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Abstract— We present an analytical calculation of plasmon excitation in a 2D conducting material by a thin horizontally arranged

polarized cylindrical tip. Due to its simplicity, our minimalistic model provides better understanding of scattering type surface

near-field microscopy (s-SNOM) of 2D materials in term of operation

and measurements.

INTRODUCTION

s-SNOM is a powerful tool for exploring local elec-

tronic properties of surfaces and 2D materials in a

few-nanometer-size domain [1, 2, 3]. Simulation of

s-SNOM signal obtained in experiments is an im-

portant part of the technique for retrieving physi-

cal properties of a material being studied. For the

moment, mathematical modeling of s-SNOM exper-

iments is developed mainly in the cases of surfaces

of homogeneous bulk materials [4, 5]. Recently,

we performed calculations for the case of a bulk

wafer covered by graphene and cylindrical exciting

tip were published [6]. Here, we improve the the-

oretical approach presented in the latter research

by analytical calculation of charge distribution in a

conducting 2D material excited by a dipole line ar-

ranged parallel to the surface (see Fig. 1).
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Fig. 1: Schematic view of s-SNOM of 2D conducting

material

BASICS OF S-SNOM SIMULATION

The s-SNOM measures Esc electric field scat-

tered by the tip which is proportional to the

dipole amplitude p(0) oscillating in it. For cylin-

drical tip and electric field ~E (0) acting on it

which is directed perpendicularly to its axis,

the dipole moment is given by

~p(0) = α~E (0) (1)

where α =
a2ε0

2
εtip−ε0
εtip+ε0

— for a cylindrical tip.

The total electric field ~E (0) causing the tip’s

polarization consists of the two components:

~E (0) = ~E (0)
pump + ~E (0)

ind (2)
where ~E (0)

pump is the fixed amplitude of the ex-

ternal source of radiation, and ~E (0)
ind is the elec-

tric field induced by the sample being sensed.

Due to we consider ~E (0)
pump ⊥ to the sample, all

the vectors ~E (0)
pump, ~E (0)

ind and ~p(0) are parallel

and one can relate the amplitudes of the latter

two as

E (0)
ind = β (z) p(0) (3)

where β (z) is the coefficient to be deter-

mined.

Combining the Eqs. (1)-(3), we obtain

p(0) =
αE (0)

pump

1− αβ (z)
, (4)

i.e. the value α/ [1− αβ (z)] in arb. units mea-

sured by the s-SNOM setup. To decrease the

influence of background and tip’s shape, it’s

forced to oscillate as depicted in the Fig. 1,

and the instantaneous signal (4) is averaged

by Fourier transform

Sn =
2
T

T∫
0

α cos nΩt dt
1− αβ [z (t)]

, Ω =
2π
T
, (5)

which is done by the setup analogously.

EXCITATION OF PLASMONS IN 2D CONDUCTING PLANE MATERIAL BY A PARALLEL DIPOLE LINE

We start from the Coulomb field produced by the linear dipole of the

tip, whose components on the exploring surface are:

Ex (x) =
−4phx(

x2 + h2
)2, Ez (x) =

2p
(

h2 − x2
)

(
x2 + h2

)2 ,

where h is height of the dipole above the surface. Theirs Fourier

transforms are: exq = −2πi · pqe−|q|h, ezq = 2π · p |q|e−|q|h.

Solution of Poisson equation can be found as:

ϕ(r ) =

∞∫
−∞

ϕ
(r ,0)
q eiωt−iqx−|q|z dq

2π
, ϕ(t) =

∞∫
−∞

ϕ
(t ,0)
q eiωt−iqx+|q|z dq

2π
,

where ϕ(r ) is the potential distribution above the surface (excluding

the tip’s dipole compound), and ϕ(t) is below it.

From the boundary conditions at the surface:
− p · 2πiqe−|q|h + iqϕ(r ,0)

q = iqϕ(t ,0)
q

ε0

[
p · 2π |q|e−|q|h + |q|ϕ(r ,0)

q

]
+ ε1 |q|ϕ

(t ,0)
q = 4πσω,q

, (6)

where σω,q is the Fourier components of the charge density σ (x , t)

induced on the surface, σ(x , t) =
∞∫
−∞

σω,qeiωt−iqx dq
2π .

Then, using continuity Eq. ∂σ
∂t + ∂j

∂x = 0, where j (x , t) is the lin-

ear current in the surface given as jω,q = γωEx ,ω,q, where γω is

the surface conductivity, Ex ,ω,q = iqϕ(t ,0)
q is the E-field component

producing the current in the surface, one can obtain ϕ(r ,0)
q and:

β =

∞∫
−∞

ε1 − ε0 − 4π |q| iγω/ω
ε1 + ε0 − 4π |q| iγω/ω

|q|e−2h|q|dq (7)

After transformations, Eq. (7) is reduced to

β =
1

2ε0h2

[
1− 2ε0

ε0 + ε1
F
(
2qph

)]
, qp =

(ε0 + ε1)ω

4πiγω
,

F (ζ) = ζ2e−ζ [Ei (ζ) + πi ]− ζ, Ei (ζ) =

ζ∫
−∞

eu

u
du,

(8)

that for γω = 0 gives the result similar to [4]: β =
ε1−ε0

ε0(ε1+ε0)
1

2h2.

Below, we consider γω as Drude model for graphene conductivity:

γω = e2EF
π~2(iω+ν)

, where EF is the Fermi energy, and ν is electron scat-

tering rate. Unless otherwise stated, in our calculations we take:

ω = 120 meV, EF = 300 meV, ν = 10 meV, ε1 = 3.9, a = 30 nm

(tip’s radius), hmin = zmin− a = 5 nm, and hmin = zmax− a = 50 nm

(see Fig. 1).

RESULTS
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Fig. 2: Normalized S2 value of signal for a = 30 nm
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Fig. 3: Normalized S2 value of signal for a = 5 nm

SCALING

In Fig. 4, λp0 = Re
{

2π/qp
}

and Q = ω/ν. The case Q = 0 is calculated for γω = e2EF/π~2ν and λp0 = Im
{

2π/qp
}
.
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Fig. 4: Variable part’s of β scaling versus normalized z calculated for different

values of Q.
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Fig. 5: Normalized S2 value of signal for a = 30 nm (left panel) and 5 nm (right)

panel versus zmin/λp0 and A/λp0.

CONCLUSIONS

s-SNOM response highly depends on the size of the

tip and its regime of oscillation (zmin and zmax).

If zmin/λp0 & 0.4, the normalized to perfect conduc-

tor (or to some other reference) response is almost

independent of the size of the tip.

Scaling dependence F (ζ) may be used for selecting

of s-SNOM tip’s oscillation regime that best suites

the explored surface.
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