THE SHROUD FRACTION A method for finding Circumstellar Material around Wolf-Rayet stars

Marcus Freeman Laboratory for Multiwavelength Astrophysics

> Rochester Institute of Technology May 15, 2012

Outline

Wolf-Rayet Stars

- **Circumstellar Material**
- Circumstellar Dust
 - Wind-Blown Bubbles
- Analysis
- The Shroud Fraction
- **Observations**
- Discussion
- Conclusions

Background

Wolf-Rayet Stars

As massive 0 stars evolve, they are believed to enter a phase of extreme mass loss - 0 \rightarrow 0If \rightarrow BSG \rightarrow LBV \rightarrow WN \rightarrow WC \rightarrow Supernova (>50 solar masses) - 0 \rightarrow BSG \rightarrow YSG \rightarrow RSG \rightarrow WN \rightarrow WC \rightarrow Supernova (35-50 solar masses) Three broad classes - WN, WC, WO which describe dominant emission lines (Nitrogen, Carbon, Oxygen) WR stars are massive stars (> 10 solar masses) undergoing copious mass loss through winds

Wind speeds are greater than 800 km s⁻¹ and running up to 3000 km s⁻¹ Mass loss rates of 10⁻⁵ solar masses a year, which affect the evolution of the star

Circumstellar Material

Circumstellar Dust

Typically dust is destroyed by the UV radiation of WR stars however WR stars have been found with dusty shells

Wind-Blown Bubbles

- Central mass-losing star creates cavity from its winds, sweeping up the local ISM
- Only a few dozen identified WBBs in our galaxy

http://www.ruppel.darkhorizons.org/ngc_6888.htm

Goal

Given a set of Wolf-Rayet stars, determine the fraction that is likely to be shrouded by circumstellar material
 Using a pre-existing catalog of WR stars in the Milky Way, extinction laws, and observations, find the shroud fraction

Analysis

Extinction

Given the observed b-v and the intrinsic b-v of WR stars, on can calculate the visual extinction and column density

$$A_V = E(B - V) \left[\left(\frac{\lambda_B}{\lambda_K} \right)^{-1.53} - 1 \right]^{-1} \text{ mag}, \quad N_H = A_V \times 1.8 \times 10^{21} \text{ cm}^{-2}$$

For our purposes, WR stars at a distance greater than 8 kpc were removed from the data set

Determined a threshold extinction by using catalogued distances and calculated column densities

$$N_H = \int_0^D n_H(D') dD' = \bar{n}_H \times D \quad \longrightarrow \quad \bar{n}_H = \frac{N_H}{D} \quad \longrightarrow \quad N_H(D) = \bar{n}_H \times D$$

ALETHIOMETER

- "ALETHEIA" Greek word for truth
 - Program designed to find stars in a catalogue with higher calculated column densities than a given threshold value
 - AV is calculated for each star given the catalogued data
 - NH is calculated from the AV value and compared with the threshold value
 - If above the threshold value, the star is flagged as shrouded

The VIIth Catalogue

The VIIth Catalogue of Wolf-Rayet Stars

- Created in 2001, contained at the time photometric data on 227 WR stars found in the Milky Way
- Since then hundreds more WR stars have been found in the Galaxy
- 164 WR stars < 8 kpc away
- Two subsets of WR stars were chosen
 - WN4, 12 stars
 - WC6, 7 stars

Ran ALETHIOMETER on the catalogue to determine corresponding Shroud Fraction

Projected Shroud Fraction

- **SF = Shroud Fraction**
 - Using the median threshold column density as an absolute lower limit for finding potentially shrouded WR stars, we can determine the SF
 - 82/164 = 0.50 above median
 - 42/164 = 0.26 above upper threshold (25% above median)

WN4 Subset

- WR1 no recorded CM association
- WR6 S 308
- WR7 NGC 2359
- WR18 NGC 3199
 - WR35b no recorded CM association
 - WR37 no recorded CM association

WN4 Subset

WR42b - no recorded CM association WR44a - diffuse emission WR45b - no recorded CM association _____ WR46a - no recorded CM association WR62a - no recorded CM association WR129 - no recorded CM association

