High Time Resolution Astrophysics Science and Detector Requirements now and for the next decade.

Andy Shearer

Centre for Astronomy

NUI, Galway

andy.shearer@nuigalway.ie

Additional info at astro.nuigalway.ie/staff/ashearer

Why is HTRA important?

Astronet's Panel A, developing A Science Vision for European Astronomy, identified six fundamental questions in the area of understanding extreme physics:

- How did the universe begin?
- What is dark energy and dark matter?
- Can we observe strong gravity in action?
- How do supernovae and γ-ray bursts work?
- How do black hole accretion, jets and outflows operate?
- What do we learn from energetic radiation and particles?

HTRA addresses the last 4 - possibly all

What is the origin and evolution of stars and planets?

How do galaxies form and evolve?

Do we understand the extremes of the Universe?

How do we fit in?

What is HTRA?

- Science from Crete 2010 HTRA workshop
 - magnetars, pulsars and neutron stars
 - black hole binary systems
 - white dwarf binary systems
 - gamma ray bursts and supernovae
 - normal stars stellar oscillations
 - solar system objects through transits and occultations
 - Planets and satellites
 - Kuiper belt objects

UltraCam usage from Vik Dhillon's talk in Crete - 2010

accreting white dwarfs/cataclysmic variables	20%
black-hole/neutron star X-ray binaries	16%
sdB stars/asteroseismology	12%
eclipsing, detached white-dwarf/red-dwarf binaries	11%
extrasolar planet transits and eclipses	9%
occultations by Titan, Pluto, Uranus, Kuiper Belt Objects	6%
flare stars	6%
pulsars	5%
isolated white dwarfs	5%
ultra-compact binaries	4%
isolated brown dwarfs	3%
GRBs	2%
Miscellaneous objects (AGN, contact binaries, etc)	1%

1. How can we best exploit the current generation of astronomical instruments?

2. What about future developments - in ten years the next generation of telescopes will be coming on stream - what HTRA can be done then?

3. As the E-ELT's optimal wavelength will be around 2.2 μm what are the detector implications for HTRA in the region 1-2 μm ?

4. What HTRA Science can be done with the next generation of detectors, instruments and telescopes?

Why multi-wavelength HTRA

- Fast Timing a natural component of high-energy observations
 - not true for optical HTRA
 - HTRA is a natural in other wavebands future large facilities (e.g.
 SKA and IXO) will have timing, the E-ELT shouldn't be left behind.
 - Look towards the IR
- Suggestion of redefining HTRA as the astrophysics on dynamical time scales
 - Astrophysics of Compact Objects $\tau \sim \sqrt{R^3 / GM}$ or $\sqrt{1 / G\rho}$
 - White $Dwarf \sim 1s$ dynamical vs 0.02s light crossing
- Observations on time scales < 1 sec?
- My preference low noise observations hence a detector problem

HTRA			Time-Scale	Time Scale
Targets			Now	ELT era
	Stellar flares		Seconds/	10-100ms
	and pulsations		minutes	
	Stellar	White Dwarfs	1-1000 µ s	1-1000 µ s
	Surface	Neutron Stars	-	0.1 µ s
Shearer et al -	Oscillations			
HTRA White	Close Binary	Tomography	100ms++	10ms+
Paper 2010arXiv1008 06055	Systems	Eclipse in/egress	10ms+	< 1ms
<u>2010ar/1000.00035</u>	accretion &	Disk flickering	10ms	< 1ms
	turbulence	Correlations	50ms	< 1ms
		(e.g. X & optical)		
	Pulsars	Magnetospheric	1 μ s-	ns
		Thermal	100ms	ms
	AGN		Minutes	Seconds

Table 1: Science timescales showing current and future possibilities

	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
Shoaror of al	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
	Active Pixel	a few μs	80% +	-	10 ⁵	[46]
Paper 2010arXiv1008.0604	Detectors					
<u>2010al AIV1000.000.</u>	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
NUI G	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gai						sensor

	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
Shoaror of al	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
Deper	Active Pixel	a few μs	80% +	-	10 ⁵	[46]
$Faper_{100} Faper_{1008,0605}$	Detectors					
<u>2010al AIV1008.0003</u>	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
NUI G	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gai						sensor

