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IS NATURE PREDICTABLE, IN THEORY?

• Copenhagen interpretation
• Probably not, and
• in either case, the math is elegant
• - Bohr, Heisenberg

• Local realistic interpretation
• Yes, there is a deterministic theory 

beneath quantum mechanics
• - Einstein:
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“God	does	not	play	dice”



DISPROVING LOCAL REALISM

• Local realism is testable
• John Bell, 1975

• Local realism is false
• Hensen et al., 2015
• Giustina et al., 2015
• Shalm et al., 2015  (NIST)

• Bell test can generate provably 
unpredictable random numbers
• Bierhorst et al., 2018

B. Hensen et al., “Loophole-free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometres,” Nature 526, 682 (2015).
M. Giustina et al., “Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons,” Phys. Rev. Lett. 115, 250401 (2015).
L. K. Shalm et al., “Strong Loophole-Free Test of Local Realism,” Phys. Rev. Lett. 115, 250402 (2015).
Bierhorst et al., “Experimentally generated randomness certified by the impossibility of superluminal signals,” Nature 556, 7700 (2018). 3

Using a combination of position measurements from a GPS
receiver and site surveying, we determine the locations of
Alice, Bob, and the source with an uncertainty of < 1 m.
This uncertainty is set by the physical size of the cryostat
used to house our detectors and the uncertainty in the GPS
coordinates. There are four events that must be spacelike

separated: Alice’s and Bob’s measurement choices must be
fixed before any signal emanating from the photon creation
event could arrive at their locations, and Alice and Bob
must finish their measurements before information from the
other party’s measurement choice could reach them. Due to
the slight asymmetry in the locations of Alice, Bob, and the
source, the time difference between Bob finishing his
measurement and information possibly arriving about
Alice’s measurement choice is always shorter than the
time differences of the other three events as shown in
Fig. 3(b). This time difference serves as a kind of margin;
our system can tolerate timing errors as large as this margin
and still have all events remain spacelike separated. For
one, three, five, and seven aggregate pulses, this corre-
sponds to a margin of 63.5! 3.7 ns, 50.9! 3.7 ns,
38.3! 3.7 ns, and 25.7! 3.7 ns, respectively, as shown
in Table I. The uncertainty in these timing measurements is
dominated by the 1-m positional uncertainty (see
Supplemental Material [28] for further details on the timing
measurements).
A way to visualize and further quantify the spacelike

separation of events is to compute how far Alice, Bob, and
the source could move from their measured positions and
still be guaranteed to satisfy the locality constraints,
assuming that the chronology of all events remains fixed.
In Fig. 4(a) Alice, Bob, and the source locations are
surrounded by shaded green regions. As long as each party
remains anywhere inside the boundaries of these regions,
their events are guaranteed to be spacelike separated. There
are specific configurations where all three parties can be

FIG. 4 (color online). (a) The positions of Alice (A), Bob (B),
and the source (S) in the building where the experiment was
carried out. The insets show a magnified (×2) view of Alice’s and
Bob’s locations. The white dots are the location of the random
number generators (RNGs). The larger circle at each location has
a radius of 1 m and corresponds to our uncertainty in the spatial
position measurements. Alice, Bob, and the source can be located
anywhere within the green shaded regions and still have their
events be spacelike separated. Boundaries are plotted for aggre-
gates of one, three, five, and seven pulses. Each boundary is
computed by keeping the chronology of events fixed but allowing
the distance between the three parties to vary independently. In
(b) the p value of each of the individual 15 pulses is shown.
Overlaid on the plot are the aggregate pulse combinations used in
the contours in (a). The statistical significance of our Bell
violation does not appear to depend on the spacelike separation
of events. For reference and comparison purposes only, the
corresponding number of standard deviations for a given p value
(for a one-sided normal distribution) are shown.

FIG. 5 (color online). The p value for different numbers of
aggregate pulses as a function of the excess predictability, ϵ, in
Alice’s and Bob’s measurement settings. Larger levels of pre-
dictability correspond to a weakening of the assumption that the
settings’ choices are physically independent of the photon
properties Alice and Bob measure. As in Fig. 4(b), the p-value
equivalent confidence levels corresponding to the number of
standard deviations of a one-sided normal distribution are shown
for reference.
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God’s Dice

Loophole-free Bell test

God’s Dice

http://beacon.nist.gov
• Random	key	generation	is	central	to

• Cybersecurity
• E-commerce
• Voting	machines



NEEDS FOR SINGLE PHOTON DETECTION

• Bell test
• >67% detection efficiency

• Linear quantum computing
• >99% detection efficiency

• Quantum communication
• Photon loss -> redundancy -> vulnerability

• This is not comprehensive...
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OUTLINE

