

RIT Detector Virtual Workshop

Photon Counting with InGaAsP Single Photon Avalanche Diodes

12 March 2012

Mark A. Itzler

Princeton Lightwave Inc. Cranbury, NJ 08512 USA

mitzler@princetonlightwave.com www.princetonlightwave.com

RIT Detector Virtual Workshop – 12 Mar 2012

Colleagues and Collaborators

PLI Colleagues:

Xudong Jiang Mark Entwistle Mark Owens Krystyna Slomkowski Ketan Patel Bora Onat Sabbir Rangwala

External Colleagues & Collaborators:

Sergio Cova.....*Politecnico di Milano* Alberto Tosi Franco Zappa Massimo Ghioni

Joe Campbell......University of Virginia Archie Holmes

Bill Farr.....Jet Propulsion Laboratory

Mike Krainak......NASA/GSFC

Gary Smith......*MIT Lincoln Laboratories* Alex McIntosh Simon Verghese

Alessandro Restelli......NIST/Gaithersburg Josh Bienfang

Zhiliang Yuan.....Toshiba/UK

Naota Namekata......Nihon University Shuichiro Inoue

Thomas Jennewein......University of Waterloo Zhizhong Yan

Hugo Zbinden......University of Geneva Tommaso Lunghi

Workshop Outline

- Applications and drivers
- InGaAsP single photon avalanche diode (SPAD) fundamentals
 - SPAD device design and performance parameters
- High-rate photon counting with InGaAsP SPADs
 - Challenges of high-rate counting: transients and afterpulsing
 - Progress in high-rate counting techniques
- Free-running operation with self-quenching NFADs
 - Integration of negative feedback
 - Self-quenching avalanche dynamics
- Scaling to large format SPAD arrays
 - Integration for focal plane arrays and FPA performance
- Future prospects
 - High-rate photon counting
 - "Solid state photomultipliers" based on NFADs
 - Photon number resolution with SPADs/NFADs
 - Further scaling and micropixellated arrays

High-rate photon counting SPAD applications

- Exploiting quantum mechanical nature of photons
 - quantum information processing (e.g., quantum cryptography and computing)

Encryption keys using quantum properties of single photons

- Free-space communications and single-photon imaging
 - long-range free-space optical communications
 - single-photon imaging with high photon arrival rate

"Free-running" SPAD applications

- "Asynchronous" applications (no knowledge of photon arrival time)
- LIDAR measurements for earth science

Atmospheric mapping by lidar along Earth's circumference

Flourescence measurements based on time-correlated SPC

temporally random single photon emissions

Large-format arrays required for imaging

- Photon-starved low-light-level imaging applications
 - Astronomy and astrophysics
 - Night vision
- 3-D LADAR (laser radar) imaging
 - Perform independent LADAR measurement at every pixel of the imager
 - Time-of-flight information provides "depth" for generating 3-D point clouds

3-D LADAR imaging concept

Example of 3-D LADAR mapping applications

- Princeton Lightwave
- Pioneering development of Geiger-mode APD 3-D LADAR at MIT Lincoln Lab
- Striking demonstrations of technology capability with MIT-LL ALIRT system
 - extensive mapping after Haiti earthquake in 2010
 - pair of 32 x 128 focal plane arrays scanned to obtain imagery

Assess trafficability (roads, bridges, etc.)

http://www.ll.mit.edu/news/haitirelief.html

Terrain mapping, damage assessment, etc.

Workshop Outline

- Applications and drivers
- InGaAsP SPAD fundamentals
 - SPAD device design and performance parameters
- High-rate photon counting with InGaAsP SPADs
 - Challenges of high-rate counting: transients and afterpulsing
 - Progress in high-rate counting techniques
- Free-running operation with self-quenching NFADs
 - Integration of negative feedback
 - Self-quenching avalanche dynamics
- Scaling to large format SPAD arrays
 - Integration for focal plane arrays and FPA performance
- Future prospects
 - High-rate photon counting
 - "Solid state photomultipliers" based on NFADs
 - Photon number resolution with SPADs/NFADs
 - Further scaling and micropixellated arrays

Basic APD design platform

- Low E-field in absorption region \rightarrow collect carriers, but minimize noise
- High E-field in multiplication region \rightarrow induce avalanche gain
- PLI has long history with planar-geometry InP/InGaAs APDs
 - Stable and reliable <u>buried p-n junction</u> \rightarrow very high yield and uniformity
 - Widespread deployment in telecom Rx as linear mode APD (LmAPD)
 - Re-engineered for single photon detection as Geiger mode APD (GmAPD)

APD I-V Characteristics: Linear & Geiger modes

- Linear mode performance defines behavior below breakdown voltage V_b
 - Photocurrent below V_b is proportional to input optical power \rightarrow ANALOG

APD I-V Characteristics: Linear & Geiger modes

- Linear mode performance defines behavior below breakdown voltage V_b
 - Photocurrent below V_b is proportional to input optical power \rightarrow ANALOG
- Geiger-mode performance has different device functionality
 - Operation above V_b can achieve self-sustaining avalanches \rightarrow DIGITAL