	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	$>>10^{6}$	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
Shoarar at al	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
Deper	Active Pixel	a few μs	80% +	-	10 ⁵	[46]
$Paper_{1000}$	Detectors					
2010a1A1v1008.0003	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
NUI G	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gai						sensor

	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	$>>10^{6}$	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
Shoaror at al	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
Deper	Active Pixel	a few μs	80% +	-	10 ⁵	[46]
Paper 2010arXiv1008.06055	Detectors					
2010a1A1v1000.00035	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
NUI G	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gai						sensor

	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
Shoaror of al	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
Deper	Active Pixel	a few μs	80% +	-	10 ⁵	[46]
Paper 2010arXiv1008.0605S	Detectors					
2010a1A1v1000.00035	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
NUI G	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gai						sensor

Current Detector Zoo - Magnetars

		Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
			Resolution	Efficiency		Pixels	
E] PGPLOT WW	ndese 1	[.[2]	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	100	200	1ms+	40%		106	UltraSpec[42]
100	礽	2.2	1ms+	10%	-	10 ⁶	LuckyCam[43]
	盨		11ms+	60%	-	10 ⁶	GASP[44]
	k		0.01 ms+	90% +	-	10 ⁶	[45]
		34C	a few µs	80% +	-	10 ⁵	[46]
	12						
ize X pi	ivels		ns+	80% +	-	a few	Optima[47]
		2 2		· · · · · · ·		one ^a	GASP[44]
411 0142+42						a few	Iqueye[48]
– Dhillon et al,						10s	SCAM[49]
2005, MNRÁS,	,				+ + -	10s	[50]
203, 609		and the second s	- ~		1	10s	[51]
					<i>*</i>	$1 - 10^{6}$	Many
NUI G						10 ⁶	wavefront
OÉ Gai	ı	phase					sensor

Current Detector Zoo - Magnetars

		Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
			Resolution	Efficiency		Pixels	
(E) PSPLOT W	indear 1	1.(*)	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
		8	1ms+	40%	-	106	UltraSpec[42]
	礽		1ms+	10%	-	10 ⁶	LuckyCam[43]
	鏪		ıms+	60%	-	10 ⁶	GASP[44]
	k		0.01 ms+	90% +	-	10 ⁶	[45]
8	18		a few μ s	80% +	-	10 ⁵	[46]
	1É						
ens X p	ikela		ns+	80% +	-	a few	Optima[47]
		nts			· · -	one ^a	GASP[44]
411 0142+42						a few	Iqueye[48]
– Dhillon et al,						10s	SCAM[49]
2005, MNRÁS	,		; 		+ +	10s	[50]
203, 609		# \~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	10s	[51]
				Law V		$1 - 10^{6}$	Many
NUI G			5 1	15		10 ⁶	wavefront
OÉ Gai	ı		phase		<u></u>		sensor

Current Detector Zoo - Pulsars

Crab	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
Too many to		Resolution	Efficiency		Pixels	
mention	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
	Active Pixel	a few µs	80% +	-	10 ⁵	[46]
	Detectors					
	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
1 ms MAMA	TES	ns+	90% +	20+	10s	[50]
images	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gail						sensor

Current Detector Zoo - Pulsars

Crab	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
Too many to		Resolution	Efficiency		Pixels	
mention	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
1 and the second	Active Pixel	a few µs	80% +	-	10 ⁵	[46]
	Detectors					
	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
1 ms MAMA	TES	ns+	90% +	20+	10s	[50]
images	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gail						sensor

Iqueye Data Single Pixel APD system

Iqueye December 2009 Data - TDB

Current Detector Zoo - Pulsars

Crab	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
Too many to		Resolution	Efficiency		Pixels	
mention	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
Contraction of the	Active Pixel	a few μ s	80% +	-	10 ⁵	[46]
	Detectors					
	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
	Cathodes	1ms	40%	-	10 ⁶	wavefront
OÉ Gail						sensor

Crab - Optima Observations

Słowikowska et al., 2009, MNRAS.397, 103

The future?	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
me iulure :		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
Shearer et al -	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
HTRA White	Active Pixel	a few μ s	80% +	-	10 ⁵	[46]
Paper	Detectors					
2010arXiv1008.0605S	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
	Cathodes	1ms	40%	-	10 ⁶	wavefront
NUI Ga OÉ Gail						sensor

Shearer et al -HTRA White Paper 2010arXiv1008.06055

The future?

