

	CCDs	CMOS Active pixel sensors	STJ/TES	MCP devices	EBCCDs	AIGaN
Performance						
Wavelength range	visible-uv	visible	visible-uv	solar-blind uv	solar-blind uv	solar-blind uv
DQE (%)						
FUV (130nm)	45 JPL			33	50 Csl	60
NUV (250mm)	58 WFC3			10 STIS	30 CsTe	80
Vis (600mm)	80	50	50	< 10 ⁻⁶	< 10 ⁻⁶	< 10 ⁻⁶
Format (pixels)	4k x 2k: 2 butted	1k x 1k	2 x 2 TES 6 x 6 STJ	16k x 1k: 2 butted	320 x 256	256 x 256
Pixel size (µm)	15 x 15	7.5 – 15 sq	20 – 25 sq	6 x 30	30 x 30	25 x 25
Read-noise (e ⁻ rms)	5	20 - 30	none [†]	none	5*	unavailable
Dark noise (cnts/sec/res el)	6.7 x 10 ⁻³	high	0	< 2 x 10 ⁻⁵	~ 4 x 10 ⁻⁶	~ 8 x 10 ⁴
Global Dyn Rng (cnts/sec)			400k	21k	123k	
Local Dyn Rng (Cnts/sec/pix)			20k	8	45	
Full well	75k	300k				
Energy Resolution (at 400nm) (E/ΔE)	none	none	5 STJ 20 TES	none	none	none
Environment						
Radiation Hard	no	yes (1Mr)	yes	yes	yes	yes
Lifetime (cnts/mm ²)	radiation	radiation	coolant	10 ¹¹	10 ¹²	radiation
High voltage	no	no	no	yes	yes	no
CTE	0.999995	n/a	n/a	n/a	n/a	n/a
Op temperature (°C)	-85	-85	0.1 - 0.3K	25	25	25
Power (w)	50 ^{††}	0.01		40	20	
Readiness						
TRL	8	3	2	8	8	2

"Ultraviolet and Visible Detectors for Future Space Astrophysics Missions"

Blades Report/ Roadmap ~(2000)

Not included APD array, EMCCD/L3CCD MKID Nanowire others...

"Ultraviolet and Visible Detectors for Future Space Astrophysics Missions"

Blades Report/ Roadmap ~(2000)

Not included APD array, EMCCD/L3CCD MKID Nanowire others...

What detector to choose? Which horse should we bet on?

- Blades Report concluded appropriately:
 - "No single current or emerging detector technology covers, in any optimal way, the UV-Vis spectral region. A multifaceted approach is required...."
- What are the drivers pushing technology?

• astronomical applications

- other scientific and engineering applications
- *commercial* applications
- What detectors are available now, or in next 2-4 years?
 - This is what we'll be testing/launching in next 10-15 years

UV Applications: The Dark UV Sky

UV Applications: IGM Cosmic Far Ultraviolet Background ~ 40 years ago

Photon counting detectors critical for these applications

Other UV Science Applications for Photon-Counting Detectors (incomplete list)

> Transient/Timing Phenomena (SN, GRB, novae, CVs, flares, pulsars,....)

Faint stellar population studies in local universe: detailed star formation and galaxy assembly history

Time-resolved exoplanet follow-up (incl. atmospheres, aurora, biosignatures)

Photon counting detectors also provide operational/calibration benefits

GALEX collects data while moving (dither pattern)

Ideal

Uncorrected

 \mathbf{a}

GALEX Photon Counting

GALEX Time-tagged photon data

- Time-tagged photon data can be collected while moving (relax attitude control requirements)
- Many aspects of calibration including aspect solution can be refined ex post facto. (Optimal aspect reconstruction) $\overline{J}_{M} = \arg \max \left\{ \sum \sum s (i \pm i) \ln[r_{M}(i, \overline{J})] \right\}$

$$\begin{array}{ll} J_{\mathrm{ML}} = \arg \max_{\bar{J}} \left\{ \sum_{p} \sum_{i} s_{p}(i+j_{p}) \ln[r_{\mathrm{ML}}(i,J)] \\ \text{Aspect} & \bar{J} & \text{Photon list} \\ \text{solution} & & \text{Image} \\ & -r_{\mathrm{ML}}(i,\bar{J}) - \ln[s_{p}(i+j_{p})!] \right\}. \end{array}$$

- Provides excellent compression for sparse images
- Allows time-series analysis on millisecond-second timescales (for astronomical sources and other transient/artifacts)

Transformations can be determined ex post facto

Aspect Solution Distortion/Offset/"Walk"