SPADs and Geiger-mode "effective gain"

• SPAD generally viewed as a "photon-activated" switch

- Gain not strictly defined since avalanche can be self-sustaining
- "Effective gain" dictated by combination of detector + circuit
 - \rightarrow GmAPD "gain" ~ # of charges Q that flow per avalanche

Trends in single photon counting with APDs

- Linear mode APDs: need more gain
 - Challenge to overcome noise of circuitry (analog)
- Geiger mode APDs: need less gain
 - Large charge flow Q is easy to detect (digital detection process is noiseless)
 - Challenge is to reduce Q to minimize limitations of afterpulsing and crosstalk
 - Present implementations limited to 1 detection event per pixel per frame

Single photon detectors: with & without photons...

Ideal detector: Photon arrives Always fires when a photon arrives Yes Never fires when a photon does not arrive Missed count No Photon Detection Efficiency (PDE): probability that photon arrival causes detector to fire Dark count Yes No Dark Count Rate (DCR): probability that detector fires in absence of photon arrival **Detector fires** Prob(Missed count) = 1 - PDE **Detector output Photon input**

Dark

count

Missed

count

SPAD Performance Parameters

- Photon detection efficiency (PDE): probability of detecting incident photon
- **Dark count rate (DCR):** probability of "false" detection (no incident photon)
- **Timing jitter (TJ):** randomness in detection timing
- Afterpulsing (AP): increase in dark count rate following previous detection
 - Mitigated by sufficient "hold-off" time → BUT limits Counting Rate

Critical performance trade-offs must be managed

- Increase overbias: DE ☺ , TJ ☺ , DCR ☺
- ◆ Decrease temperature: DCR ☺ , AP ☺

Photon Detection Efficiency

- Photon detection efficiency: PDE = $\eta_{abs} \times \eta_{coll} \times P_a$
 - η_{abs}: probability of photon absorption (i.e., quantum efficiency)
 - η_{coll} : probability of carrier collection (injection to multiplication region)
 - P_a: probability that collected carrier initiates detectable avalanche

Dark Count Rate

• DCR dominated by two mechanisms in SPAD structure

1.5 µm SPAD DCR vs. PDE Performance

- Fundamental trade-off: DCR and PDE both increase with bias •
- State-of-the-art DCR: ~1 kHz at 20% PDE, ~2 kHz at 30% PDE
 - Higher PDE accessible with larger bias ٠

Princeton **Timing Jitter** Liahtwave p⁺ Several factors affect detection timing i - Multiplier Can be on par with other fast SPC detectors n - Charge avalanche build-up Silicon SPADs ~ 50 ps (vertical and laterial) i - Grading Superconducting SPDs ~ 30 ps Requires high excess bias residual discontinuity² \rightarrow DCR and afterpulsing trade-offs i - Absorber short transit Jitter often circuit-limited long transi n+ 1000 7000 200 K T=175K λ=1550nm Photon counts (a.u.) 2000 2000 1000 InGaAs/InP SPAD Timing Jitter (ps) Overbias = 7 V 100 FWHM=46ps 10 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 2 3 5 6 7 1 Δ Time [ns] **Overbias Voltage (V)** Zappa, Tosi, Cova, SPIE 65830E (2007) 19 Itzler, et al., J. Modern Opt. 54, 283 (2007) M. A. Itzler – RIT Detector Virtual Workshop – 12 Mar 2012

Workshop Outline

- Applications and drivers
- InGaAsP SPAD fundamentals
 - SPAD device design and performance parameters
- High-rate photon counting with InGaAsP SPADs
 - Challenges of high-rate counting: transients and afterpulsing
 - Progress in high-rate counting techniques
- Free-running operation with self-quenching NFADs
 - Integration of negative feedback
 - Self-quenching avalanche dynamics
- Scaling to large format SPAD arrays
 - Integration for focal plane arrays and FPA performance
- Future prospects
 - High-rate photon counting
 - "Solid state photomultipliers" based on NFADs
 - Photon number resolution with SPADs/NFADs
 - Further scaling and micropixellated arrays

Challenges of high-rate photon counting

Two essential challenges for high-rate counting with APDs:

- Suppress high-frequency transients
 - Transients are common artifact of high bandwidth signal modulation

• Suppress afterpulsing

- Afterpulsing elevates dark counts due to carrier trapping/detrapping
- Historical mitigation by long hold-off times not an option at high rates

Must also have sufficient intrinsic device bandwidth

 \rightarrow not a problem for small-diameter InP/InGaAs APDs up to ~GHz-scale

Transients induced by fast signal modulation

Dominant strategy: create identical transient and subtract

- Obtain matched transient from another circuit element
 - Matched APD detectors (NEC)
 - Dummy capacitance of appropriate size (Politecnico di Milano)
- Obtain matched transient from same circuit element
 - Matched RF delay lines (IBM \rightarrow PLI)
 - Self-differencing by periodic delay and subtract (Toshiba/UK)

Consider range of modulation techniques

• "High-slew" gating \rightarrow canonical approach

harmonics give rise to transient "ringing"

> Single-frequency gating \rightarrow "sine-wave" gating approach Nihon U., Geneva U.

