The Fantastical Discoveries of Astronomy made possible by the Wonderful Properties of II-VI Materials

Presentation to the Rochester Institute of Technology Virtual Detector Workshop 26 March 2012

James W. Beletic, Ph.D.

Senior Director Space & Astronomy Teledyne Imaging Sensors

Crystals are excellent detectors of light

Structure of An Atom

Protons (+) and neutrons in the nucleus with electrons (-) orbiting

Silicon crystal lattice

- Electrons are trapped in the crystal lattice
 - by electric field of protons
- Light energy (or thermal energy) can free an electron from the grip of the protons, allowing the electron to roam about the crystal
 - creates an "electron-hole" pair.
- The photocharge can be collected and amplified, so that light is detected
- The photon energy required to free an electron depends on the material.

The Astronomer's Periodic Table

Periodic Table																	
1 Hydrogen 1.0											II	III	IV	\mathbf{V}	VI		2 Helium 4.0
3 Lithium	4 Be Berylium											5 Boron an O	Carbon	7 N Nitrogen	8 Oogen	G Fluorine	10 Ne Neon
11 Na Sodium	12 Mgnesium											13 13 Auminum 27.0	14 Si Silicon 29.1	15 Phosphorus	16 16 Sulfur	17 C1 Chlorine	19 19 Arg an 2000
10 Fotassium 39.1	20 Ca Calcium 40.2	21 Sc Scandium 45.0	CC Research Rankon 47.0	23 V Vanadium 50.9	24 Cr Chromium 52.0	26 Nanganese 54.9	26 Fo ton 55.9	Cobalt 58.9	28 Nickel 58.7	20 Cu Copper 63.5		31 Gallium 69.7	32 Germanium 72.6	33 As Arsenic 74.9	34 Seenium 79.0	35 35 Bromine 79.9	36 Kr Krpton 83.8
37 Rb Rubidium 96.5	38 Sr 9romium 87.6	39 V Yatium 88.9	40 Z I Zroonium 91.2	41 Nobium S2.9	42 MO Mohjode num 95,9	43 TC Technetium	44 RU Ruthenium 101.0	es Rhodium 102.9	46 Pcl Palladium 106.4	47 Ag silver 107.9	48 Cd Cadmium 112,4	49 In hdium 114.8	50 V Tin 118.7	51 Sb Antimony 121.8	52 Te Tellurium 127.6	63 bdine 128.9	54 Xe Xenon 131.3
55 CS Caesium 132.9	56 Baium 137.4	07-170 00-402	72 Hahium 178.5	Tantaium 181.0	74 VV Tungsten 193.9	Renium	76 Os 0smium 190.2	77 I T Hidium 192.2	78 Pt Parinum 195.1	79 AU Gold 197.0	80 Hg Mercury 200.6	81 Thallium 204,4	Pb Laad 207.2	83 Bi Bismuth 209.0	Polonium 210.0	At Ataline 210.0	88 Rn Radon 222.0
67 Francium 223.0	Ra Fadum 228.0	5,2 (2** 53,2	Section 104 105 107 108 109 110 Rf Db Sg Bh Hs Mt Uun Rt Benfordim Dubnium Seaborgium Bohnum Hassium Mitherium Ununnilium 261 262 263 265 266 272 Image: Comparison												<u>181 Key</u>		
Detector Families Si - IV semiconductor														eania r	anh matals 1 maile k		
	HgCdTe - II-VI semiconductor InGaAs & InSb - III-V semiconductors													iđes: s	ides:		
	се	50 Pr	oo Md	Pm		INAS ·	+ Gas	50	- III St	-v Ty traine	pe 2 ed La	yer S	uperl	attice	e (SL	5)	

Landharden	Cenum	Press providen	Neo dyracae	Promethium									-		a i sememetals
								16.2.0			167.3				barran an ann ai
89	90	91	92	93	94	96	605	97	913	99	100	101	402	103	Flam an also be
Ac		Pa	L	l Nn	Du	Am	Cm	Bk	CF	- 62	lin para	10 m	No		I I I I I I I I I I I I I I I I I I I
Atinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Calibrium	Ensteinium	Fermium	Mandalaxium	Nobelium	Laurenoium	Noble gases
132.0		231.0	238.0	237.0	242.0	243.0	247.0	2.47.0	2510	254.0	263.0	255.0	254.0	287.0	NATION AND AND AND AND AND AND AND AND AND AN

The Golden Age of Astronomy

Galileo Galilei and 2 cm refractor (1609)

Hubble Space Telescope • 2.4 meter

European Southern Observatory Paranal Observatory

- Four 8.2 meter telescopes
- Four 1.8 meter auxiliary telescopes
- 4 meter infrared survey telescope
- 2.6 meter optical survey telescope

Orion – In visible and infrared light

European Southern Observatory • 8.2 meter telescope

Atmospheric transmission

Not all of the light gets through atmosphere to ground-based telescopes

Atmospheric Blurring The bane of ground-based astronomy

Binary star pair 100 Her, 14 arc sec separation ($V_{mag} = 6.0$) 10 msec frame time

Long exposure image is called the "seeing disk"

Long exposure image

Stephan's Quintet

WFC3

Hubble Ultra Deep Field IR / WFC387 hour total exposure87

1.05 μm (Y) 1.25 μm (J) 1.60 μm (H) 87 hour total exposure
 3 infrared bands
 1.05 μm (Y)
 1.25 μm (J)
 1.60 μm (H)

Most distant galaxy yet seen Light travelled for 13.2 billion years to reach the Earth

