

Photon Detectors

D. Prober , Yale Univ. Depts. Applied Physics and Physics with thanks for collaborators at

Arizona, Caltech, GSFC, JPL, U Mass, Yale and their partners

<u>Outline</u>

- Types of sensors; motivations
- Basic concepts; applications
- TESs x-ray; visible/NIR; THz/FIR
- STJs, KIDs soft x-rays
- Nanowires 'click'; visible/NIR

Why single photon?

- <u>Weak sources; spectroscopy</u>
- Encode information, entangle
- Timing, coincidence
- Measure <u>particle</u> energy
- Speed is important = challenge in cold env.
- <u>Arrays</u> = key enabler for most future applications
- <u>Energy scales</u> $1 \text{ eV} = 1.2 \ \mu\text{m} = 250 \text{ THz}$ $1 \text{ meV} = 1.2 \ \text{mm} = 0.25 \text{ THz}$

Definitions

• <u>Thermal</u> - Bolometer – P(t)

NEP $\approx 10^{-19} \text{ W/(Hz)}^{1/2}$ (space goal)

- Calorimeter – E(t) $\Delta E \approx NEP \tau^{1/2}$

- <u>Excitation</u> detector same functions; QPs \approx meV $\Delta E/E \approx \Delta n/n \approx n^{-1/2} \rightarrow$ for x-ray, $\Delta E/E = 10^{-3}$
- <u>Nanowire</u> I ≤ I_c; fast, sensitive, no energy res.
 ≈ PMT
- <u>Multiplex</u> SQUID or μwave resonators

Bolometer Detector – Thermal → cold + small

<u>Sensitivity</u> Considerations

NEP = $\Delta P/(Hz)^{1/2}$ = $(4kT^2 G)^{1/2} W/(Hz)^{1/2}$

 τ = C/G, want C small

'small is beautiful'; cold is essential

 $\Delta E \approx (kT^2C)^{1/2} = variance$

Basic Transition Edge Sensor Operation

Superconducting wire (the TES) is used as a thermometer – read out changes of resistance electrically.

Superconducting transition-edge sensor SQUID Signal $l(t) = V_{rin}/R(t)$

Typical SC transition $T_c < 1K$

Voltage bias → faster response, more sensitive

SQUIDs essential for low T multiplexing, low noise

Low count rates for astro xray applications $\approx 100/sec$

Kilbourne, TIPP09

s James Clerk Maxwell Telescope

SCUBA-2

Moseley, Applied Superconductivity Conf., 2008

Applied Superconductivity Conference

X-Ray TES structure

Thick Au/Bi absorber, weak attach Mo/Au bilayer TES, non-SC stripes reduce noise TES is thermometer only msec response

Kilbourne, TIPP09

<u>Array-scale read-out using NIST time-division</u> multiplexing *(Irwin, Doriese)*

- 2 x 2 array is shown as example of *N*-row by *M*-column array
- TDM operation:
 - each TES coupled to its own SQ1
 - TESs stay on all the time
 - rows of SQ1s turned on and off sequentially
 - wait for transients to settle, sample I_{TES} , move on
 - SQUIDs are nonlinear amplifiers, so use digital feedback
 - V_{er} sampled, V_{FB} stored for next visit to pixel
 - each column: interleaved data stream of pixels

Kilbourne, TIPP09

<u>Au/Bi Absorbers (~ 1 μm Au, 4 μm Bi)</u> on SiN membrane; msec response

- Use thick Si, not SiN membrane; G_{th} isolation is from TES-subst. boundary resistance only <u>not</u> thin SiN. $\tau = C/G (1+L) L = loop$ gain of el-th feedback
- *BUT*, get some events with less energy = hits in the stem, \rightarrow loss to subst.
- Use thicker absorbers stop more photons away from sensitive stems
 - Solar applications: 250->50 μm pitch, 10 μm thick Au (same total heat capacity)
 - \Rightarrow 99.95% absorption in 10 μm
 - \Rightarrow 99.0% absorption in 6 μ m

Smith et al., LTD 13

X-ray Detectors – other options may work

- for close-packed arrays, meander geometries are promising
 - arrays of superconducting Nb meanders onto each of which a layer of magnetic material (Au:Er) is deposited
 - when a current passes through the meander, a magnetic field is produced in the magnetic material.
 No additional applied field required.
 Use SQUID readout.