> No harmonics! Just filter at the gating frequency

 \succ "DC" biasing \rightarrow "self-quenching" approach

No transients! Any signal is due to avalanche event

Afterpulsing: increased DCR at high rate

- Single photon detection by avalanche multiplication in SPADs
- Avalanche carriers trapped at defects in InP multiplication region
- Carrier de-trapping at later times initiates "afterpulse" avalanches

			-	
-		p-contact metallizat	tion	SiN _x passivation
-	L I	o ⁺ -InP diffused re	gioi	n
	i-InP cap		_	
_		multiplication re	gior	1
_	n-InP charge			
-	n-InGaAsP grading		<u> </u>	
	i-InGaAs absorption			
-	n⁺-InP buffer		1	
\sim	🥪 n⁺-InP sub	ostrate		~
		anti-reflection coat	ing	n-contact metallization
	↑ ↑ ↑ optical input trap sites located in			
	multiplication region			
<u> </u>				
	ΞE.			
E				
				· · · · · · · · · · · · · · · · · · ·
				>

Afterpulsing: increased DCR at high rate

- Single photon detection by avalanche multiplication in SPADs
- Avalanche carriers trapped at defects in InP multiplication region
- Carrier de-trapping at later times initiates "afterpulse" avalanches
- Serious drawback of afterpulsing \rightarrow limitation on counting rate

Afterpulsing suppression strategies

- Sufficient hold-off time before re-arming
 - \rightarrow low repetition rate
- Reduce material defects that cause trapping
 - \rightarrow defects not known; substantial materials challenges
- Rapid intentional detrapping by applied stimulus
 - \rightarrow optical stimuli (sub-bandgap) not successful to date
 - \rightarrow thermal stimuli involve thermal time constants, probably too slow
- Reduce number of trapped carriers
 - \rightarrow reduce charge flow per avalanche
 - requires some form of rapid quenching \rightarrow strong "negative feedback"
 - **consistent with high-speed gating** (short gates reduce charge flow)

Ec

E,

"Double-pulse" afterpulse characterization

- Use "time-correlated carrier counting" technique to measure afterpulses
- Trigger single-photon avalanches in 1st gate

Double-pulse ("pump-probe") method

- Measure probability of afterpulse in 2nd gate at T_n
- Use range of T_n to determine dependence of afterpulse probability on time following primary avalanche

M. A. Itzler – RIT Detector Virtual Workshop – 12 Mar 2012

27

Hold-off time

Cova, Lacaita, Ripamonti, EDL **12**, 685 (1991)

Princeton

FPGA-based data acquisition

- Use FPGA circuitry to control gating and data collection
- Generalize double-pulse method to many gates
 - Capture afterpulse counts in up to 128 gates following primary avalanche
 - Temporal spacing of gates determined by gate repetition rate
- Allows capture of afterpulse count in any gate after avalance
 - No need to step gate position as in double-pulse method

FPGA-based afterpulse measurements

• Obtain afterpulsing probability data at 5 frequencies for 32 gates

Recent re-interpretation of afterpulsing behavior

- Past fitting has assumed exponentials but is completely arbitrary
- We found good fitting for simple power law $T^{-\alpha}$ with $\alpha \approx -1$
 - \rightarrow Is power law behavior found for other afterpulsing measurements?
 - \rightarrow Is the power law functional form physically significant?

M. A. Itzler – RIT Detector Virtual Workshop – 12 Mar 2012

Afterpulsing data from other groups

UVA data

فووه

1000

data from Joe Campbell, UVA

v = 3.44x^{-1.03}

- Good fits for power law $T^{-\alpha}$ with $\alpha \approx -1.0$ to -1.4
- All data for PLI InGaAsP SPADs

1E+0

Literature on InP trap defects

- Literature on defects in InP describes dense spectrum of levels
- Power law behavior consistent with distribution of detrapping times
 - Based on simple model of afterpulsing with distribution of defects
 - Accurate only for specific distribution with $D(\tau) \propto \tau$

W. A. Anderson and K. L. Jiao, in "Indium Phosphide and Related Materials: Processing, Technology, and Devices", A. Katz (ed.) (Artech House, Boston, 1992)

• Dark counts dominated by two mechanisms in SPAD structure

Afterpulsing is caused by carrier trapping in multiplier

 \rightarrow Are TAT-induced dark counts and afterpulses due to same traps?