• Single photon detectors and quantum information

• Cryogenic silicon photonic integration

• Superconducting Optoelectronic Networks platform

• Neuromorphic photonics and quantum photonics
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Single photon detectors



SINGLE PHOTON DETECTION AT NIST

• Advance science of measuring single photons

• Characterize single-photon sources

• Transfer detector technology to the public

• Investigate new applications

• Collaborate
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Sae Woo Nam

Contact
saewoo.nam@nist.gov
rich.mirin@nist.gov
jeffrey.shainline@nist.gov
alexander.tait@nist.gov



TRANSITION EDGE SENSOR (TES)

Absorber, C

Thermometer

Weak thermal link, g

Thermal sink
(50 mK)

Energy
deposition

R

T

Rn

~8	W

~1	mK

~0.2	mK

~0.2	W

Calorimetric detection
UV/visible/IR photons

Superconducting
transition edge
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TRANSITION EDGE SENSOR (TES)

25 µm

Nb wires

Tungsten
(W)

805 nm: ηSystem = 97.7 ± 1.5 %

Goal 2: decrease this number
Goal 1: increase this number
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SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR
(SNSPD)
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SYSTEM DETECTION EFFICIENCY

Device chip

Zirconia sleeve

Fiber ferrule

Sapphire rod

Coaxial connector pin

Miller et al., Opt. Express  (2011)

Optical fiber
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Cryogenic silicon photonics



CO-INTEGRATION: WAVEGUIDES + SNSPDS

Shainline et al. ” Room-temperature-deposited dielectrics and superconductors for...” Op. Ex. 25 10322 (2017).

1	um
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Jeff Shainline



ALL-SILICON LIGHT EMITTING DIODES

S. M. Buckley et al. “All-silicon light-emitting diodes waveguide-integrated with 
superconducting single- photon detectors ” Applied Physics Letters, 111 (14). 2017.

Sonia Buckley

• Some Si defects have an optical transition
• Low temp. inhibits non-radiative decay
• Electrical pumping with PN junction
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• Implanted at SUNY Poly
• Measured at NIST

OPTIMIZING EMISSION ON 12 INCH WAFERS
Photoluminescence

Si+

300mm Recent results
• 50x enhancement from prior runs
• Evidence of localization in device 

layer, not handle layerPops

Consistent (±10%)
up to 35 Kelvin
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CO-INTEGRATION: SILICON LEDS + SNSPDS

S. M. Buckley et al. “All-silicon light-emitting diodes waveguide-integrated with superconducting single-
photon detectors ” Applied Physics Letters, 111 (14). 2017. 17



come with a handful of downsides, including large static-power consumption [12], large area, varying
input impedances[13], latching[14], and poor output-input feedback.

The most successful previous attempts at creating a superconductor-to-semiconductor interface
consisted of a superconducting preamplifier stage (e.g. a Suzuki stack) combined with a semicon-
ductor amplifier stage (e.g. HEMTs)[12][15][16]. This approach was very e↵ective in translating
signal levels, but was power-constrained. In particular, using semiconductor transistors in an am-
plifier configuration necessarily drew significant static power (⇠1 mW each), which strongly limited
scalability on a cryogenic stage. In related work, a CMOS-latch input was used after the pream-
plifier to static power[17], but introduced the need for per-channel threshold calibration. In an
alternate approach, it was shown that a >1 V output could be created from a nanowire device such
as the nTron[11], but using the nTron as a means for semiconductor-logic interfacing has proved
to have a few issues: (1) creation of the high-impedance state was a hotspot-growth process that
takes a nontrivial amount of time, (2) it was hysteretic and not able to self-reset without external
circuitry, and (3) output-input feedback was a concern, as the input and output terminals were
galvanically connected.

a

2 μm

125 nm

b

c

Power VinIin (W)

d

Device 1

2

3

4

Figure 1: High-impedance superconducting switch overview. (a) Scanning electron micrograph
of one device (inset) closeup of the nanowire meander. (b) Schematic illustration of the device,
showing the three primary layers (resistor, dielectric, and nanowire) as well as contact pad geometry.
(c) Resistance data versus input power for several devices and circuit schematic for resistance
measurement. Maximum resistance is proportional to device area, with devices 1-4 having areas
44, 68, 92, and 116 µm2. (d) I-V curve of one device for three di↵erent input powers.

