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Introduction: 
Atom-based quantum sensing

Atomic sensor example:
Cold-atom accelerometer and gyroscope

Draper Laboratory

Atom-photon 
interactions

Opportunities for integrated nanophotonics in 
next-generation atomic sensors
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Concept of atom-based quantum sensing
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Discrete electronic energy levels in 
atoms, ions, or defects in crystals

Precise frequency 
reference

Deterministic interactions with the 
environment that can be strong

Why useful:

• Transitions with high frequencies lead to high measurement resolution 

• Strong interactions between atoms and physical quantities enable sensitive measurements

• Properties of well-isolated atoms, including their interactions with the environment, are stable over time

• Atoms of the same element and isotope are identical à ideal measurement standards!

f = fn (external EM field, motion, temperature, …)
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Essential atom-photon interactions for quantum measurements
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Absorption and emission

Microwave

Optical

Optical pumping
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Current and future applications of quantum sensing platforms
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Precise and accurate time and 
frequency standards

Magnetometry with high sensitivity and spatial 
resolution

Accurate navigation and guidance

GPS

Gravity map 

Navigation systems

Neural activity 
sensing

Geo-surveying

Communications

Time/frequency 
distribution

1100
nT

Magnetic field map 

Source: https://pubs.usgs.gov/

10-4 g



Classical vs quantum ways to measure inertial motion 
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sensor   
inertial
frame

Atoms as
proof mass

Classical Atomic

Inertial sensors measure the displacement of some object (“proof mass”) 
in response to acceleration or rotation

• Tethered mechanical proof mass 
• Variability in manufacturing
• Sensor response can degrade with changing 

environment

• Frictionless, reproducible, identical proof 
masses

• Stable electron energy levels provide both 
sensitivity and stability

• Implementation challenges
– Size and complexity of setups
– Performance degrades under dynamic 

environments (data rate and physical 
constraints)



Inertial sensing with atoms
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Proof masses (atom clouds) thrown towards each other at speed v

Case at rest

z
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Inertial sensing with atoms
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Case under accelerationCase at rest

Proof masses (atom clouds) thrown towards each other at speed v
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Inertial sensing with atoms
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Rotation 
around x

Acceleration in z

Case under acceleration
Case under rotation

Case at rest

Proof masses (atom clouds) thrown towards each other at speed v
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Inertial sensing with atoms
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Case under acceleration
Case under rotation

Case at rest

• Sensitivity scales with time-of-flight
• We use atom interferometry to measure displacements

acceleration

rotation 
rate

launch 
velocity

d1 d2

Proof masses (atom clouds) thrown towards each other at speed v

time of 
flight

z

y
x

Rotation 
around x

Acceleration in z



Measuring displacements: Atom Interferometry
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Implement a Mach Zehnder Interferometer… with atoms

Beamsplitter Mirror

Mixer

Measure path length 
(phase) difference 
between upper and 
lower arms 

Atomic 
wave with 
momentum 
p

y

z

2L

p+ !k

p

p

p+ !k

L0

We will use laser pulses to implement the beamsplitter, mirror, and mixer, 
via two-photon Raman transitions.

Trajectory of 1 atom shown (at rest)

Photon 
momentum 
k



Measuring displacements: Atom Interferometry
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ϕ (at rest) 

Atomic 
wave

Difference between ϕ (under 
motion) and ϕ (at rest):
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ϕ (under motion)

, where T = v L

acceleration rotation 
rate

launch 
velocity

p+ !k

p

p
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wavevector

Trajectory of 1 atom shown (at rest and under acceleration)

Measure path length 
(phase) difference 
between upper and 
lower arms 

time-of-flight / 
dwell time

Photon kick



Measuring displacements: Atom Interferometry
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Atomic 
wave

To obtain both 
acceleration and 
rotation, we need 
two interferometers 
with opposite v

y

z

2LL0

Trajectory of 1 atom shown (at rest and under acceleration)

p+ !k

p

p

p+ !k

ϕ (at rest) 

ϕ (under motion)

Measure path length 
(phase) difference 
between upper and 
lower arms 

Photon kick

Δ𝜙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
Δ𝜙"#$%& ' + Δ𝜙"#$%& (
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Cold atom dual accelerometer-gyroscope (DARPA C-SCAN)
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Ion Pump

Ultrahigh 
Vacuum 
Cell

Atom Source

Trapping Coils

60 mm

Bias Coils

Distribution A: Approved for Public Release, Distribution Unlimited

Neutral atom: 85Rb

Microwave 
photon

Optical 
photon

Hyperfine 
states

780.241 nm

Excited 
states

F = 1
F = 2

F = 3

F = 4

F = 2

F = 3

3.036 GHz

0.21 GHz52P3/2

52S1/2

Utilize microwave and 
optical transitions to 
excite/de-excite electrons 
between energy levels
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Ion Pump