Correlation of afterpulsing with DCR

- First evidence for same traps causing TAT and afterpulsing
 - Scatter is large, so large sample size (~100 devices) is required
 - To have low afterpulsing, must have low TAT-induced DCP

Afterpulsing reduction with shorter gates

- Two advantages inherent in using shorter gates
 - Shorter "window" in which afterpulse can be detected \rightarrow linear in gate width
 - Charge flow reduction → net reduction in APP is super-linear in gate width
- Enables higher counting rates with "synchronous counting"

Workshop Outline

- Applications and drivers
- InGaAsP SPAD fundamentals
 - SPAD device design and performance parameters
- High-rate photon counting with InGaAsP SPADs
 - Challenges of high-rate counting: transients and afterpulsing
 - Progress in high-rate counting techniques
- Free-running operation with self-quenching NFADs
 - Integration of negative feedback
 - Self-quenching avalanche dynamics
- Scaling to large format SPAD arrays
 - Integration for focal plane arrays and FPA performance
- Future prospects
 - High-rate photon counting
 - "Solid state photomultipliers" based on NFADs
 - Photon number resolution with SPADs/NFADs
 - Further scaling and micropixellated arrays
Evolution of photon counting rate

- Higher counting rate \rightarrow shorter gates \rightarrow reduced afterpulsing
- Gating rate is most consistent metric with sufficient data
 - Several rate metrics: System clock, periodic gating rate, actual counting rate

Transient cancellation with RF delay lines

Afterpulsing vs PDE up to 50 MHz

- Precise cancellation for reduced threshold \rightarrow detect smaller avalanches
- Afterpulsing ~ 3% at 12% PDE at 50 MHz
 - 100 MHz now available commercially

Self-differencing up to 2 GHz

- Toshiba self-differencing technique with GHz gating, sub-ns gates
 - 2 GHz gate repetition frequency, 50% duty cycle
- Afterpulsing ~1.5% (at 12% PDE) demonstrated at 2 GHz

Yuan, et al., APL 96, 071101 (2010)

Z. Yuan, et al., Appl. Phys. Lett. 91, 041114 (2007)

courtesy of Zhiliang Yuan – Toshiba/UK

Sub-ns gating at 2 GHz with sine wave gating

- Nihon Univ. sine-wave gating up to 2 GHz, sub-ns gates
 - Strong notch filtering of sine wave bias leaves only avalanche response
- Afterpulsing probability ~5 % (at 12% PDE) at 2 GHz

Princeton Lightwave

Workshop Outline

- Applications and drivers
- InGaAsP SPAD fundamentals
 - SPAD device design and performance parameters
- High-rate photon counting with InGaAsP SPADs
 - Challenges of high-rate counting: transients and afterpulsing
 - Progress in high-rate counting techniques
- Free-running operation with self-quenching NFADs
 - Integration of negative feedback
 - Self-quenching avalanche dynamics
- Scaling to large format SPAD arrays
 - Integration for focal plane arrays and FPA performance
- Future prospects
 - High-rate photon counting
 - "Solid state photomultipliers" based on SPADs
 - Photon number resolution with SPADs
 - Further scaling and micropixellated arrays

Self-quenching "negative feedback" APD (NFAD)

- Can we mitigate afterpulsing and crosstalk w/o complexity of short gating?
- Reduce avalanche current flow by self-quenching
 - → Introduce "negative feedback" to oppose the positive feedback of avalanche impact ionization process
- Use passive quenching with "free-running" detector
 - Fixed DC bias across GmAPD + Resistor
 - Current flow through load resistance causes I R drop → shifts voltage away from SPAD

Self-quenching NFADs device design

- Use monolithic implementation to minimize parasitic effects
 - Surface-integrated thin film resistors
 - Fully compatible with optimal GmAPD designs no epi-structure tradeoffs

Self-quenching behavior depends on feedback

- Need large R_L to ensure rapid self-quenching and small charge flow Q
 - Current in junction must fall below threshold value for self-quench to occur
- "Recharge" time following quench has time constant R_LC_d

 $\begin{array}{l} \underline{Principal\ design\ trade-off}:\\ Large\ R_L \rightarrow rapid\ quenching\\ Small\ R_L \rightarrow rapid\ recharging \end{array}$

Device diameter: 25 µm

Discharge (quench):

 $\boldsymbol{\tau} \thicksim \boldsymbol{\mathsf{R}}_{\mathsf{d}}\boldsymbol{\mathsf{C}}_{\mathsf{d}} \rightarrow (5 \text{ k}\Omega)(100 \text{ fF}) \thicksim \boldsymbol{0.5 \text{ ns}}$

Recharge (re-arm):

 $\tau \sim \textbf{R}_{\textbf{L}}\textbf{C}_{\textbf{d}} \rightarrow (0.1-1 \text{ M}\Omega)(100 \text{ fF}) \sim \textbf{10} - \textbf{100 ns}$

"Minimum" charge flow:

 $\mathbf{Q} = \mathbf{C}_{d} \mathbf{V}_{ex} \rightarrow (100 \text{ fF})(2 \text{ V}) \sim \mathbf{1} \times \mathbf{10}^{6} \text{ e}^{-1}$

First generation of NFAD devices exhibited desired behavior

Operate with simple bias T

160

Larger negative feedback provides even more effective self-quenching

- NFAD avalanche response: pulse width ~ 2 ns, height ~25 mV
- Total current flow: Q ~ 3 x 10⁵ e⁻
- How reproducible are NFAD avalanche properties?