Figure 5. Left: Simulation of the broadband signal to noise (SNR) ratio of an optical pulsar with a Geminga-I law spectrum $(f_{\nu} = \nu^{-0.8})^{20}$ observed with APCONS on Keck in 0.8" seeing with an energy resolution R=50 dot represents the 2.5 hour simulated observation of Geminga shown in the right panel. Right: A 2.5 hour observation of Geminga showing the clear detection of a hypothetical cyclotron emission line at 850 nm with a of twice the continuum and a FWHM of 35 nm. The black line shows the model spectra used to simulate the ob The inset shows an the actual spectra of Geminga taken in a 2.5 hour observation with LRIS on Keck by Marti The ARCONS spectra is superior mainly because of the ability to take advantage of the 0.8" second seeing to g sky count rate and better control of systematics, such as variations in the intensity and spectrum of the night the 30 minute LRIS exposures.

TES	ns+	90% +	20+	10s	[50]
MKID ///	ns+	90% +	500+	10s	[51]
Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
Cathodes	1ms	40%	-	10 ⁶	wavefront
					sensor

Current Detector Zoo - Close Binary Systems

Current Detector Zoo - Close Binary Systems

Multiwavelength **Observations** X-ray NIR

XTE J1118+480 Malzac et al, 2003, A&A, 407, 335

0.10

100

Multiwavelength **Observations** X-ray NIR

XTE J1118+480 Malzac et al, 2003, A&A, 407, 335

Current Detector Zoo - Transits and Occultations

	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
Jltracam Titan		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	>> 10 ⁶	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
	Active Pixel	a few µs	80% +	-	10 ⁵	[46]
	Detectors					
	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
	Cathodes	1ms	40%	-	10 ⁶	wavefront
DÉ Gai						sensor

Current Detector Zoo - Transits and Occultations

	Detector	Time	Quantum	Ε/ΔΕ	No. of	Instrument
Jltracam Titan		Resolution	Efficiency		Pixels	
	CCD	5ms+	90% +	-	>> 106	UltraCam[42]
	EMCCD	1ms+	40%	-	10 ⁶	UltraSpec[42]
	EMCCD	1ms+	40%	-	10 ⁶	LuckyCam[43]
	sCMOS	1ms+	60%	-	10 ⁶	GASP[44]
	pn CCD	0.01 ms+	90% +	-	10 ⁶	[45]
	Active Pixel	a few µs	80% +	-	10 ⁵	[46]
	Detectors					
	SPADs	ns+	80% +	-	a few	Optima[47]
		ns+	15%		one ^a	GASP[44]
		100ps	50%+	-	a few	Iqueye[48]
	STJ	ns+	90% +	5	10s	SCAM[49]
	TES	ns+	90% +	20+	10s	[50]
	MKID	ns+	90% +	500+	10s	[51]
	Photo-	ns+	<30%	-	$1 - 10^{6}$	Many
	Cathodes	1ms	40%	-	10 ⁶	wavefront
DÉ Gai						sensor

HTRA and Detectors

- 1. Low noise read noise < e⁻
- 2. Fast timing

HTRA and Detectors

HTRA and Detectors

- 1. Low noise read noise $< e^{-}$
- 2. Fast timing
 - i. t ~ msec most applications

OPTICON CALMAN

HTRA and Detectors

- 1. Low noise read noise < e-
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars

OPTICON OPTICON

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

- 1. Low noise read noise < e⁻
- 2. Fast timing
 - i. $t \sim msec most$ applications
 - ii. t ~ μ sec pulsars
 - iii. t ~ nano-picosecs ~ quantum effects
- 3. Energy resolution $E/\Delta E > 5$ i.e. broad band and better
- 4. Spectral Range 0.35-2.5 microns
- 5. Pixels > 100 x 100 most are point sources
- 6. Polarisation sensitivity?

