

The State University of New York

Analytical Model for s-type SNOM of 2D Conducting Materials

Viacheslav Semenenko* and Vasili Perebeinos**

Department of Electrical Engineering, University at Buffalo, NY, USA

Abstract— We present an analytical calculation of plasmon excitation in a 2D conducting material by a thin horizontally arranged

polarized cylindrical tip. Due to its simplicity, our minimalistic model provides better understanding of scattering type surface

near-field microscopy (s-SNOM) of 2D materials in term of operation

and measurements.

INTRODUCTION

s-SNOM is a powerful tool for exploring local electronic properties of surfaces and 2D materials in a few-nanometer-size domain [1, 2, 3]. Simulation of s-SNOM signal obtained in experiments is an important part of the technique for retrieving physical properties of a material being studied. For the moment, mathematical modeling of s-SNOM experiments is developed mainly in the cases of surfaces of homogeneous bulk materials [4, 5]. Recently, we performed calculations for the case of a bulk wafer covered by graphene and cylindrical exciting tip were published [6]. Here, we improve the theoretical approach presented in the latter research by analytical calculation of charge distribution in a conducting 2D material excited by a dipole line arranged parallel to the surface (see Fig. 1).

BASICS OF S-SNOM SIMULATION

The s-SNOM measures E_{sc} electric field scattered by the tip which is proportional to the dipole amplitude $p^{(0)}$ oscillating in it. For cylindrical tip and electric field $\vec{E}^{(0)}$ acting on it which is directed perpendicularly to its axis, the dipole moment is given by

 $\vec{p}^{(0)} = \alpha \vec{E}^{(0)}$ (1) where $\alpha = \frac{a^2 \varepsilon_0}{2} \frac{\varepsilon_{tip} - \varepsilon_0}{\varepsilon_{tip} + \varepsilon_0}$ — for a cylindrical tip. The total electric field $\vec{E}^{(0)}$ causing the tip's

and one can relate the amplitudes of the latter two as $E_{\rm ind}^{(0)} = \beta(z) p^{(0)}$ (3)where $\beta(z)$ is the coefficient to be deter-

mined.

Combining the Eqs. (1)-(3), we obtain (4)i.e. the value $\alpha / [1 - \alpha \beta(z)]$ in arb. units measured by the s-SNOM setup. To decrease the

Fig. 1: Schematic view of s-SNOM of 2D conducting material

polarization consists of the two components: $ec{E}^{(0)} = ec{E}^{(0)}_{ ext{pump}} + ec{E}^{(0)}_{ ext{ind}}$ (2) where $\vec{E}_{pump}^{(0)}$ is the fixed amplitude of the external source of radiation, and $\vec{E}_{ind}^{(0)}$ is the electric field induced by the sample being sensed. Due to we consider $\vec{E}_{pump}^{(0)} \perp$ to the sample, all the vectors $\vec{E}_{pump}^{(0)}$, $\vec{E}_{ind}^{(0)}$ and $\vec{p}^{(0)}$ are parallel

influence of background and tip's shape, it's forced to oscillate as depicted in the Fig. 1, and the *instantaneous* signal (4) is averaged by Fourier transform $S_n = \frac{2}{T} \int \frac{\alpha \cos n\Omega t \, dt}{1 - \alpha \beta \left[z(t) \right]}, \ \Omega = \frac{2\pi}{T}, \quad (5)$ which is done by the setup analogously.

EXCITATION OF PLASMONS IN 2D CONDUCTING PLANE MATERIAL BY A PARALLEL DIPOLE LINE

We start from the Coulomb field produced by the linear dipole of the From the boundary conditions at the surface: tip, whose components on the exploring surface are:

 $E_{X}(x) = \frac{-4phx}{(x^{2} + h^{2})^{2}}, \quad E_{Z}(x) = \frac{2p(h^{2} - x^{2})}{(x^{2} + h^{2})^{2}},$ where *h* is height of the dipole above the surface. Theirs Fourier transforms are: $e_{xq} = -2\pi i \cdot pqe^{-|q|h}$, $e_{zq} = 2\pi \cdot p |q| e^{-|q|h}$. Solution of Poisson equation can be found as:

$$\varphi^{(r)} = \int_{-\infty}^{\infty} \varphi_q^{(r,0)} e^{i\omega t - iqx - |q|z} \frac{dq}{2\pi}, \quad \varphi^{(t)} = \int_{-\infty}^{\infty} \varphi_q^{(t,0)} e^{i\omega t - iqx + |q|z} \frac{dq}{2\pi},$$

where $\varphi^{(r)}$ is the potential distribution above the surface (excluding the tip's dipole compound), and $\varphi^{(t)}$ is below it.

 $-p \cdot 2\pi i q e^{-|q|h} + i q \varphi_{q}^{(r,0)} = i q \varphi_{q}^{(t,0)}$ $\varepsilon_{0}\left[\boldsymbol{p}\cdot\boldsymbol{2\pi}\left|\boldsymbol{q}\right|\boldsymbol{e}^{-\left|\boldsymbol{q}\right|\boldsymbol{h}}+\left|\boldsymbol{q}\right|\varphi_{\boldsymbol{q}}^{\left(r,0\right)}\right]+\varepsilon_{1}\left|\boldsymbol{q}\right|\varphi_{\boldsymbol{q}}^{\left(t,0\right)}=\boldsymbol{4\pi\sigma_{\omega,\boldsymbol{q}}},$ where $\sigma_{\omega,q}$ is the Fourier components of the charge density $\sigma(x, t)$ induced on the surface, $\sigma(x, t) = \int_{-\infty}^{\infty} \sigma_{\omega,q} e^{i\omega t - iqx} \frac{dq}{2\pi}$. Then, using continuity Eq. $\frac{\partial \sigma}{\partial t} + \frac{\partial \widetilde{j}}{\partial x} = 0$, where j(x, t) is the linear current in the surface given as $j_{\omega,q} = \gamma_{\omega} E_{x,\omega,q}$, where γ_{ω} is the surface conductivity, $E_{x,\omega,q} = iq\varphi_q^{(t,0)}$ is the E-field component producing the current in the surface, one can obtain $\varphi_q^{(r,0)}$ and: $\beta = \int \frac{\varepsilon_1 - \varepsilon_0 - 4\pi |\mathbf{q}| i\gamma_{\omega}/\omega}{\varepsilon_1 + \varepsilon_0 - 4\pi |\mathbf{q}| i\gamma_{\omega}/\omega} |\mathbf{q}| e^{-2h|\mathbf{q}|} d\mathbf{q}$ (7)