Ultrahigh 
Vacuum 
Cell

Atom Source

Trapping Coils

60 mm

Bias Coils

Distribution A: Approved for Public Release, Distribution Unlimited

Neutral atom: 85Rb

Microwave 
photon

Optical 
photon

Hyperfine 
states

780.241 nm

Excited 
states

F = 1
F = 2

F = 3

F = 4

F = 2

F = 3

3.036 GHz

0.21 GHz52P3/2

52S1/2

Utilize microwave and 
optical transitions to 
excite/de-excite electrons 
between energy levels

Rb magneto-optical traps at 10s of µK

Cold atom dual accelerometer-gyroscope (DARPA C-SCAN)



Measurement sequence: Atom Cooling and Trapping

16Distribution A: Approved for Public Release, Distribution Unlimited

Magneto-optical trap (MOT)



Measurement sequence: Launching
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Doppler cooling in moving frame: 85Rb

Hyperfine 
states

Excited 
states

F = 1
F = 2

F = 3

F = 4

F = 2

F = 3

52P3/2

52S1/2

vLaunch = vrecoil, b- vrecoil, r



Measurement sequence: State Preparation
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85Rb

Hyperfine 
states

Excited 
states

F = 1
F = 2

F = 3

F = 4
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F = 3

52P3/2

52S1/2

Mostly non-
radiative
decay



Measurement sequence: Interferometry
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85Rb

Hyperfine 
states

Excited 
states
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F = 3

F = 4

F = 2

F = 3

52P3/2

52S1/2

ω1, k1 ω2, k2

Δ

Two-photon Raman transitions:
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F = 3 atoms F = 2 atoms
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!(k1 − k2 )

Raman pulse duration
0

0.5

1
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in F = 2

Mirror
Beamsplitter

Energy state is entangled to wave propagation direction



Measurement sequence: Interferometry
(Beamsplitter – Mirror – Mixer)

20Distribution A: Approved for Public Release, Distribution Unlimited
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21Distribution A: Approved for Public Release, Distribution Unlimited

Measurement sequence: Interferometry
(Beamsplitter – Mirror – Mixer)
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22Distribution A: Approved for Public Release, Distribution Unlimited

Atom wave

Measurement sequence: Interferometry
(Beamsplitter – Mirror – Mixer)
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Measurement sequence: State Detection
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atoms
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into F = 3
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Recapture

24

• Fast loading of atoms (few milliseconds vs seconds)

• Comparatively high data rates (> 30 Hz) for an atom interferometer 
à better suited for dynamic environments than most existing cold 
atom interferometers 

Similar work on an atomic gyroscope with atom recapturing:
A. Rakholia, H. McGuinness, and G. Biedermann, Phys. Rev. Appl. 2, 054012 (2014)



Assembled sensor
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Laser systemsElectronics

Full system with two integrated sensors  
Magnetic shield

a
Ω

Vacuum
cell

Beam routing and 
polarizing optics

Optical assembly for one sensor



Static measurements
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• Acceleration-sensitive axis parallel to ground (~ 0 g)

• Rotation-sensitive axis pointing up (~10.5 deg/hr from Earth’s rotation 
in Cambridge, MA)

Distribution A: Approved for Public Release, Distribution Unlimited

Pier

Minus-k

a
Ω

a

Ω



Static measurements

27

• Acceleration-sensitive axis parallel to ground (~ 0 g)

• Rotation-sensitive axis pointing up (~10.5 deg/hr from Earth’s rotation 
in Cambridge, MA)

Distribution A: Approved for Public Release, Distribution Unlimited

Pier

Minus-k

a
Ω

0.8 μg accuracy 0.1 deg/hr accuracy



Static measurements
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• Acceleration-sensitive axis parallel to ground (~ 0 g)

• Rotation-sensitive axis pointing up (~10.5 deg/hr from Earth’s rotation 
in Cambridge, MA)

Distribution A: Approved for Public Release, Distribution Unlimited

Pier

Minus-k

a
Ω

0.8 μg accuracy 0.1 deg/hr accuracy

1000x better accuracy than consumer devices

1 mg (consumer MEMS accelerometer)
100 deg/hr (consumer MEMS gyroscope)

For reference, ~ 1 𝜇g gravity difference between floors of a building



Dynamic measurements
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• Classical and atomic sensors mounted on same platform
• Good agreement between atomic and classical sensors
• Sensitivity of atomic sensor matches simple analytical expression:  

Apply small tilts to platform:

Distribution A: Approved for Public Release, Distribution Unlimited

Gentle rotation:

Atomic accelerometer
Classical (MEMS) accelerometer

Atomic gyroscope
Classical (fiber-optic) gyroscope



Dynamic measurements on a rate table
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a Ω

Ωπ

Atomic gyroscope
Classical (fiber-optic) gyroscope

Time (s)
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Sensitivity of gyroscope response to rate input stable to 
< 150 parts per million



Size and complexity of most atomic sensors today
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Cold-atom accelerometer-gyroscope at Draper Lab Muqans atomic gravimeter

Mobile atomic gravimeter from Mueller lab (UC Berkeley)

Xuejian Wu et al. Sci Adv 2019;5:eaax0800

Challenges
• Thermal and mechanical instability
• Performance degradation during 

motion
• Assembly time and costs



From labscale to chipscale

Atom-photon 
interface

Nshii et al, Nature Nano (2013)

Cold Quanta Goban et al, Nat Comm (2014)Photonic 
front-end

Khasminskaya et al, Nature Photonics (2016)

Vacuum 
Technology

Basu et al, Solid-State Sensors (2015)
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Chip-scale tetrahedral magneto-optical traps Atomic spectroscopy on a chip

Yang et al, Nature Photon 1, 331–335 (2007)
Vangeleyn et al, Optics Express, 17, 16 (2009)

Nshii et al, Nat. Nanotechnol., 8, 321-324 (2013)

Metasurfaces

Useful functionalities for atoms

• Polarization control 

• Beam shaping and steering

M. Khorasaninejad and F. Capasso, Science 358 6367 (2017)

Integrated nanophotonics for atoms
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𝜋
2

𝜋Δ𝜙:

Incident beam 
(two-color)

Dichroic phase 
response θSplit 

beams

Incident 
beam 

𝐼! 𝐼"

𝐼#$%

Vapor cell
Photodiodes

Metasurface
waveplate

Metasurface
polarizing 
beamsplitter

Pump + 
probe light

Our proposed design with 
integrated nanophotonics:

vapor cell

Multi-
order 
waveplate

Dichroic 
filter Polarizing

beamsplitter + 
prism

Photodiodes

B

Pump + 
probe light

Inline atomic magnetometer designs 
using discrete optics: 

Johnson et al, Applied Physics Letters 97(24) (2010)

Optically pumped atomic magnetometer with flat optics

34
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• Approach based on Arbabi et al, Nature Nano 10, 937–943 (2015)

• Metasurface implemented by arrays of elliptical posts which 
provide independent phase shifts for different polarization axes

Transmission coefficient

Post radius in x (m)

Po
st

 ra
di

us
 in

 y
 (m

)

Phase shift (radians)

Post radius in x (m)

Po
st

 ra
di

us
 in

 y
 (m

)

Si

X
Y

SiO2

Simulated transmission

Elliptical post unit cell

Incident beam 
(780 nm)

Transmitted 
beam

Si 500 nm

400 nm

Design of metasurface polarization components
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Metasurface Detection plane
Recipient field 
𝐸- = 𝐸.(𝑥, 𝑦, 𝑑)

(1)

d

Transmission profile 
𝑡(𝑥, 𝑦)

(2)

Incident field 
𝐸/(𝑥, 𝑦, 0)

Z

X

Y

Transmitted field 
𝐸.(𝑥, 𝑦, 𝑧)

Back-propagation of desired vector field



37

θSplit 
beams

Incident beam 

𝐼! 𝐼"

𝐼#$% ~16 𝜇m

400 nm

Height = 500 nm

X

Y

See other implementations of metasurface polarization beamsplitting:
[1] M. Khorasaninejad et al, Optica Vol. 2,  Issue 4, pp.378-382(2015)
[2] B. A. Slovick et al, Phil. Trans. R. Soc. A375: 0072 (2016)
[3] E. Arbabi et al, ACS Photonics 5, 3132−3140 (2018)

Our polarizing beamsplitter design
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Broadband polarizing beamsplitter (Thorlabs):
Transmission > 90%
Extinction ratio > 1000
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Extinction ratios: 150 for x-polarization
1100 for y-polarization 

Simulated polarizing beamsplitter performance
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Broadband polarizing beamsplitter (Thorlabs):
Transmission > 90%
Extinction ratio > 1000
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Simulated polarizing beamsplitter performance



Summary

• Atom-photon interactions are at the heart of all quantum sensing measurements
– Photonic engineering crucial for atomic sensor development

• Cold-atom accelerometer and gyroscope demonstrated high sensitivity but 
presented integration and mobility challenges

• Integrated nanophotonics can address size and integration challenges of atomic 
sensors
– Development of photonic-integrated-atomic magnetometer underway

40