Thermal Radiation

Hubble Space Telescope 2.4-m primary mirror is kept at 70 °F (21C, 294K)

Wide-field Infrared Survey Explorer (WISE) HgCdTe arrays for 2 of 4 infrared bands

Two 1024×1024 pixel infrared arrays 3.4 and 4.6 µm bands

Lagrange Point 2 (L2) Optimal Location for Infrared Space Telescope

Lagrange Points of the Earth-Sun system (not drawn to scale!) 6.5-m mirror

Earth

sunshield

JWST II-VI Sensors

NIRSpec (Near Infrared Spectrograph) <6 e- noise for 1000 sec exposure

FGS (Fine Guidance Sensors)

NIRCam (Near Infrared Camera)

Dark Current of HgCdTe Detectors

HgCdTe cutoff wavelength (microns)

An electron-volt (eV) is extremely small

- The energy of a photon is **VERY** small
 - Energy of SWIR (2.5 μ m) photon is 0.5 eV
- In 5 years, JWST will take ~1 million images
 - − Total # SWIR photons detected $\approx 3.6 \times 10^{16}$
 - Total energy detected $\approx 1.8 \times 10^{16} \text{ eV}$
- Drop peanut M&M[®] candy (~2g) from height of 15 cm (~6 inches)
 - − Potential energy \approx 1.8 x 10¹⁶ eV

15 cm peanut M&M[®] drop is equal to the energy detected during 5 year operation of the James Webb Space Telescope!

m

Hybrid CMOS Infrared Imaging Sensors

Three Key Technologies

- Growth and processing of the HgCdTe detector layer
- Design and fabrication of the CMOS readout integrated circuit (ROIC)
- Hybridization of the detector layer to the CMOS ROIC

Cosmic Rays and Substrate Removal

- Cosmic ray events produce clouds of detected signal due to particleinduced flashes of infrared light in the CdZnTe substrate
- Removal of the substrate eliminates the effect

2.5 µm cutoff, substrate on

1.7 µm cutoff, substrate on

1.7 µm cutoff, substrate off

Substrate Removal allows HgCdTe to detect UV and Visible Light

Astronomy is a Time Machine

Thank heavens for the finite speed of light Time The Distance Sun (8 min) "Pale Blue Dot" Pluto (4 hrs) known as Earth Proxima Centauri (4.3 light years) Andromeda Galaxy (2.9 million light years) The Big Bang

(13.7 billion years ago)

Redshift (z) due to Expansion of the Universe

Absorption Lines from our Sun

Absorption Lines from a supercluster of galaxies, BAS11 v = 0.07 c, d = 1 billion light years

The distant universe is an infrared universe

Euclid dark energy mission

- Euclid selected by ESA for 2019 launch!
- Teledyne's H2RG IR detector and SIDECAR ASIC are baseline for the infrared instrument

Eighteen 2K×2K arrays 75 Mpixel mosaic

Mauna Kea, Hawai'i The Northern Hemisphere's best astronomical site

Simplified AO system diagram

Unregistered

Imaging the galactic center

The Galactic Center at 2.2 microns

Mass of black hole at center of the Milky Way = 4.1 ± 0.6 million solar masses

2011 - 17 telescopes with 6.5-meter aperture or larger

The era of the Extremely Large Telescopes (ELTs) is imminent

HgCdTe Sensors for Astronomy State-of-the-art

- Large format
 - 2048×2048 pixels is standard
 - 4096×4096 pixels is in development
- Quantum efficiency
 - 70-90% over wide bandpass; UV through infrared
- Noise
 - Dark current can be made negligible with cooling
 - Readout noise as low as 2-3 electrons with multiple sampling
 - Dynamic range (full well / total noise) of ~10,000 for the best sensors
- What astronomers want to be improved in HgCdTe sensors
 - Latency / Persistence: 0.1% degrades science
 - Operability:
 - LWIR Producibility:

 - Cost:

95% to 99% specs set by cost LWIR more difficult, with lower yield – High speed, low noise: 500 Hz frame rate, 128², 3 e- noise IR detectors are ~10× visible CCDs

Teledyne H4RG-15 4K×4K

Future Astronomy Discoveries to be made by II-VI materials

- Understand the end of the dark ages
- Determine how galaxies evolve
- Solve the mysteries of dark matter and dark energy

 Find and study planets in the habitable zone around other stars

 Find the killer asteroid before it hits the Earth !

Thank you for your attention

Teledyne Enabling humankind to understand the Universe and our place in it

High Performance Imaging Sensors for Astronomy, Laboratory Instrumentation & Earth / Planetary Science October 7-11, 2013 - Florence, Italy

A workshop for the leaders in sensor technologies that enable cutting edge science in the X-ray, UV, Visible and Infrared

- Status and plans for astronomical facilities and instrumentation (ground & space)
- Laboratory instrumentation (physical chemistry, synchrotrons, etc.)
- Earth and Planetary Science missions and instrumentation
- Detector materials (from Si and HgCdTe to strained layer superlattices)
- Sensor architectures CCD, monolithic CMOS, hybrid CMOS
- Sensor electronics; Sensor packaging and mosaics
- Sensor testing and characterization
- No parallel sessions; poster pops ensure visibility for all papers
- > Workshop proceedings distributed in electronic and hardcover versions
- Group activities: Galileo Museum visit, Florence walking tour, Workshop receptions & dinners, catered lunches
- Guest program: Experience the culture of Tuscany; join group activities
- Workshop attendance limited; early registration is recommended