 $R_L \sim 500 \ k\Omega$

Statistics of avalanche charge flow

- Analyze large number of pulses (~10,000) for pulse statistics
- Charge "excess noise" F(Q) is a measure of avalanche consistency
 - Directly related to variance σ² of the distribution
- Significantly more uniform avalanches than legacy Geiger-mode operation
 - Good prospects for resolving "summed" pulses

Re-arming time from pulse height correlations

- Look at correlation between pulse height and pulse inter-arrival time
 - If pulse is triggered before full re-arming, pulse amplitude will tend to be lower

M. A. Itzler – RIT Detector Virtual Workshop – 12 Mar 2012

Re-arming time from pulse height correlations

- Use exponential fit to 2nd pulse height (moving average) vs. interarrival time
- Find time constant $\tau = 55$ ns; 95% recharge in $3\tau \sim 165$ ns
- Reasonable agreement with expected $\tau = R_L C_d = (800 \text{ k}\Omega)(80 \text{ fF}) \sim 64 \text{ ns}$

Workshop Outline

- Applications and drivers
- InGaAsP SPAD fundamentals
 - SPAD device design and performance parameters
- High-rate photon counting with InGaAsP SPADs
 - Challenges of high-rate counting: transients and afterpulsing
 - Progress in high-rate counting techniques
- Free-running operation with self-quenching NFADs
 - Integration of negative feedback
 - Self-quenching avalanche dynamics
- Scaling to large format SPAD arrays
 - Integration for focal plane arrays and FPA performance
- Future prospects
 - High-rate photon counting
 - "Solid state photomultipliers" based on NFADs
 - Photon number resolution with SPADs/NFADs
 - Further scaling and micropixellated arrays

Scaling SPADs to large-format imaging arrays

- Focal plane array (FPA) employs three-chip stack as imaging sensor engine
 - SPAD photodiode array (PDA)
 - CMOS readout integrated circuit (ROIC)
 - GaP microlens array (MLA)
- Indium bump flip-chip hybridization of PDA to ROIC
- Passive µm-scale MLA alignment and attachment to PDA

Focal plane array module assembly

• Manage electrical, thermal, and optical interfaces to FPA

- 175-connection pin grid array package
- Thermoelectric cooler (TEC) maintains $\Delta T \sim 55^{\circ}C$ with CuW heat sink
- Microlens array on chip stack provides ~75% fill factor
- Hermetic lid with sapphire window

Turn-key FPGA-driven camera system

- Three-board turn-key commercial camera
 - FPA board, FPGA board, and Interface board
- Adjustable frame period ("range gate") between 4 ns and 10 µs
- 32 x 32 format (100 µm pitch) with ~200,000 frames per second

-		Comprehe	ensive GUI
	Princeton Lightwave GMAPD 32x32 Camera Control and Acquisition		
•	APD Control Caser Control Caser Control Caser Control Dange Acquisition / Storage P Rol Cave Set	rinége Frie Ber Bon Dint Dint Dint Dint Dint Dint Dint Din	System Status CKPL_GRAFL_GRAFLAG CKPL_GRAFLAGENS-02 CK- PRA_PD261KS-02 CK- PRA_PD261KS-04 PRA_PD261KS-04 PRA_PD261KS-04 PRA_PD261KS-04 CKPL_GRAFLAG
10 cm x 10 cm x 8 cm	Spric Frame Number Type Statu Het Life Type Statu Statu	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	nn+1 Tim+2 Tim+3 599 1144 61404 2446 2747 1221 1446 1240 2447 2747 1221 1446 1247 244 2447 2747 1221 1447 2747 1221 1448 2447 244 1448 2447 2447 244 1448 2447 2447 2447 2447 2447 2447 2447 2
M. A. Itzler – RIT Detector Virtual Workshop – 12 Mar 2012	54703		Exit

