), h(2), h(3)
	Example�B-16. Delayed LMS Adaptive Filter (Continued)

	1
	1
	1
	1
	1
	1
	1
	1
	2
	5
	1
	2 i’lock
	1
	1
	1
	2 i’lock
	1
	1
	1
	1
	1
	1
	1
	1
	13
	3N + 12
	B.1.18 FIR Lattice Filter
	Figure B-2. FIR Lattice Filter
	Table B-9. FIR Lattice Filter Memory Map


	r0
	s1, s2, s3, sx
	r4
	k1, k2, k3
	Example�B-17. FIR Lattice Filter (Continued)

	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	10
	3N + 10
	B.1.19 All Pole IIR Lattice Filter
	Figure B-3. All Pole IIR Lattice Filter
	Table B-10. All Pole IIR Lattice Filter Memory Map


	r0
	k3, k2, k1
	r4
	s3, s2, s1
	Example�B-18. All Pole IIR Lattice Filter (Continued)

	1
	1
	1
	1
	1
	1
	2
	5
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	12
	4N + 8
	B.1.20 General Lattice Filter
	Figure B-4. General Lattice Filter
	Table B-11. General Lattice Filter Memory Map


	r0
	k3, k2, k1, w3, w2, w1, w0
	r4
	s4, s3, s2, s1
	Example�B-19. General Lattice Filter (Continued)

	1
	1
	1
	1
	2
	5
	1
	1
	1
	2 i'lock
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	5
	1
	1
	1
	1
	1
	2 i’lock
	14
	5N + 19
	B.1.21 Normalized Lattice Filter
	Figure B-5. Normalized Lattice Filter
	Table B-12. Normalized Lattice Filter Memory Map


	r0
	q2, k2, q1, k1, q0, k0, w3, w2, w1, w0
	r4
	sx, s2, s1, s0
	Example�B-20. Normalized Lattice Filter �

	1
	1
	1
	1
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	5
	1
	1
	1
	1
	1
	2 i'lock
	15
	5N + 19
	B.1.22 [1 ¥ 3][3 ¥ 3] Matrix Multiplication
	Example�B-21. [1 ¥ 3][3 ¥ 3] Matrix Multiplication �


	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i’lock
	13
	14
	B.1.23 N Point 3 ¥ 3 2-D FIR Convolution
	The two-dimensional FIR uses a [3 ¥ 3] coefficient mask:
	The coefficient mask is stored in Y memory in the following order:
	The image is an array of 512 ¥ 512 pixels. To provide boundary conditions for the FIR filtering, ...
	Figure B-6. FIR Filtering

	The image (with boundary) is stored in row major storage. The first element of the array image(,)...
	Image(1,1) maps to index 0, image(1,514) maps to index 513;
	Image(2,1) maps to index 514 (row major storage).

	Although many other implementations are possible, this is a realistic type of image environment i...
	Table B-13. N Point 3 ¥ 3 2-D FIR Convolution Memory Map



	r0
	r1
	r2
	r4
	r5
	Example�B-22. N Point 3 ¥ 3 2-D FIR Convolution (Continued)

	1
	1
	2
	5
	2
	5
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2 i'lock
	1
	1
	1
	1
	1
	1
	1
	1
	T = 11N2 + 8N + 7
	B.1.24 Viterbi Add-Compare-Select (ACS)
	This routine implements the Viterbi algorithm kernel. The algorithm is parametric and fits any va...
	Figure B-7. Viterbi Butterfly

	Given Branch Metric value (BrM), ACS should perform as follows:
	Fetch path metric of state(i) – Si.
	Fetch path metric of state(j) – Sj.
	Add BrM to Si.
	Subtract BrM from Sj.
	Compare and select the greater of the two: Next Sk = Max (Si + BrM, S – BrM).
	Store the result in next-state path-metric memory location.
	Update the state’s Trellis history with the selection bit.
	Perform the similar task for: Next Sk+1 = Max (Si – BrM, Sj + BrM).
	Figure B-8. ACS Butterfly—First Half
	Figure B-9. ACS Butterfly—Second Half