After transformations, Eq. (7) is reduced to $\beta = \frac{1}{2\varepsilon_0 h^2} \left[1 - \frac{2\varepsilon_0}{\varepsilon_0 + \varepsilon_1} \mathcal{F} \left(2q_p h \right) \right], \ q_p = \frac{(\varepsilon_0 + \varepsilon_1)\omega}{4\pi i \gamma_\omega},$ (8) $\mathcal{F}(\zeta) = \zeta^2 e^{-\zeta} \left[\operatorname{Ei}(\zeta) + \pi i \right] - \zeta, \ \operatorname{Ei}(\zeta) = \int_{-\infty}^{\zeta} \frac{e^u}{u} du,$ that for $\gamma_{\omega} = 0$ gives the result similar to [4]: $\beta = \frac{\varepsilon_1 - \varepsilon_0}{\varepsilon_0(\varepsilon_1 + \varepsilon_0)} \frac{1}{2h^2}$. Below, we consider γ_{ω} as Drude model for graphene conductivity: $\gamma_{\omega} = \frac{e^2 \mathcal{E}_F}{\pi \hbar^2 (i_{\omega} + \nu)}$, where \mathcal{E}_F is the Fermi energy, and ν is electron scattering rate. Unless otherwise stated, in our calculations we take: ω = 120 meV, \mathcal{E}_{F} = 300 meV, ν = 10 meV, ε_{1} = 3.9, a = 30 nm (tip's radius), $h_{\min} = z_{\min} - a = 5$ nm, and $h_{\min} = z_{\max} - a = 50$ nm

(see Fig. 1).

RESULTS

SCALING

In Fig. 4,
$$\lambda_{p0} = \text{Re}\left\{2\pi/q_p\right\}$$
 and $Q = \omega/\nu$. The case $Q = 0$ is calculated for $\gamma_\omega = e^2 \mathcal{E}_F/\pi \hbar^2 \nu$ and $\lambda_{p0} = \text{Im}\left\{2\pi/q_p\right\}$.

 S_2 , normalized to perf. conductor ($\varepsilon_1 = -\infty$)

$$S_2$$
, normalized to perf. conductor ($arepsilon_1=-\infty$)

Fig. 5: Normalized S_2 value of signal for a = 30 nm (left panel) and 5 nm (right) panel versus z_{\min}/λ_{p0} and A/λ_{p0} .

DEEEDENCE

Fig. 3: Normalized S_2 value of signal for a = 5 nm

 s-SNOM response highly depends on the size of the tip and its regime of oscillation (<i>z</i>_{min} and <i>z</i>_{max}). If <i>z</i>_{min}/λ_{p0} ≥ 0.4, the normalized to perfect conductor (or to some other reference) response is almost independent of the size of the tip. Scaling dependence <i>F</i>(<i>ζ</i>) may be used for selecting of s-SNOM tip's oscillation regime that best suites the explored surface. [1] Jiang L., <i>et al. Nature Materials</i>, vol. 15, pp. 840–845, 2016 [2] Xiong L., <i>et al. Nature Communications</i>, vol. 10, p. 4780, 2019 [3] Zhang J., <i>et al. ACS Photonics</i>, vol. 5(7), pp. 2645–2651, 2018 [4] Hillenbrand R., <i>et al. J. of Microscopy</i>, vol. 202(1), pp. 77–83, 2001 [5] Cvitkovic A., <i>et al. Opt. Ex.</i>, vol. 15(14), p. 8550, 2007 [6] Yao Z., <i>et al. Opt. Ex.</i>, vol. 27(10), p. 13611, 2019 	CONCLUSIONS	REFERENCES
	 s-SNOM response highly depends on the size of the tip and its regime of oscillation (z_{min} and z_{max}). If z_{min}/λ_{p0} ≥ 0.4, the normalized to perfect conductor (or to some other reference) response is almost independent of the size of the tip. Scaling dependence F (ζ) may be used for selecting of s-SNOM tip's oscillation regime that best suites the explored surface. 	 [1] Jiang L., <i>et al. Nature Materials</i>, vol. 15, pp. 840–845, 2016 [2] Xiong L., <i>et al. Nature Communications</i>, vol. 10, p. 4780, 2019 [3] Zhang J., <i>et al. ACS Photonics</i>, vol. 5(7), pp. 2645–2651, 2018 [4] Hillenbrand R., <i>et al. J. of Microscopy</i>, vol. 202(1), pp. 77–83, 2001 [5] Cvitkovic A., <i>et al. Opt. Ex.</i>, vol. 15(14), p. 8550, 2007 [6] Yao Z., <i>et al. Opt. Ex.</i>, vol. 27(10), p. 13611, 2019

*viachesl@buffalo.edu, **vasilipe@buffalo.edu