NUI Galway

DÉ Gaillimh

HTRA science satisfies the fundamental E-ELT rationale of opening up new parameter space.

Main Optical HTRA instruments in Opticon

- UltraCam/UltraSpec : Sheffield and Warwick
 - Frame transfer CCD UltraCam
 - EMCCD UltraSpec
- Optima : Max Planck Garching,
 - SPAD
- Iqueye : Padova
 - SPAD
- GASP : Galway
 - SPAD / sCMOS
- All optical out to 1 micron

Observatory HTRA instruments

General Purpose Instruments

-HTRA component often an after thought

- $-\text{Read noise } 2-3 e^-(\text{visible}) \geq 20 e^-(\text{near-IR})$
 - ISAAC (τ~ 3.2 ms, read >3 e⁻)
 - HAWK-I ($\tau \sim 30$ ms, read >4 e⁻)
 - SALTICAM (τ ~100 ms, >3 e⁻)
- -Read-Noise dominated at fast frame rates
- -HTRA data pipeline often an afterthought

HTRA for the E-ELT

milli-arcsec imaging in near-IR

Pass	Wavelength	Sky Brightness	counts/millisecond		
		(10 ⁶ counts	within aperture		
Band	(microns)	/sec/arcsec ⁻²)	1"	0".2	0".02
J	1.25	0.3	300	12	0.012
Н	1.65	1.4	1400	54	0.054
K	2	5.3	5300	210	0.2

Table 4: E-ELT Sky counts for given sky apertures of 1", 0".2 and 0".02. This shows that for excellen seeing very low noise detectors with read noise of $< 1e^-$ / frame or integration time will be needed.

Why HTRA now?

- Low noise detectors are available now
 - -EMCCDs, sCMOS
 - -APDs single pixel and arrays
- Larger telescopes are available now
 - -GTC, SALT all working
 - -TMT, EELT planned
- Bigger community
- Multi-wavelength opportunities
 - -LOFAR, Fermi, ALMA

Case Study - what can we do with HTRA

- Optical Pulsars
 - -what do we know?
- Crab Pulsar
 - -Observations by three Opticon Groups

HTRA Detectors

• Optima, Iqueye and GASP

Wednesday 26 October 11

NUI Galway

OÉ Gaillimh

P-P diagram

Wednesday 26 October 11

NUI Galway

OÉ Gaillimh

P-P diagram

NUI Galway OÉ Gaillimh

what about these magnetars or anomolous X-ray pulsars

Wednesday 26 October 11

NUI Galway

OÉ Gaillimh

what about these magnetars or anomolous X-ray pulsars

NUI Galway OÉ Gaillimh

Period Derivative (s/s)

OÉ Gaillimh

GA

Optical Pulsars - the problem and future

Optical Pulsars - the problem and future

Optical Pulsars - the problem and future

Optical Pulsars the problem

HTRA and Detectors

	mB	period (ms)	B photon Fluxes	
Optical Pulsars the problem			photons/rotation	
			VLT	EELT
Crab	17.2	33	2761	69,000
Vela	23.6	50	14	355
PSR 0540-69	22.5	89	22	549
PSR 0656+14	25.5	385	11	267
Geminga	26.2	237	3	86
PSR B0950+08	27.1	253	2	40
PSR B1929+10	25.6	227	6	143
PSR B1055-52	24.9(U)	197	9	237
PSR B1509-58	25.7	151	4	87
PSR B1113+16	28.1	1188		
Crab at M31	29.7	33	0.01	0.5

HTRA and Detectors

	mB	period (ms)	B photon Fluxes	
Optical Pulsars the problem			counts/rotation	
			VLT	EELT
Crab	17.2	33	700	17,000
Vela	23.6	50	3	90
PSR 0540-69	22.5	89	5	140
PSR 0656+14	25.5	385	3	65
Geminga	26.2	237	1	21
PSR B0950+08	27.1	253	0.5	10
PSR B1929+10	25.6	227	1.5	35
PSR B1055-52	24.9(U)	197	2	60
PSR B1509-58	25.7	151	1	22
PSR B1113+16	28.1	1188		
Crab at M31	29.7	33	0.01	0.1