 $p_i(\alpha, \delta, t) = A(\alpha, \delta | x_{FP}, y_{FP}, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{Det}, q, xa, t) \times T(x_{FP}, y_{FP} | x_{Det}, y_{FP} | x_{FP} | x$

 $\times R(x_{Det}, y_{Det}, q, xa, t | \text{photon word}_i)$

Detector Position Encoding

 $phot_i(\alpha, \delta, t) = A \ T \ R \ (photon \ word_i)$ Photon sky positionDigitized photon word

7% SAOImage ds9							<u>- 0 ×</u>
File Edit Frame Bin Z	oom Scale Color Reg	jion WCS Analysis Help					
File NGA_N	151_0001-nd-dose.fits						A COREST
Value 2	83						1. A.
WCS						X	
Physical X 92	6.000 Y 661	.000					
Image X 92	6.000 Y 661	.000					All and a second second
Frame2 Zoom L	J.250 Ang U.						
File	Edit F	rame Bin	Zoom	Scale	Color	Region	WCS
align wcs	in	out	center	none	×	У	ху
FUV				NUV ° ° °			0 0 0

Detector Frame

c

% SAOIm	7€SAOImage ds9											
File Edit	Frame	Bin Zoom So	ale Co	olor Region	WCS Anal	ysis Help						
File		NGA_M51_0001	I-nd-cnt	.fits							165	
Value		50]							N∕		
FK5	α	13:29:45.388	δ	+47:13:26.0	06							
Physical	×	1049.000] Y	2288.000)							
Image	×	1049.000] Y	2288.000)							
Frame2	Zoom	0.125	Ang	0.000						19400		1 5 C
File	;	Edit		Fram	e	Bin	Zoom	Scale	Color		Region	WCS
linear		log	sq	uared	sqrt	hist equ	minmax	99.5%	99%	98%	zscale	zmax

GALEX Photon Counting

Satellite Transit ~ 10 min

GALEX Photon Counting

M-Dwarf Flare Star ~ 20 min (Welsh et al 2005)

FIREBall Photon Counting

Mapping the IGM from a Balloon

The FIREBall Experiment (cf Martin talk yesterday)

FIREBall Photon Counting

Mapping the IGM from a Balloon

First aspect-reconstructed photon counting data from an integral field unit (& first IFU in the UV)

Raw spectrograph/detector data from 3 deep observations (5 hours)

FIREBall Photon Counting

Mapping the IGM from a Balloon

First aspect-reconstructed photon counting data from an integral field unit (& first IFU in the UV)

Efficiency

GALEX MCP detectors have 10-30% QE FUV 10-15% QE NUV

Significant potential for improvement by factors of ~2-5...

...but QE gains have been slow to materialize in new flight-ready units

Noise: HST/WFC3 UVIS

1000 🗗

50.1

UVIS/F625W

Description

Sloan Digital Sky Survey r' filter.

Figure A.79: Integrated system throughput for F625W.

Typical ~I hour exp, SDSS r-band, sky-dominated at faint limit

Figure A.80: Point source S/N vs. V+ABv for the F625W filter, assuming high sky backgrounds and a 5×5 pixel aperture.

100

 10^{-2}

 10°

 $10^5 = exptime$

Noise: MCP FIREBall Experiment

First generation FIREBall experiment still limited by dark count rate from GALEX spare NUV detector

- Efficiency/throughput gains provide a tremendous boost, but only feasible with non-MCP, Si detectors
- Next generation instrument combines efficiency gains on Si in UV (AR+delta-doping) with low noise CCD (L3CCD)

e.g. P. Morrissey next talk

Nikzad, Hamden

Red leak: Solar-blind does not necessarily mean that no red-blocking is needed

Red leak: At the same time, red blocking/solar blind requirement need not be 'draconian'

Out-of-band rejection requirement ~10⁻³ -10⁻⁴

Manageable in spectrograph and/or with high efficiency multilayer filters Red leak: At the same time, red blocking/solar blind requirement need not be 'draconian'

e.g. stellar populations in galaxies are not extremely "red"

Rejection ~10⁻³ -10⁻⁴

Some rare objects, & cool stars

On GALEX operational and downstream limits are the bottleneck

Dynamic Range/Count Rate

Often extremely important for wide-field experiments

GALEX All-sky Imaging Survey Total Duration = 5,000,000 seconds = 0.2 Trillion Photons

Format/Pixels

- "Workhorse Technologies"
 - Kepler focal plane CCDs (vis): 42 Mpix
 - GALEX MCP detectors: ~2 Mpix
- These are hard to beat and mitigate gains from much smaller "3-d" detectors
 - At 200x200x50 may start to become competitive, but still some years off

Number of resolution elements of present/future optical IFU/spectrographs