Kilbourne, TIPP09; citing GSFC team

TES for Visible and NIR

Quantum Information

- Quantum Optics
- Quantum Information Processing (e.g. Linear Optics, Quantum Computing, Quantum Key Distribution)

Detector requirements desired:

- High efficiency (95% at 1550 nm)
- Low dark counts / errors (Blackbody limited 1550 nm)
- Number resolving capability (0.26 eV FWHM)
- Wavelength tunability (1550nm, 850nm)
- Fast recovery time (< 1ms), Low jitter (100ns)

Optical Structures to Enhance Detection Efficiency A.Lita et al. Optics Express 16, 3032-3040 (2008)

- Optical stack increases probability of absorption in TES material
- Careful measurements of optical constants for all thin film layers
- Materials compatibility below 1 K

• 95% ± 2% system detection efficiency for 1550 nm optimized TES DP: T = 0.18 K; ΔE = 0.29 eV vs. 0.18 eV $\tau \approx 1 \mu s$; 40% of en. Collected Room-Temp BB photons are a problem

<u>Measurement setup (Lita et al.)</u> <u>Self-alignment scheme TES = 25 µm</u>

A. Lita LTD13

<u>Hf TES in Optical Stack – for 850 nm -- no α -Si</u>

A. Lita LTD13

THz/FIR Single Photon Det.-

- photon counting > 1 THz (λ = 300 µm)

B. Karasik

Phonon Cooled HEBs at Yale (Nb; for R.T. sources)

Double Dipole Antenna, 1.2 THz Design[†]; 1 x 2.5 μ m Bridge Total of 22 chips fabricated and shipped: 9 for Caltech, 7 for JPL, 6 for Yale

[†] Double dipole antenna design made with advice from Anders Skalare at JPL D.Santavicca, Yale

Antenna-Coupled Ti TES Nanobolometer

Small Ti volume = fast and sensitive
 → no substrate in heat capacity
 Higher superconducting gap in Nb confines excitations in the Ti

Want completely shielded environment -but- want fast interrogation (readout) which could perturb detector and let in stray photons

<u>Challenge</u>: P_{sat} ~ 1 fW but at T = 0.3 K blackbody = 30 fW! (single-mode) Superconducting Ti nanobridge, $T_c = 0.3 K$

From B. Karasik, JPL

RF reflection changes on the transition

Testing with Fauxtons

- Testing in a dark environment; no stray photons P << 1fW
- Arbitrary tunability of fauxton energy
- Can "sneak up" on hardest problems; optimize device fabrication, performance, and signal processing while a THz single-photon test system is developed

Testing with Fauxtons

Experimental schematic for fauxton testing Trigger signal used

D.Santavicca, Yale

Testing with Fauxtons: Energy Resolution

- Future:
- Present device: 4 x 0.35 x 0.07 μ m; T_c = 0.3 K; smaller volume and T_c = 0.2 K $\rightarrow \Delta E_{device,th} = 0.8$ THz
- Lower noise amplifier SQUID or Jos. paramp (Y)

Future sensitivity challenges in space

Future spectroscopic space missions featuring cryocooled (4-5 K) primary mirrors (e.g., SPICA, SAFIR, CALISTO, SPECS) will require a ~ 3-order of magnitude detector sensitivity improvement

Photon integration below 1 THz
Photon counting above 1 THz Karasik&Sergeev, *IEEE Trans. Appl. Supercond.* 2005 -- see Karasik (SQUID),

Santavicca

STJ (excitation) detector

Photon breaks Cooper pairs \rightarrow 2 quasiparticles/photon initially, multiply by cascade to n $\approx E_{ph}/E_{g}$, then tunnel thru oxide barrier δn = statistical variation in n

STJ – high impedance → charge division imaging = DROID

P. Verhoeve, LTD 13

DROIDS (ESA) – faster than TES, worse resolution

- Distributed Read-Out Imaging Detectors
- Find E from the <u>2</u> pulses

 $\Delta E= 16.6 \text{ eV} @ 5.9 \text{ keV}$ (tunnel limit 7.0 eV)

 $\Delta E= 12 \text{ eV} @ 5.9 \text{ keV}$, Yale, Lin et al.

- Much stronger trapping and smaller tunnel limit if Al-Ox-Al junctions are on the side of Ta absorber = Yale approach.

