ritphotonics

Photonic engineering of atomic sensors

Jennifer T. Choy
Department of Engineering Physics, University of Wisconsin - Madison

Photonics for Quantum 2
July 15, 2020

Outline

Introduction:
Atom-based quantum sensing

Opportunities for integrated nanophotonics in next-generation atomic sensors

Atomic sensor example:
Cold-atom accelerometer and gyroscope

Draper Laboratory

Contributors and funding support on presented work

Chip-Scale Combinatorial Atomic Navigator development at Draper:

- Dave Johnson (Program manager)
- Jen Choy (Technical director)
- Alex Gill
- Christine Wang
- Steve Byrnes
- Krish Kotru

Part of this work was supported by the Defense Advanced Research Projects Agency (DARPA), under the Chip-Scale Combinatorial Atomic Navigator (C-SCAN) program.

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Team at UW-Madison:

- Xuting Yang
- Ricardo Vidrio
- Sarah Francis
- John (Jack) Doyle

Collaborators at UW-Madison

- Mikhail Kats
- Ray Wambold
- Thad Walker

Funding support from the Office of Naval Research (N00014-20-1-2598) and the Wisconsin Alumni Research Foundation

Concept of atom-based quantum sensing

Rb-87 transitions

- Transitions with high frequencies lead to high measurement resolution
- Strong interactions between atoms and physical quantities enable sensitive measurements
- Properties of well-isolated atoms, including their interactions with the environment, are stable over time
- Atoms of the same element and isotope are identical \rightarrow ideal measurement standards!

Essential atom-photon interactions for quantum measurements

Current and future applications of quantum sensing platforms

Accurate navigation and guidance

> Navigation systems

$$
\begin{array}{ll}
\text { NASA. } .65 .3973 & \text { APOLLO }
\end{array}
$$

INNER, MIDDLE \& OUTER GIMBAL ASSEMBLIES

Magnetic field map

Classical vs quantum ways to measure inertial motion

Inertial sensors measure the displacement of some object ("proof mass") in response to acceleration or rotation

- Tethered mechanical proof mass
- Variability in manufacturing
- Sensor response can degrade with changing environment

- Frictionless, reproducible, identical proof masses
- Stable electron energy levels provide both sensitivity and stability
- Implementation challenges
- Size and complexity of setups
- Performance degrades under dynamic environments (data rate and physical constraints)

Inertial sensing with atoms

Proof masses (atom clouds) thrown towards each other at speed v
Case at rest

Inertial sensing with atoms

Proof masses (atom clouds) thrown towards each other at speed v

Case at rest

Case under acceleration

z и! ио!ュедәəววナ

Inertial sensing with atoms

Proof masses (atom clouds) thrown towards each other at speed v

Case at rest

Case under acceleration

Inertial sensing with atoms

Proof masses (atom clouds) thrown towards each other at speed v

Case at rest

Case under acceleration

Case under rotation
acceleration $d_{1}+d_{2} \propto a_{1} \sim d_{2} \propto \Omega \times \underbrace{\substack{\text { launch } \\ \text { rate } \\ \text { velocity }}}_{\text {rotation }}$

- Sensitivity scales with time-of-flight
- We use atom interferometry to measure displacements

Measuring displacements: Atom Interferometry

Implement a Mach Zehnder Interferometer... with atoms
Trajectory of 1 atom shown (at rest)

We will use laser pulses to implement the beamsplitter, mirror, and mixer, via two-photon Raman transitions.

Measuring displacements: Atom Interferometry

Trajectory of 1 atom shown (at rest and under acceleration)

Difference between ϕ (under motion) and ϕ (at rest):

$$
\Delta \phi=(\vec{k} \cdot \vec{a}) T^{2}+2 \vec{k} \cdot(\vec{\Omega} \times \vec{v}) T_{\text {wavevector }}^{2}, ~ \text { where } T=v L
$$

Measuring displacements: Atom Interferometry

Trajectory of 1 atom shown (at rest and under acceleration)

To obtain both acceleration and rotation, we need
two interferometers with opposite \mathbf{v}

$$
\begin{aligned}
\Delta \phi(\text { acceleration }) & =\frac{\Delta \phi_{\text {cloud } 1}+\Delta \phi_{\text {cloud } 2}}{2}=\vec{k} \cdot \vec{a} T^{2} \\
\Delta \phi(\text { rotation }) & =\frac{\Delta \phi_{\text {cloud } 1}-\Delta \phi_{\text {cloud } 2}}{2}=2 \vec{k} \cdot(\vec{\Omega} \times \vec{v}) T^{2}
\end{aligned}
$$

Cold atom dual accelerometer-gyroscope (DARPA C-SCAN)

Neutral atom: ${ }^{85} \mathrm{Rb}$

Utilize microwave and optical transitions to excite/de-excite electrons between energy levels

Cold atom dual accelerometer-gyroscope (DARPA C-SCAN)

Neutral atom: ${ }^{85} \mathrm{Rb}$

Utilize microwave and optical transitions to excite/de-excite electrons between energy levels