The device we present here is a monolithic switching element that combines a low-impedance
resistor input (1-50 ⌦) with a high-impedance (>1 M⌦) superconducting nanowire-meander switch
output. The input element and switching element are isolated galvanically but coupled thermally
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• Interface: superconductor signals to 
semiconductor readout

• millivolt input -> Volt output
• No Josephson Junctions

SUPERCONDUCTING AMPLIFIERS

A. McCaughan et al. “A compact, ultrahigh impedance superconducting thermal switch for 
interfacing superconductors with semiconductors and optoelectronics,” Submission pending 
government reopen. 2019 18

Adam McCaughan



The SOEN platform
Superconducting OptoElectronic Networks



NIST is opening this process to the public

Silicon passives Superconducting amplifiers

Silicon light sourcesSingle-photon detectors

20



• Fabricated in NIST cleanroom
• 3” wafers, 1x1 cm die
• 220nm SOI device layer

• Process design kit
• Open-access, open-source
• Online (pending govt. reopen)

• Preferred design tools
• KLayout (free software)
• phidl (open-source)

3”

MULTI-PROJECT WAFER FORMAT

www.klayout.de
github.com/amccaugh/phidl 21



shown in Fig. 4(d). SNSPD1 and LED1 are connected via
a waveguide, and SNSPD2 and LED2 are connected via a
separate waveguide. When the applied current to LED1 is
scanned, we observe a higher response of 40 dB on SNSPD1
than on SNSPD2. The reverse is true when the current is
scanned on LED2. There is no increase in the count rate
when the LED is reverse biased at the same voltage level.
The total system efficiency of 5!10"7 is calculated by multi-
plying the photon energy by the measured detector count rate
and dividing by the total electrical power. This includes
losses due to nonradiative recombination in the LED, light
not coupled to the waveguide, light in the waveguide not
absorbed by the SNSPD, and inefficiencies in the SNSPD.
This effect was also observed for LED/SNSPD waveguide
devices, including high-dynamic-range detector array
(HiDRA) devices and devices with no gold pads in the line of
sight of the LED/detector pairs.

To demonstrate the scalability of LEDs and SNSPDs
fabricated with the process presented here, a device with an
LED coupled to eleven SNSPDs was demonstrated, a high-
dynamic-range detector array (HiDRA). An optical micros-
copy image of the device is shown in Fig. 5(a). The device
consists of an LED (on the left) that couples to a waveguide
with a series of power taps. At each tap, a fraction, f, of the
light is directed to subsequent detectors, while 1" f of the
light goes to the nanowire detector at that port. This design
allows the measurement of a high dynamic range of light,
where the n th detector will receive ð1" f Þf n"1 of the light,
assuming consistent power taps and detectors. For example,
if the beamsplitting ratio is 1:9, f ¼ 0.1, and the first detector
will receive 90% of the light while the tenth detector will
receive 9! 10"8% of the light. In principle, there should

always be a detector on the HiDRA in range for detection
from the single photon level up to milliwatts of optical
power, limited by the cryostat cooling power and the back-
ground scattered light level on-chip.

The HiDRA is useful for characterizing the operation of
the LED over a broad range of current injection levels.
Figure 5(b) shows the counts versus nanowire bias for eleven
SNSPD detectors comprising a HiDRA. Since the intensity
of the light on each SNSPD for a fixed LED intensity I0 can
be determined from I ¼ I0ð1" f Þf n"1, the beam splitting
ratio f can be extracted from the slope of a semilog plot of
the SNSPD counts versus SNSPD index n . To generate such
a plot, each of the curves shown in Fig. 5(b) was fit to an
error function, and the amplitude of each error function, A,
(normalized by the value for the first detector, A1) was plot-
ted versus the nanowire index. The R2 values observed for
the error functions ranged from 0.978 to 0.9996, where data
were truncated 0.2 lA before the critical current.

The results of this plot for two different HiDRAs,
designed to have two different beamsplitting ratios, are
shown in the inset of Fig. 5(b). The fit was performed leaving
out the first and last detectors, for reasons described below.
These HiDRAs were designed to have fdes ¼ 0.1 and
fdes ¼ 0.01, based on operation in the fundamental TE mode
of the ridge waveguide [Fig. S1(a), supplementary material].
However, the device did not perform as designed, and the
beamsplitting ratio that we observed was significantly larger
than this, with f ¼ 0:6560:07 for both, as calculated from
the inset in Fig. 5(b). The higher than expected splitting ratio
is consistent with 2.5D finite difference time domain
(FDTD) simulations that include the higher order modes (see
supplementary material). The ridge waveguide with deep-
etched sides [see diagram Fig. 2(a) and supplementary mate-
rial, Fig. S1(b)] supports a multitude of other slab modes
[(supplementary material, Fig. S1(c)] and light from the
LED couples to these modes.