DCR & PDE performance maps

Full-camera 32 x 32 maps of DCR and PDE at 1.06 µm

PDE obtained using broad illumination

DCR Mean = 13.6 kHz

> 100% pixel yield: all pixels in spec

DCR (in kHz) DCR $\sigma = 2.2 \text{ kHz}$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 9 9 8 9 8 8 9 8 9 10 10 12 10 10 10 10 10 9 10 11 11 10 11 10 10 1 9 10 9 9 10 10 9 10 10 10 10 10 10 10 10 11 11 10 12 10 12 12 11 12 11 11 13 11 12 12 10 11 9 3 8 10 10 11 10 11 10 10 9 10 11 10 11 11 14 13 12 11 12 11 13 12 12 11 12 10 11 12 11 12 10 10 9 10 10 11 11 10 11 10 11 10 13 12 14 11 13 11 13 12 13 12 13 12 14 12 11 13 11 11 11 11 **5** 8 10 9 10 10 11 13 11 10 12 12 12 12 12 12 13 13 13 14 13 13 12 12 13 13 13 11 11 12 11 12 6 8 10 10 10 8 10 12 11 12 12 11 13 12 12 14 13 14 14 13 13 12 13 13 14 13 14 12 13 11 13 11 11 7 8 10 9 9 11 12 12 12 12 12 12 13 12 13 11 13 13 13 13 13 13 14 13 14 13 14 13 14 13 12 13 13 11 12 10 12 11 11 11 11 13 12 12 13 13 13 12 13 13 13 13 13 14 13 13 14 14 13 13 15 13 12 11 11 8 9 9 9 10 11 11 11 11 12 12 13 13 13 12 13 14 12 13 14 14 14 14 15 15 14 14 13 14 14 14 13 14 13 13 12 11 10 9 10 11 11 12 11 12 13 12 12 13 13 13 14 12 13 15 14 13 14 13 15 14 14 14 13 15 13 14 14 13 11 11 9 11 11 11 12 11 12 11 11 12 12 13 14 14 12 15 15 15 13 15 15 13 13 15 15 14 14 13 13 13 13 13 12 11 11 12 12 12 11 12 13 13 13 11 13 14 14 13 15 14 15 15 15 15 15 14 13 14 14 14 13 14 13 12 12 **13** 10 12 11 12 13 12 12 13 14 14 13 12 13 14 13 16 15 15 14 16 15 14 14 14 15 15 15 14 14 14 14 11 14 11 11 11 13 13 13 14 13 13 14 13 15 13 13 14 15 14 14 17 14 17 15 15 15 15 14 14 14 14 14 14 14 14 15 10 12 12 12 13 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 16 15 14 15 15 14 14 14 14 14 15 15 14 14 14 16 12 12 13 13 13 12 14 15 14 12 14 14 15 15 14 17 14 15 14 14 15 15 15 15 15 15 14 16 14 15 15 16 14 14 17 11 11 12 13 12 14 13 14 14 14 15 14 13 15 15 15 16 15 15 16 16 17 16 16 15 16 14 16 14 13 14 17 18 10 9 11 13 13 12 15 14 15 14 14 15 14 14 16 16 15 16 15 14 16 16 16 16 16 16 16 17 16 14 14 13 13 19 10 11 13 14 14 14 14 16 14 14 15 14 14 16 15 15 14 15 15 19 15 16 16 17 16 17 17 16 15 14 14 15 20 11 12 12 13 14 13 15 17 14 15 15 16 15 14 15 14 15 15 14 15 15 14 15 15 16 18 17 15 18 18 16 15 16 14 14 21 9 12 13 14 14 13 14 15 15 15 14 16 16 17 15 16 15 14 15 17 15 16 18 17 18 16 17 16 15 15 14 22 10 12 13 12 15 13 15 16 16 15 15 16 16 14 16 15 16 14 16 15 16 17 17 16 16 17 16 16 18 13 17 16 23 11 11 12 12 14 16 15 14 15 15 15 16 14 13 17 15 16 15 16 16 17 16 15 17 16 18 16 16 16 16 15 14 24 11 10 12 12 14 14 15 15 15 14 17 14 16 17 16 17 16 17 16 17 17 16 17 16 17 16 17 16 18 15 17 15 25 11 11 12 13 14 16 14 15 15 16 15 16 17 16 15 16 16 16 16 16 17 15 16 16 17 17 19 17 17 16 16 15 15 26 10 11 12 14 14 12 15 14 14 14 15 13 15 16 17 16 16 17 17 15 17 17 16 17 16 18 17 16 16 14 16 15 27 11 11 12 13 15 14 15 16 14 17 15 16 15 17 15 17 18 17 17 15 17 16 16 16 15 15 14 28 11 11 13 12 14 15 15 14 14 16 15 16 16 16 17 16 29 11 12 12 13 13 15 13 14 14 14 15 15 15 16 16 16 16 16 16 15 16 17 30 11 11 12 13 13 13 14 14 14 15 15 16 15 16 15 15 16 15 17 16 15 14 16 16 18 16 17 17 16 31 10 12 11 11 12 12 13 13 13 13 13 14 15 14 16 14 15 14 14 14 14 14 14 15 14 16 15 13 15 15 15 14 16 32 34 41 39 38 42 38 43 40 46 44 44 43 42 45 41 43 41 43 44 43 43 43 43 43 43 43 44 38 43 43 41 44 42 40 40

DCR & PDE distributions

• All 1024 pixels have DCR < 20 kHz for mean PDE = 39%

Excellent low DCR demonstrated

Average DCR as low as 2.0 kHz at 37% PDE

DCR (in kHz)

1.5 µm FPAs and larger format FPAs

- 32 x 32 format camera for 1.5 µm at same quality as 1.06 µm
 - 100% pixel yield
 - Higher DCR due to narrower bandgap (InGaAs) absorber
- 32 x 128 format (50 μm pitch) at 1.06 μm with >99.9% yield
 - Extent of performance gradient depends on location on wafer