P. Verhoeve, LTD 13

<u>First Results On The Imaging Capabilities Of A</u> <u>DROID Array In The UV/Visible</u>

R.A. Hijmering, et al., LTD13

Timing info

- 3x20 DROID array 33.5x 360 μ m²
- 5.5 x S-Cam 3; photons from back side
- 11 'pixels' per DROID; 660 'pixels' total
- Measured in S-Cam3 system (single STJs)
- Offline coincident events determination
- Testing, development in progress

Submm STJ Detector –

Teufel, Schoelkopf, D.P. (Yale) + GSFC fab

<u>Soft X-Ray Spectrometer Using 100-Pixel</u> <u>STJ Detectors for Synchrotron Radiation</u> – advantage is count rate; no imaging

Advantages of STJ-XAFS •Separation of light elements due to good energy resolution (< 30 eV) •High sensitivity in soft X-ray (< 1 keV) •Large solid angle coverage of 10⁻² sr •Fast response, >10⁶ cps @ 100-pixel •Automated operation (Pulse tube + ³<u>He</u>) •Energy resolution – fine control from monochromator, <u>not</u> STJ

Shigetomo Shiki, (AIST)-LTD13

Soft X-Ray Beam Line use of STJs

need count rate of STJ; does not need TES resolution; no imaging

Natl. Inst. of Advanced Industrial Science and Technology (AIST) 0.2 – 2 keV Stanford SSRL - 112 pixels LBL-ALS - 9 pixels – S. Friedrich, LLNL

Also, biomolecule energy + time-of-flight; using phonons to break pairs

Microwave Kinetic Inductance Detector

Absorb photon in SC quarter-wavelength resonator.

Inductance = magnetic + kinetic

 $\frac{1}{2} L_{K} I^{2} = \frac{1}{2} n_{p} m v^{2}$ $L_{K} \approx 1/n_{p}$ $\delta n_{p} = -\frac{1}{2} \delta n_{qp}$

00

Microwave Kinetic Inductance Detector

Enablers:

low T/microwave expertise need for more channels STJ concepts SIS rf design digital signal processing

First demo: mm-wave camera

Democam – 16 pixels, each 2 'colors' 230, 350 GHz

- bigger, better, more colors: on the way; pixel is >> λ

Democam – mm-wave camera

Nb microstrip to couple mm-wavelength photons from antenna to a lossy Al strip; creates qps in Al.

Nb CPW resonator keeps qps in Al; qps last long

Nb CPW has high Q; Nb microstrip is more lossy, but is low impedance so losses ≈ ok.

Maloney, LTD13

Democam – 16 pixels, each 2 'colors' 230, 350 GHz

- bigger, better, more colors: on the way; pixel is >> λ

MKID Challenges

- <u>Two level systems (in insulator)</u> phase noise
 Solutions: T; materials development; interdigitated C; rf power (may also affect n_{qp})
- <u>Lifetimes of qps</u> film quality Barends; Wilson (Yale, 2001) τ_{rec} > ms in Al; rel to Q?
- KID concept, room T array electronics hard, novel, and successful – first app. in submm "The detector fabrication is simple, requiring only ≈6 levels of lithography" Maloney, LTD 13, 2009

Nanowire Optical Coupling

- slides: E. Dauler and A.J. Kerman

Meander pattern - Yale Nb device

Performance shown below for MIT/LL devices made from NbN films K. Ro

electron-beam and optical lithography

Cavity structure + AR coating improves coupling to ~ 85%

K. Rosfjord, J.K.W. Yang, E.A. Dauler, A.J. Kerman, V. Anant, G. Gol'tsman, B. Voronov, and K.K. Berggren, Optics Express 14, P. 527 (2006)

This work is sponsored by the United States Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government

Photon Detection Mechanism

Photon Detection Mechanism

Photon Detection Mechanism

Device Characteristics

Detector Design and Packaging

- Interleaved pattern
- Circular active area
- Cavity structure

[Kerman, A., unpublished]

Multi-element SNSPD Achievements

Metric		Achieved
P(detection) photon pulse	System Detection Efficiency	~50% at 1550 nm wavelength
	Timing Jitter	30 ps timing jitter per element
	Reset Time	~9 ns reset time per element → ~400 MC/s at ~full efficiency
	Dark Counts	< 1 kHz dark counts per channel at full efficiency
8 →	Photon Number Resolution (PNR)	PNR with independent 30 ps photon timing
	Arrays	4 elements operated simultaneously

Conclusions

- <u>TES</u> mature for x-ray arrays,
 - visible/NIR pixels, excellent det. efficiency;
 - THz -- future work
- <u>STJ</u> fast, on x-ray beam lines
- <u>KID</u> rapid development; single-photon more research needed
- <u>Nanowire</u> v. fast, good det. efficiency QKD
- <u>Development of arrays VERY promising</u>

Thanks to colleagues who shared 'slides'.

Counting Simultaneous Photons

E.A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Gol'tsman, S.A. Hamilton, and K.K. Berggren, *Journal of Modern Optics*, 56, 364-373 (2008).