This hypothesis is supported by the observed deviation
of the first detector response from the expected straight line.
In fact, for the designed fdes ¼ 0.1 (fdes ¼ 0.01) structure, this
point indicates that the splitting ratio of the first beam tap
f1 ¼ 0.5 (0.15). This may be due to the fact that there is a sig-
nificant contribution from the fundamental mode which
behaves closer to design and is mostly directed to the first
detector, with a larger proportion sent to the first detector for
the fdes ¼ 0.01 detector. At subsequent detectors, the contri-
bution of the fundamental mode is negligible and higher
order modes dominate the response.

Additionally, the final detector falls off the expected line.
This is because the final detector has no beamtap. The expected
value for the intensity is therefore I0ðf 11Þ, which leads to the
expected value of the final point to fall between the intensity
values for n ¼ 7 and n ¼ 10. We observe the value to fall
between n ¼ 6 and n ¼ 7, indicating f & 0:76–0:78. This is
outside the range of expected values calculated from the slope,
likely due to the multimode nature of the waveguide.

Thirty-six SNSPDs from this wafer were tested, and all
were functional. As can be seen in Fig. 5(b), the critical cur-
rent and the length of the plateau region varied. This is likely
due to the fact that the SNSPD widths were close to the reso-
lution limit of the photolithography tool and as a result

FIG. 5. (a) Optical microscopy image of the HiDRA, designed to split off a
fraction of the light to each of the 11 detectors. (b) Counts versus nanowire
current for all 11 detectors for an LED current of 10 lA. The HiDRA has
fdes ¼ 0.01. Inset: Plot of detector response (defined in text) versus the nano-
wire index for two different HiDRA structures designed to have different
beamsplitting ratios. The red line is a linear fit from which the beamsplitting
ratio is calculated.

141101-3 Buckley et al. Appl. Phys. Lett. 111, 141101 (2017)

MORE COMPLEX SYSTEMS

• Complex systems are enabled by
• High yield
• Electrical-in/Electrical-out

• High Dynamic Range Detector Array [1]
• Consistent splitting and efficiency
• No discrete optics or fibers

S. M. Buckley et al. “All-silicon light-emitting diodes waveguide-integrated with 
superconducting single- photon detectors ” Applied Physics Letters, 111 (14). 2017.

LED

shown in Fig. 4(d). SNSPD1 and LED1 are connected via
a waveguide, and SNSPD2 and LED2 are connected via a
separate waveguide. When the applied current to LED1 is
scanned, we observe a higher response of 40 dB on SNSPD1
than on SNSPD2. The reverse is true when the current is
scanned on LED2. There is no increase in the count rate
when the LED is reverse biased at the same voltage level.
The total system efficiency of 5!10"7 is calculated by multi-
plying the photon energy by the measured detector count rate
and dividing by the total electrical power. This includes
losses due to nonradiative recombination in the LED, light
not coupled to the waveguide, light in the waveguide not
absorbed by the SNSPD, and inefficiencies in the SNSPD.
This effect was also observed for LED/SNSPD waveguide
devices, including high-dynamic-range detector array
(HiDRA) devices and devices with no gold pads in the line of
sight of the LED/detector pairs.

To demonstrate the scalability of LEDs and SNSPDs
fabricated with the process presented here, a device with an
LED coupled to eleven SNSPDs was demonstrated, a high-
dynamic-range detector array (HiDRA). An optical micros-
copy image of the device is shown in Fig. 5(a). The device
consists of an LED (on the left) that couples to a waveguide
with a series of power taps. At each tap, a fraction, f, of the
light is directed to subsequent detectors, while 1" f of the
light goes to the nanowire detector at that port. This design
allows the measurement of a high dynamic range of light,
where the n th detector will receive ð1" f Þf n"1 of the light,
assuming consistent power taps and detectors. For example,
if the beamsplitting ratio is 1:9, f ¼ 0.1, and the first detector
will receive 90% of the light while the tenth detector will
receive 9! 10"8% of the light. In principle, there should

always be a detector on the HiDRA in range for detection
from the single photon level up to milliwatts of optical
power, limited by the cryostat cooling power and the back-
ground scattered light level on-chip.