Measurement sequence: Atom Cooling and Trapping

Measurement sequence: Launching

Measurement sequence: State Preparation

Measurement sequence: Interferometry

Two-photon Raman transitions:

$$
\begin{aligned}
& \begin{array}{rr}
\mathrm{F}=3 \text { atoms } & \mathrm{F}=2 \text { atom } \\
\hbar\left(k_{1}-k_{2}\right) \uparrow \mathrm{k}_{2} & \left\{\begin{array}{l}
\downarrow \mathrm{k}_{2}
\end{array}\right.
\end{array} \\
& \left\{\begin{array}{lll}
\text { § } & \hbar\left(k_{1}-k_{2}\right) \downarrow & 0 \\
\uparrow_{\mathrm{k}_{1}} & & \uparrow \mathrm{k}_{1}
\end{array}\right.
\end{aligned}
$$

Energy state is entangled to wave propagation direction

Measurement sequence: Interferometry (Beamsplitter

\hat{q}^{Ω}

Measurement sequence: Interferometry

 (Beamsplitter - Mirror)

Measurement sequence: Interferometry

 (Beamsplitter - Mirror - Mixer)

Measurement sequence: State Detection

Recapture

- Fast loading of atoms (few milliseconds vs seconds)
- Comparatively high data rates (> 30 Hz) for an atom interferometer \rightarrow better suited for dynamic environments than most existing cold atom interferometers

DR^PERSimilar work on an atomic gyroscope with atom recapturing: A. Rakholia, H. McGuinness, and G. Biedermann, Phys. Rev. Appl. 2, 054012 (2014)

Assembled sensor

Full system with two integrated sensors

Optical assembly for one sensor

Static measurements

- Acceleration-sensitive axis parallel to ground $(\sim 0 g)$
- Rotation-sensitive axis pointing up (~10.5 deg/hr from Earth's rotation in Cambridge, MA)

Static measurements

- Acceleration-sensitive axis parallel to ground ($\sim 0 g$)
- Rotation-sensitive axis pointing up ($\sim 10.5 \mathrm{deg} / \mathrm{hr}$ from Earth's rotation in Cambridge, MA)

Static measurements

- Acceleration-sensitive axis parallel to ground $(\sim 0 g)$
- Rotation-sensitive axis pointing up ($\sim 10.5 \mathrm{deg} / \mathrm{hr}$ from Earth's rotation in Cambridge, MA) 1000x better accuracy than consumer devices

1 mg (consumer MEMS accelerometer) $100 \mathrm{deg} / \mathrm{hr}$ (consumer MEMS gyroscope)

For reference, $\sim 1 \mu \mathrm{~g}$ gravity difference between floors of a building

Dynamic measurements

- Classical and atomic sensors mounted on same platform
- Good agreement between atomic and classical sensors
- Sensitivity of atomic sensor matches simple analytical expression: $\Delta \phi=\underbrace{(\vec{k} \cdot \vec{a}) T^{2}}_{\text {Acceleration }}+\underbrace{2 \vec{k} \cdot(\vec{\Omega} \times \vec{v}) T^{2}}_{\text {Rotation }}$

Apply small tilts to platform:

Gentle rotation:

Dynamic measurements on a rate table

Size and complexity of most atomic sensors today

Mobile atomic gravimeter from Mueller lab (UC Berkeley)

Xuejian Wu et al. Sci Adv 2019;5:eaax0800

Challenges

- Thermal and mechanical instability
- Performance degradation during motion
- Assembly time and costs

From labscale to chipscale

Integrated nanophotonics for atoms

Chip-scale tetrahedral magneto-optical traps

Vangeleyn et al, Optics Express, 17, 16 (2009) Nshii et al, Nat. Nanotechnol., 8, 321-324 (2013)

Atomic spectroscopy on a chip

Yang et al, Nature Photon 1, 331-335 (2007)

Metasurfaces

M. Khorasaninejad and F. Capasso, Science 3586367 (2017)

Useful functionalities for atoms

- Polarization control
- Beam shaping and steering

Optically pumped atomic magnetometer with flat optics

Design of metasurface polarization components

- Approach based on Arbabi et al, Nature Nano 10, 937-943 (2015)
- Metasurface implemented by arrays of elliptical posts which provide independent phase shifts for different polarization axes

Elliptical post unit cell

Back-propagation of desired vector field

Our polarizing beamsplitter design

See other implementations of metasurface polarization beamsplitting:
[1] M. Khorasaninejad et al, Optica Vol. 2, Issue 4, pp.378-382(2015)
[2] B. A. Slovick et al, Phil. Trans. R. Soc. A375: 0072 (2016)
[3] E. Arbabi et al, ACS Photonics 5, 3132-3140 (2018)

Simulated polarizing beamsplitter performance

Total transmission at $780 \mathrm{~nm} \sim 89 \%$

Extinction ratios: 150 for x-polarization 1100 for y-polarization

Broadband polarizing beamsplitter (Thorlabs):
Transmission > 90\%
Extinction ratio > 1000

Simulated polarizing beamsplitter performance

Total transmission at $780 \mathrm{~nm} \sim 89 \%$

Extinction ratios: $\quad>22000$ for x-polarization
> 28000 for y-polarization

Broadband polarizing beamsplitter (Thorlabs):
Transmission > 90\%
Extinction ratio > 1000

Summary

- Atom-photon interactions are at the heart of all quantum sensing measurements
- Photonic engineering crucial for atomic sensor development
- Cold-atom accelerometer and gyroscope demonstrated high sensitivity but presented integration and mobility challenges
- Integrated nanophotonics can address size and integration challenges of atomic sensors
- Development of photonic-integrated-atomic magnetometer underway