• Largest format to date developed by MIT-LL: 64 x 256 (50 µm pitch)

Multi-photon pulse detection efficiency (PuDE)

- Measure PuDE as a function of mean photon number μ
- Good agreement with theory: PuDE(μ) = Σ_N − μ^N e^{-μ}/N! {1 − (1 − PDE)^N}
 - Single photon sensitivity provides high detection probability for pulses of 5 10 photons

Crosstalk in SPAD arrays is challenge for scaling

• Consider optical cross-talk contributions

- Avalanches can emit crosstalk photons due to hot carrier luminescence
- Path ①: direct line-of-sight to nearest neighbor pixels
- Path 2: reflection from back-side surface of PDA
- Use etched trenches to mitigate line-ofsight crosstalk

Photo of GmAPD 32 x 32 array

Crosstalk as function of pixel position

- Crosstalk falls off with distance from primary avalanche (on average)
 - Count all events within ~ 500 µm radius and within 10 ns of primary avalanche
 - Nearest neighbor pixels show <1% crosstalk probability per pixel
 - Consistent "signature" shows that certain relative pixel positions have higher crosstalk

Crosstalk probability per pixel

Illustration of relative distances from primary avalanche

			3			
	2.8	2.2	2	2.2	2.8	
	2.2	1.4	1	1.4	2.2	
3	2	1	0	1	2	3
	2.2	1.4	1	1.4	2.2	
	2.8	2.2	2	2.2	2.8	
			3			

Workshop Outline

- Applications and drivers
- InGaAsP SPAD fundamentals
 - SPAD device design and performance parameters
- High-rate photon counting with InGaAsP SPADs
 - Challenges of high-rate counting: transients and afterpulsing
 - Progress in high-rate counting techniques
- Free-running operation with self-quenching NFADs
 - Integration of negative feedback
 - Self-quenching avalanche dynamics
- Scaling to large format SPAD arrays
 - Integration for focal plane arrays and FPA performance
- Future prospects
 - High-rate photon counting
 - "Solid state photomultipliers" based on NFADs
 - Photon number resolution with SPADs/NFADs
 - Further scaling and micropixellated arrays

Nanosecond-scale photon counting with SPADs

- Toshiba self-differencing technique with 1 GHz gating
- Key point: proof-of-feasibility for SPADs counting every ~2 ns

Prospects for advances in high-rate counting

• Timing jitter limitations

- for communications apps, ~100 ps jitter will limit rates to < 10 GHz
- Inherent device bandwidth limitations
 - same challenges as 10 GHz linear APDs (transit time / RC / avalanche build-up)
- Challenges of non-periodic (free-running) operation
 - All GHz-rate techniques to date require periodic operation
- Benefits in evolving to multiplexed solutions

Multiplexed solutions for high-rate counting

• 1024 pixels with 250 ps timing quantization

\rightarrow for spread optical input, ~ 4 GHz effective counting rate

- Previous demonstrations by MIT-LL of arrays with asynchronous readout
- ...but substantial overhead in FPA complexity

32 x 32 FPA module

PDE (in %) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 26 27 27 29 23 25 25 27 25 28 26 28 24 27 27 25 28 29 27 31 28 25 28 28 29 29 27 26 22 31 27 29 28 28 29 28 2 32 32 34 33 33 31 28 31 30 30 29 27 27 27 31 29 32 31 27 3 26 20 33 31 37 33 35 33 31 31 32 27 30 34 32 31 33 29 31 30 32 33 34 33 30 32 30 35 34 33 33 32 32 33 34 29 27 30 34 33 33 35 35 31 33 28 36 31 35 35 32 33 10 34 36 35 38 38 37 39 38 11 39 40 38 35 39 41 40 37 33 32 32 30 34 43 39 39 32 34 35 36 38 40 41 40 40 40 44 45 40 39 37 32 32 14 38 39 38 16 18 37 37 20 35 37 22 23 24 25 38 45 46 26 27 28 29 42 43 40 40 30 39 43 43 39 41 31 38 35 37 40 39 43 43 43 48 44 45 43 46 32 34 41 39 38 42 38 43 40 46 44 44 43 42 45 41 43 41 43 44 43 43 43 43 44 38 43 43 41

M. A. Itzler – RIT Detector Virtual Workshop – 12 Mar 2012

NFADs as solid state photomultiplier (SSPM)

nceton

- Single NFAD device independently avalanches, self-quenches, and resets
- NFADs exhibit reasonably uniform pulse responses
- Connect a "matrix" of NFAD devices in parallel
 - \rightarrow "solid state" equivalent to microchannel plate (MCP) photomultiplier

First demonstration of NFADs as SSPM

- "Matrix" of NFADs can provide photon number resolution
 - Measured distribution of avalanche response peaks shows multi-avalanche structure