The HiDRA is useful for characterizing the operation of
the LED over a broad range of current injection levels.
Figure 5(b) shows the counts versus nanowire bias for eleven
SNSPD detectors comprising a HiDRA. Since the intensity
of the light on each SNSPD for a fixed LED intensity I0 can
be determined from I ¼ I0ð1" f Þf n"1, the beam splitting
ratio f can be extracted from the slope of a semilog plot of
the SNSPD counts versus SNSPD index n . To generate such
a plot, each of the curves shown in Fig. 5(b) was fit to an
error function, and the amplitude of each error function, A,
(normalized by the value for the first detector, A1) was plot-
ted versus the nanowire index. The R2 values observed for
the error functions ranged from 0.978 to 0.9996, where data
were truncated 0.2 lA before the critical current.

The results of this plot for two different HiDRAs,
designed to have two different beamsplitting ratios, are
shown in the inset of Fig. 5(b). The fit was performed leaving
out the first and last detectors, for reasons described below.
These HiDRAs were designed to have fdes ¼ 0.1 and
fdes ¼ 0.01, based on operation in the fundamental TE mode
of the ridge waveguide [Fig. S1(a), supplementary material].
However, the device did not perform as designed, and the
beamsplitting ratio that we observed was significantly larger
than this, with f ¼ 0:6560:07 for both, as calculated from
the inset in Fig. 5(b). The higher than expected splitting ratio
is consistent with 2.5D finite difference time domain
(FDTD) simulations that include the higher order modes (see
supplementary material). The ridge waveguide with deep-
etched sides [see diagram Fig. 2(a) and supplementary mate-
rial, Fig. S1(b)] supports a multitude of other slab modes
[(supplementary material, Fig. S1(c)] and light from the
LED couples to these modes.

This hypothesis is supported by the observed deviation
of the first detector response from the expected straight line.
In fact, for the designed fdes ¼ 0.1 (fdes ¼ 0.01) structure, this
point indicates that the splitting ratio of the first beam tap
f1 ¼ 0.5 (0.15). This may be due to the fact that there is a sig-
nificant contribution from the fundamental mode which
behaves closer to design and is mostly directed to the first
detector, with a larger proportion sent to the first detector for
the fdes ¼ 0.01 detector. At subsequent detectors, the contri-
bution of the fundamental mode is negligible and higher
order modes dominate the response.

Additionally, the final detector falls off the expected line.
This is because the final detector has no beamtap. The expected
value for the intensity is therefore I0ðf 11Þ, which leads to the
expected value of the final point to fall between the intensity
values for n ¼ 7 and n ¼ 10. We observe the value to fall
between n ¼ 6 and n ¼ 7, indicating f & 0:76–0:78. This is
outside the range of expected values calculated from the slope,
likely due to the multimode nature of the waveguide.

Thirty-six SNSPDs from this wafer were tested, and all
were functional. As can be seen in Fig. 5(b), the critical cur-
rent and the length of the plateau region varied. This is likely
due to the fact that the SNSPD widths were close to the reso-
lution limit of the photolithography tool and as a result

FIG. 5. (a) Optical microscopy image of the HiDRA, designed to split off a
fraction of the light to each of the 11 detectors. (b) Counts versus nanowire
current for all 11 detectors for an LED current of 10 lA. The HiDRA has
fdes ¼ 0.01. Inset: Plot of detector response (defined in text) versus the nano-
wire index for two different HiDRA structures designed to have different
beamsplitting ratios. The red line is a linear fit from which the beamsplitting
ratio is calculated.

141101-3 Buckley et al. Appl. Phys. Lett. 111, 141101 (2017)
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Fit lines
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[1, 2, 3]

EXAMPLE: PHOTON PAIR GENERATION
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[1] Cale M. Gentry et al. “Quantum-correlated photon pairs generated in a commercial 45nm complementary metal-
oxide semiconductor microelectronic chip,” Optica, vol. 2, pp. 1065–1071, 2015.
[2] Marc Savanier, Ranjeet Kumar, and Shayan Mookherjea, “Photon pair generation from compact silicon microring resonators using 
microwatt-level pump powers,” Op. Ex, vol. 24, pp. 3313–3328, 2016.
[3] Xiyuan Lu et al., “Chip-integrated visible-telecom photon pair sources for quantum communication,” arXiv: 1805.04011, 2018.