Projected SF

Given the subset of WN4 stars, the projected SFs are as follows:

- 7/11 = 0.64 (Above median)
- -3/11 = 0.27 (Above upper threshold)

WC6 Subset

- WR5 HI bubble
- WR13 maybe diffuse nebula, HI bubble
- WR15 maybe diffuse nebula, HI bubble, IRAS shell
- ---- WR23 IRAS shell
- WR45 no recorded CM association
- --- WR107a no recorded CM association

Projected SF

Given the subset of WC6 stars, the projected SFs are as follows:

- 5/7 = 0.71 (Above median)
- -1/7 = 0.14 (Above upper threshold)

Observations

Visual (and X-ray) SF

- From the analysis of each star and its surroundings, a visual SF can be determined to compare with the projected SF
- HEASARC was used to find observations performed that included subsets of WR stars
- Observations were taken from Chandra, ROSAT, Swift, and DSS where available
- Diffuse X-ray emission could indicate the presence of shocked material

WR 1 Observations

WR 6 Observations

WR 7 Observations

WR 7 Observations

WR 18 Observations

WR18 - Chandra

6000 8000

14000

16000

18000

20000

22000

WR18 - DSS

Not flagged as shrouded (Above upper threshold)

10000

12000

WR 35b Observations

WR 42b Observations

WR 44a Observations

WR 45b Observations

WR 46a Observations

WR 62a Observations

WR 129 Observations

Visual (and X-ray) SF

Based on the visual data, the SF for the WN4 subset is 5/11 = 0.45 Reminder, the projected SF for this subset was 7/11 = 0.64 (Above median) 3/11 = 0.27 (Above upper threshold)

Visual (and X-ray) SF

Based on the visual data, the SF sources are WR 6, 7, 18, 35b, 62a The sources projected SF for this subset were WR 1, 18, 35b, 37, 42b, 44a, 62a WR 35b, 42b, 62a

WR 5 Observations

WR 13 Observations

WR 15 Observations

WR 23 Observations

WR 45 Observations

WR 107a Observations

WR 154 Observations

Visual (and X-ray) SF

Based on the visual data, the SF for the WC6 subset is 3/7 = 0.43Reminder, the projected SF for this subset was 5/7 = 0.71 (Above median) -1/7 = 0.14 (Above upper threshold)

Visual (and X-ray) SF

Based on the visual data, the SF sources are WR 13, 107a, 154 The sources projected SF for this subset were WR 5, 13, 15, 45, 107a — WR 15

Conclusions

Discussion

- Projected and Observed SFs do not match. Why?
 - Projected distances may be wrong, in some cases causing the stars to appear in front of material when it may be within
 - Relying on visual (and some X-ray) data is not enough to generate a definitive Observed SF; IR data observes circumstellar dust better than shorter wavelengths
- Line of sight for the purposes of this project a uniform n_H was applied, while in reality different regions of the galaxy have different amounts of material, leading to different extinction values

Conclusions

Given this method, there appears to be an average (between the high and median threshold values) Project SF close to the Observed SF

Imperfect method of detecting circumstellar material

- At a high threshold value it misses a few, and at the median it finds too many; require a better threshold determination
- Misses "recorded" shrouded stars (e.g. WR 7)

Need up to date data

Require further multiwavelegth observations, IR and X-ray for confirmation

Not all material can be seen in the visual band, cool dust and hot gas hides at longer and shorter wavelengths

References

Carroll, B. W., & Ostlie, A. D., 2007, An Introduction to Modern Astrophysics

Freeman, M., Kaster, J. H., Montez, R., & Rappaport, S. A., 2012, in prep.
Hillier, D. & Murdin, P., 2000, Encyclopedia of Astronomy and Astrophysics
Monnier, J. D., Tuthill, P. G., Danchi, W. C., Murphy, N., & Harries, T. J., 2006, ApJ, 655, 1033
Predehl, P., Schmitt, J. H. M. M., 1995, A&A, 293, 889
van der Hucht, K. A., 2001, NewAR, 45, 135