	mB	period (ms)	B photon Fluxes		
Optical Pulsars the problem			counts/rotation		
			VLT	EELT	
Crab	17.2	33	700	17.000	
Vela	23.6	50	3	90	
PSR 0540-69	22.5	89	5	140	
PSR 0656+14	25.5	385	3	65	
Geminga	26.2	237	1	21	
PSR B0950+08	27.1	253	0.5	10	
PSR B1929+10	25.6	227	1.5	35	
PSR B1055-52	24.9(U)	197	2	60	
PSR B1509-58	25.7	151	1	22	
PSR B1113+16	28.1	1188			
Crab at M31	29.7	33	0.01	0.1	

How can optical observations help?

Iqueye December 2009 Data - TDB

How can optical observations help?

Iqueye December 2009 Data - TDB

How can optical observations help?

Iqueye December 2009 Data - TDB

Iqueye - NTT Naletto, 2009, A&A, 508, 513

- Digitiser Accuracy 24ps Relative accuracy ~ 100 ps RMS
- Count rate ~ 8 M cps
- Quantum Efficiency ~ 30% Dark Count < 100 cps

NUI Galway

OÉ Gaillimh

Optical-Radio Coverage Optical : Iqueye - 3.5m NTT : Radio: Lovell Jodrell Bank

GAL

Simultaneous Iqueye-NTT/Jodrell Bank Crab Pulsar Observations, December 2009 (Times UT)

Wednesday 26 October 11

OÉ Gaillimh

Iqueye Optical-Radio Results - Dec 2009

- NTT 14520 seconds IQUEYE
- Jodrell Bank 11040 simultaneous
- Preliminary 724 GRPs ~ 1 every 17 seconds

HTRA and Detectors

Iqueye Optical-Radio Results - Dec 2009

- NTT 14520 seconds IQUEYE
- Jodrell Bank 11040 simultaneous
- Preliminary 724 GRPs ~ 1 every 17 seconds

Shearer et al, 2003, Science, 301, 493

gure 2: The mean peak height of the main optical pulse - defined as the 3 phase bins around e peak - for the 20 periods on either side of the giant pulse and for period associated with te ant pulse. The plot is for all GRPs with a phase of ± 0.1 with respect to the JBE. The height the pulse is expressed as the number of standard deviations (added in quadrature) away from e mean of the optical pulse height. The mean and standard deviation have been determined om the 20 pulses on either side of the giant radio pulse.

OE Gaiminn

For 41 Spins Around Each GRP: Increase in Flux of Spins +/-n, for phase 0.985 to 1.000, expressed in units of the standard deviation of the fluxes of the other 40 spins in each case.

Crab - Optical Radio link - Giant Radio Pulses

HTRA and Detectors

Wednesday 26 October 11

NUI Galway

OÉ Gaillimh

Crab - Optima Observations

Słowikowska et al., 2009, MNRAS.397, 103

Crab - rising edge

Crab - rising edge

Mc Donald et al, 2011, MNRAS, 417, 730

HTRA and Detectors

Mc Donald et al, 2011, MNRAS, 417, 730

HTRA and Detectors

Mc Donald et al, 2011, MNRAS, 417, 730

GA

Wednesday 26 October 11

OÉ Gaillimh

DB: Inc70VA52_12.vtk

6.530e+30

-4.353e+30

-2.177e+30

2.016e+24

Mc Donald et al, 2011, MNRAS, 417, 730

user: diarmaid Fri Aug 26 23:57:38 2011

NUI Galway OÉ Gaillimh

HTRA and Detectors

Fermi Probabilities - optical follow-up observations currently underway

GASP - Galway Astronomical Stokes Polarimeter Division of Amplitude Polarimetry

High Throughput No moving parts Two versions GASP I - 2 L3CCDs

GASP II - 8 APDs Measures I, Q, U and V To be mounted on Palaomar 5m in April 2012 Final tests Loiano November 2011

Conclusion

- HTRA can deliver important science
- But, we need
 - fast, low noise detectors
 - large telescopes
 - good data pipelines with HTRA built in at the design phase
 - near IR detectors up to and beyond the silicon limit are needed.