Detectors Buffers

Sources



Sources

WHAT CAN YOU COME UP WITH?
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Detectors Buffers
Silicon Photonic

Quantum Information 
Circuit



WE ARE LOOKING FOR COLLABORATORS

• With expertise in integrated photonic device measurement
• Cryogenic temperatures
• High speed

• Have new ideas for applications in
• Quantum information science
• Measurement science
• Neuromorphic Photonics

• Willing to design characterization structures and report findings
• Detectors
• Sources (esp. single photon)
• Passives
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NEURAL NETWORKS IN COMPUTING

• Today, there is large demand to 
perform neural network operations

• Conventional computers are 
inefficient at doing these operations

1 2 3 4
Layer number

x783

x1

x0

f (9)

f (8)

f (7)

f (6)

f (5)

f (4)

f (3)

f (2)

f (1)

f (0)

. . .

argmax

Ĉ

Neural network: distributed

Conventional computer: centralized
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NEUROMORPHIC HARDWARE

• Specialized distributed hardware 
• Does neural network operations
• High communication cost

• Energy
• Time

[1] F. Akopyan et al, “TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” 2015.
[2] S. B. Furber et al. “The SpiNNaker project,” May 2014.

(a) (b) (c)

Fig. 3. TrueNorth architecture at core, chip, and multi-chip scale. (a) The building block is a neurosynaptic core, where horizontal lines are axons (inputs),
the “square-end half-circle” symbol denotes axon delay buffers, cross points are individually programmable synapses, vertical lines are neuron inputs, and
triangles are neurons (outputs). Neurons behaviors are individually programmable with two examples shown. (b) Cores naturally tile using a 2D on-chip
mesh routing network. Long-range connections between neurons and axons are implemented by sending spike events (packets) over the mesh network. (c)
Individual chips also tile in 2D, with the routing network extending across chip boundaries through peripheral merge and split blocks.

represented by a bit Ai(t). Although each synaptic connection
is binary, it can mediate a multi-valued post-synaptic effect.
Specifically, each axon i is assigned to one of four types
Gi, which corresponds to a weight specified individually for
each neuron. For example, axon–neuron connections can be
set to be excitatory or inhibitory, and each with different
synaptic strengths. Mathematically, at time t, neuron j receives
input: Ai(t)×Wi, j × SGi

j (Listing 1, line 7), where SGi
j is a

programmable signed integer. In an alternate mode, the active
connections are integrated probabilistically (using a pseudo-
random number generator, PRNG, in each core), emulating
stochastic neural dynamics. Neurons integrate synaptic input
over time, maintaining the state in their membrane potential
Vj, and emitting spikes if they exceed their thresholds [3] (line
12); thresholds can also be drawn from the PRNG. Each spike
is associated with a target core, a target axon address, and a
delivery time tD computed as t plus an programmable axonal
delay from 1 to 15 (line 15).

We now describe a software and a silicon expression of
our neuroscience-inspired kernel, both based on neurosynaptic
cores, and are exactly functionally equivalent.

B. Kernel Software Expression: Compass Simulator

Compass is a highly-optimized function-level simulator for
large-scale networks of spiking neurons organized as neurosy-
naptic cores. The simulator is written in C++, sends spike
events via MPI communication [47] and uses OpenMP [48] for
thread-level parallelism. Compass demonstrates outstanding
weak and strong scaling results [6], [7].

The kernel in Listing 1 maps directly to the main semi-
synchronous simulation loop used by Compass, with each
pass simulating a time step. In the Synapse phase (lines 4-8),
each process propagates input spikes from axons to neurons
through the crossbar and performs synaptic integration. Next,
in the Neuron phase (lines 9-13), each process executes the
leak, threshold, and fire model for each neuron. Last, in the
Network phase (line 15) processes send spikes from firing neu-

rons to destination axons. For additional efficiency, Compass
aggregates spikes between pairs of processes into a single MPI
message; overlaps communication with computation; uses an
innovative synchronization scheme requiring just two commu-
nication steps regardless of the number of the processors; uses
meticulous load-balancing; and uses highly compressed data
structures for maintaining neuron and synapses states. These
advances enabled Compass to exercise all 6.3 million threads
and 1.5 million processors on LLNL’s Sequoia Blue Gene/Q.

Compass is indispensable for exploring scaling for large-
scale network simulations; benchmarking inter-core commu-
nication on different neural network topologies; demonstrating
applications in vision, audition, motor control, and sensor inte-
gration [18]; and hypotheses testing, verification, and iteration
regarding neural codes and function. Furthermore, via co-
design, Compass played an instrumental role in developing
our energy-efficient hardware kernel expression, informing
architectural choices in the hardware design, as well as veri-
fying the hardware pre- and post-fabrication via function-level
regression testing.