First demonstration of NFADs as SSPM

- "Matrix" of NFADs can provide photon number resolution
 - Measured distribution of avalanche response peaks shows multi-avalanche structure
- Simple model provides very good description of response
 - Assume Gaussian distribution for peak height variation (σ / $\langle Q \rangle$ = 0.28)
 - Use Poisson statistics for incident photon number

4x4 NFAD matrix

First demonstration of NFADs as SSPM

- "Matrix" of NFADs can provide photon number resolution
 - Measured distribution of avalanche response peaks shows multi-avalanche structure
- Simple model provides very good description of response
 - Assume Gaussian distribution for peak height variation ($\sigma / \langle Q \rangle = 0.28$)
 - Use Poisson statistics for incident photon number

- Also lots of work to do on fill factor
- Need further tailoring of feedback and reduction of parasitics Also work to improve device uniformity

- Fully resolved peaks between n = 1 and n = 2 requires $\sigma / \langle Q \rangle \sim 0.10$
- Better photon number resolution will require more uniform avalanches

Achieving better photon number resolution

Potential for next-generation NFAD imager

- Next-gen single-photon imager with NFAD "matrix" at each pixel
 - Provide pixel-level photon number resolution (PNR)
 - Degree of PNR determined by number of matrixed elements

- Also pursuing "active" NFADs with "two-state" feedback element
 - High resistance for quenching, low resistance for re-charging

Photon number resolution with self-differencing

- Demonstrated with Toshiba self-differencing circuit
- Histogram shape dictated by (i) Poisson distributed input, (ii) σ of charge flow per photon
- Key is to restrict avalanche flow (very short sub-ns gates in this case)

Kardynal, et al., Nature Photonics, 15 June 2008 doi:10.1038/nphoton.2008.101 Single Photon Workshop 2011, 29 June 2011 Braunschweig, Germany

Princeton
Distinct avalanche "filaments"

providing PNR is single SPAD

PNR through fabricated NFAD micro-pixellation

- PNR in discrete SPAD likely due to individual avalanche "filaments"
 - Sufficient filament uniformity with fast quenching before lateral spreading
- NFAD matrix provides similar "micropixellation" by fabrication
 - Sufficient avalanche uniformity from negative feedback
- Avalanche filament control converges on linear mode operation

NFAD matrix can provide "filaments" by design

Comparison of InGaAsP SPADs and Si SPADs

- What can we project for InGaAsP SPADs based on more mature Si SPADs?
- Compare at different temperatures to compensate for difference in E_α
 - Si outperforms InP by ~10X in DCR at same PDE
 - Best hold-off times for Si ~ 10 ns (1% afterpulsing, 20°C), ~10X better than InP at -60°C
 - Afterpulsing comparison is approximate due to strong circuit-dependence

Data from M. Ghioni and S. Cova, Politecnico di Milano

Summary: What lies ahead for InGaAsP SPADs?

- High-rate counting up to ~5 GHz for discrete detectors
 - 0.5 GHz counting demonstrated with sub-ns periodic gating
 - Discrete detector counting limited to ~few GHz by fundamental APD dynamics
 - To reach even higher rates, use multiplexed solutions
- Potential for analog behavior with SPADs/NFADs
 - Photon number resolution (PNR) is feasible even in discrete SPADs
 - Micropixellation provides potential for more extensive PNR
 - Convergence of linear mode and Geiger-mode through negative feedback
- Scaling to larger format arrays (e.g., Mpixel) is achievable
 - Increased pixel count is challenging, but no fundamental limits
 - Further pitch reduction increasingly difficult due to single-photon crosstalk
- Improvement in basic parameters requires materials advances
 - DCR and afterpulsing directly related to material defect density
 - Higher PDE accessible if DCR and afterpulsing are tolerable at higher bias

• Smart design concepts will progress faster than materials improvements

BACK-UP SLIDES

- Try to fit afterpulse probability (APP) data with exponential fit
 - Physically motivated by assumption of single dominant trap

- Try to fit afterpulse probability (APP) data with exponentials
 - Physically motivated by assumption of single dominant trap
- Single exponential not sufficient; assume second trap

Single exponential curve generally fits range of ~5X in time

- Try to fit afterpulse probability (APP) data with exponentials
 - Physically motivated by assumption of single dominant trap
- Single exponential not sufficient; assume second trap
- Still need third exponential to fit full data set

M. A. Itzler – RIT Detector Virtual Workshop – 12 Mar 2012

- Can always achieve reasonable fit with several exponentials
- ...but choice of time constants is completely arbitrary!
 - \rightarrow depends on range of times used in data set
- Our assertion: No physical significance to time constants in fitting
 - \rightarrow simply minimum set of values to fit the data set in question

Modeling results for APP

- Develop model for APP with distribution of detrap rates R = $1/\tau$
 - APP related to change in trap occupation: dN/dt ~ R exp(-t R)
 - Integrate over detrapping rate distribution D(R)

 \rightarrow APP ~ $\int dR D(R) R exp(-t R)$

• APP behavior fit well by $T^{-\alpha}$ for 10 ns to 10 μ s