	Example�B-23. Viterbi Add-Compare-Select (ACS) �


	1
	1
	2
	1
	1
	1
	1
	1
	1
	1
	1
	2
	14
	B.1.25 Parsing a Data Stream
	This routine implements parsing of a data stream for MPEG audio. The data stream, composed by con...
	r0—pointer to the buffer in X memory containing the variable length stream
	r5—pointer to buffer in Y memory where the length of each field is stored

	Example�B-24. Parsing Data Stream (Continued)


	1
	1
	1
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	12
	13
	B.1.26 Creating a Data Stream
	The routine discussed in this section creates a data stream for MPEG audio. Words of variable len...
	r0—pointer to a buffer in X memory, containing the variable length codes—the code is right-aligne...
	r2—pointer to a buffer in X memory containing the stream generated
	r4—pointer to a buffer in Y memory where the actual length of each field is stored
	r3—pointer to a location that stores the “bits offset,” the number of bits left to be consumed, 4...
	r5—pointer to a location storing the constant 24
	r1—used as temporary storage (no need to initialize)
	x0—stores the current word to be inserted
	y1—stores the length of the code brought in x0
	y0—stores 24
	Table B-14. Creating Data Stream Memory Map




	r0
	data buffer
	r2
	stream buffer
	r4
	length buffer
	r3
	“bits offset”
	r5
	24
	Example�B-25. Creating Data Stream (Continued)

	1
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2
	1
	1
	1
	1
	1
	1
	12
	14
	B.1.27 Parsing a Hoffman Code Data Stream
	The routine discussed in this section parses a Hoffman code data stream. It extracts a bit field ...
	Figure B-10. Parsing Process

	Following are the pointers and registers used by the routine:
	r0—pointer to the buffer in X memory containing the stream
	r1—used as temporary storage (no need to initialize)
	r3—pointer to buffer in Y memory where the extracted fields are stored
	r5—pointer to a location that stores the “bits offset”, number of bits left to be consumed, 48 in...
	r2—pointer to the right table
	r6—pointer to the first lookup table
	r7—pointer to the second lookup table
	r4—pointer to constants
	Table B-15. Parsing Hoffman Code Data Stream Memory Map




	r0
	stream buffer
	r3
	extracted data buffer
	r5
	“bits offset”
	r4
	#no.1 address bus length
	#no.2 mask word for length field
	#no.3 merged width and offset
	‘24‘
	r6
	first lookup table
	r7
	second lookup table
	Example�B-26. Parsing Hoffman Code Data Stream (Continued)

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	22
	22

	Appendix C From CDR Process to HiP Process
	Competitive designs for wireless infrastructure applications require faster digital signal proces...
	Table C-1. CDR-to-HiP Process Differences Summary�

	C.1 Voltage
	DSP56300 family members are dual-voltage devices. The core and internal PLL of derivatives migrat...

	C.2 Operating Frequency
	DSP56300 family derivatives that use the CDR process technology operate at a maximum frequency of...

	C.3 Port A Timings
	Speed increases resulting from the application of new process technologies affect all Port A timi...
	DRAM Access Support

	DRAM accesses are supported with DSP56300 family derivatives that use the CDR process technology ...
	SRAM Timings

	SRAM accesses are supported with DSP56300 family derivatives that use the CDR process technology ...
	Synchronous Timings and Arbitration Timings

	DSP56300 family members that use the CDR process technology rely on CLKOUT as a reference signal ...
	Alternatives to using CLKOUT exist. One example is the use of the Asynchronous Bus Arbitration En...
	Address Trace Mode

	Address Trace mode, when available and enabled by setting the ATE bit in the Operating Mode regis...

	C.4 Memory Block Size
	The internal memory block size of DSP56300 derivatives using the HiP4 process technology is 1024 ...
	In CDR derivatives, the internal RAM is divided into 256-word blocks. A situation of contention e...
	This same situation applies to HiP4 derivatives, except that contention exists if the core and DM...
	Figure C-1. CDR/HIP DMA and Core Access Comparisons

	The same change in block size applies to EFCOP/core contention in derivatives that contain an EFC...
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