C. Kernel Hardware Expression: TrueNorth Chip

Our key innovation is a very efficient implementation of
the kernel in silicon. Building on the success of Compass,
we have conceived, designed, built, and tested a custom-
designed neural processor—TrueNorth—that is able to run a
network of neurosynaptic cores in real time, while consuming
little total power (active + passive power). TrueNorth’s archi-
tecture, (Fig. 3), is a custom-designed mixed asynchronous-
synchronous chip that was fabricated in Samsung’s 28nm
process technology. With 5.4 billion transistors in 4.3cm2,
TrueNorth has an on-chip network of 4,096 neurosynaptic
cores—for a total of one million neurons and 256 million
synapses. The physical implementation of a neurosynaptic core
fits in a 390µm×240µm footprint.

Active power is kept low by following the event-driven
nature of the kernel and only evaluating the neural updates that
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X. FUTURE PLANS

Current SpiNNaker hardware has seen use across the
computational neuroscience and neurorobotic communi-
ties. All of the major hardware functions required to build
larger machines have now been developed and tested, and
the remaining tasks to build larger machines are now
primarily related to the manufacture of further packages
and PCBs.

A major commitment over the next two years is to deliver a
machine with at least half a million processors as a contribution
to the European Union Flagship Human Brain Project (HBP),
where SpiNNaker will be one of the neuromorphic ‘‘platforms’’
offered to the wider HBP community.

An earlier, less formal, commitment is to demonstrate
the capability of SpiNNaker to support a real-time imple-

mentation of the University of Waterloo (Waterloo, ON,
Canada) SPAUN model [24]. This is expected to require a
system of around 36 48-node SpiNNaker boards, or 30 000
processors, though this estimate should come down with
Nengo support for sparse connectivity and reduced firing
rates, and will be a solid demonstration of the capability of
the SpiNNaker machine as a platform to support large-scale
real-time spiking neural models.

XI. RELATED WORK

While SpiNNaker represents a particular combination of
digital many-core computing with a lightweight commu-
nications infrastructure tuned to modeling large-scale
spiking neural networks in biological real time, there are a

Fig. 10. Example robotic closed perception–action loop. A ‘‘þ’’ is shown to the robot, which extracts and combines the vertical and horizontal

lines, moving forward. Gray kernels and dashed lines represent the fact that the pathways for the ‘‘"’’ detection are not activated,

as a ‘‘þ’’ is presented.

Furber et al : The SpiNNaker Project
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SUPERCONDUCTING OPTOELECTRONIC NETWORKS

J. M. Shainline et al., “Superconducting optoelectronic circuits for neuromorphic computing,” Phys. Rev. Applied, vol. 7, p. 034013, Mar 2017. 
J. Chiles et al., “Design, fabrication, and metrology of 10x100 multi-planar integrated photonic routing manifolds for neural networks,” APL 
Photonics, vol. 3, p. 106101, 2018/08/08 2018. 29
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SILICON PHOTONIC NEURAL NETWORKS

[1] A. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and Weight: an Integrated Network for Scalable Photonic Spike 
Processing,” J. Lightwave Technol., 32(21), 2014.
[2] A. Tait, T. Ferreira de Lima, E. Zhou, A. X. Wu, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Neuromorphic Photonic Networks Using 
Silicon Photonic Weight Banks.” Scientific Reports, 7(1). 2017.
[3] A. Tait, T. Ferreira de Lima, M. A. Nahmias, H. B. Miller, H.-T. Peng, B. J. Shastri, and P. R. Prucnal
“A silicon photonic modulator neuron.” arXiv preprint:1812.11898. Dec. 2018.

V+V– GND Ih Ib

photodetector (PD+)

Al wires

Si WGs

MRR modulator

HeaterGe

IN+

IN–

Out

Pump

50µm

photodetector (PD–)

neuronsweight matrix

30

25 µm DROP

THRUIN
d)

Silicon photonic neuron

MRR weight bank

[1]
[3]

[2] • Electro-optic nonlinearity

• 10 – 40 GHz operation

• Foundry compatible



NEXT STEPS: HIERARCHICAL NETWORKS
• Large neural networks are hierarchical
• Photonics does well with long-range communication
• How do we design chip-scale systems? wafer scale? datacenter scale?

[1] Paul Prucnal and Bhavin Shastri. Neuromorphic Photonics. CRC Press, 2017.
[2] J. M. Shainline et al. “Superconducting Optoelectronic Neurons V: Networks and Scaling,” arXiv:1805:01942, 2018.
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is the sum of clustering coe�cients of all nodes divided
by the number of nodes in the network. Throughout the
present work, we are interested in basic network struc-
ture, so we consider binary directed networks and neglect
the e↵ect synaptic weights may have on the analysis. The
clustering coe�cient given by Eq. H1 is the ratio of the
number of directed triangles formed by node i to the
number of directed triangles node i could form given the
degree of node i.

1. Network comparisons

Here we compare several graph metrics of the random
network, the partial growth network, and the network
created with the growth algorithm. Each network has
8100 nodes, so the maximum possible number of edges of
the directed graph is 65,601,900. The random and growth
networks have 330,430 edges for a sparsity of 0.50 %. The
partial growth network has 304,365 edges for a sparsity
of 0.46 %. The average total degree of a node in the
random network or the growth network is 81.6. In the
partial growth network the average total degree is 75.2.
For the random network, the minimum total degree is 37
and the maximum total degree is 118. For the partial
growth network the minimum total degree is 41 and the
maximum total degree is 115. For the growth model the
minimum total degree is 17, and the maximum total de-
gree is 1473. Figure 40 shows the adjacency matrices of
the three networks at the scale of a sector, a region, and
the entire module. Figure 41 shows the shortest path
lengths for the three networks at the scale of a sector, a
region, and the entire module. Figure 42 shows the base-
ten logarithm of the in-degree, out-degree, and the total
degree for the three networks.

Appendix I: Waveguide routing

Minimization of wiring is an NP-complete problem,
and we make no attempt to solve it in the present con-
text with the constraints particular to SOEN hardware.
Instead we develop a practical all-to-all routing scheme
and arrive at wiring diagrams by pruning the complete
set of connections down to those corresponding to the
adjacency matrix of the network under consideration.

To route the waveguides connecting each neuron to
all other neurons within a local sector, we begin with
the center node. Light is assumed to exit the node to
the west, and it branches into north-running and south-
running waveguides on the upper waveguide plane. Each
of these waveguides splits east and west at each row to
send light to the neurons in that row. Inter-planar cou-
plers [84] are shown as pairs of triangles in Fig. 26. Using
these couplers, light is routed to the lower plane for east-
west routing. It is routed back to the upper plane before
entering the SPDs at each neuron. Interplanar transis-
tions are required to mitigate losses due to waveguide

R
a
n
d
o
m

P
a
rt

ia
l 
g
ro

w
t
h

G
ro

w
t
h

Sector Region Module

x
 1

0

x 10

x
 1

0
0

x 100

x
 1

0
0
0

x 1000

x
 1

0

x 10

x
 1

0
0

x 100

x
 1

0
0
0

x 1000

x
 1

0

x 10

x
 1

0
0

x 100

x
 1

0
0
0

x 1000

2 6 10 14 18

1

2

3

4

5

6

7

8

2

6

10

14

18

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
1 2 3 4 5 6 7 8

2 6 10 14 18

1

2

3

4

5

6

7

8

2

6

10

14

18

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
1 2 3 4 5 6 7 8

2 6 10 14 18

1

2

3

4

5

6

7

8

2

6

10

14

18

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
1 2 3 4 5 6 7 8

FIG. 40. Adjacency matrices of random network, partial
growth model, and growth algorithm at the scale of a sec-
tor, region, and module. x- and y-axis labels refer to the
node indices.
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FIG. 41. Shortest paths of random network, partial growth
model, and growth algorithm at the scale of a sector, re-
gion, and module. These shortest paths were calculated by
first constructing the adjacency matrix of the entire module,
and then calculating the shortest paths based on the sub-
matrices of the adjacency matrix corresponding to sector, re-
gion, and module. Because the random graph has many fewer
intra-sector and intra-regional connections, it has larger path
lengths on those scales.
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• Basic component quality
• Large-volume manufacturability
• Small-volume research prototyping

LARGE-SCALE SILICON PHOTONIC SYSTEMS

32

Challenges to quantum and neuromorphic computing are shared



• Basic component quality
• Large-volume manufacturability
• Small-volume research prototyping

LARGE-SCALE SILICON PHOTONIC SYSTEMS

[1] The Cattington Post 33

Challenges to quantum and neuromorphic computing are shared

Externalized technological risk
(thanks to Datacomm.)



• Basic component quality
• Large-volume manufacturability
• Small-volume research prototyping

LARGE-SCALE SILICON PHOTONIC SYSTEMS
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Challenges to quantum and neuromorphic computing are shared

Semi-externalized
• I/O, packaging
• System-level design tools
• Process variation

• Control complexity
• Heat dissipation density Specific to large-scale systems

Externalized technological risks
(thanks to Datacomm.)



SUMMARY

• Quantum and Neuromorphic share platform 
technologies

• Co-integrated passives, sources, amplifiers, SPDs

• This platform will become available to the public

• NIST trying to advance single photon devices, 
metrology, and applications
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