R.ITT

Linear optical quantum information processing in silicon nanophotonics

Edwin E. Hach, III
School of Physics and Astronomy
Rochester Institute of Technology

R•ITT

I am grateful to pursue the work described here in collaboration with...

Dr. Stefan F. Preble, Microsystems Engineering, RIT
Dr. Ali W. Elshaari, KTH Royal Inst. of Tech., Stockholm
Dr. Paul M. Alsing, Air Force Research Lab, Rome, NY
Michael L. Fanto, Air Force Research Lab, Rome, NY
Dr. A. Matthew Smith, Air Force Research Lab, Rome, NY
Dr. Christopher C. Tison, Air Force Research Lab, Rome, NY RIT Students:

Jeffrey Steidle*
Ryan Scott**
Thomas Kilmer**
David Spiecker**

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Prologue: Photonic Control of Photons (Deterministic)...

We wish this would happen ...

\ldots but it requires an intensity on the order of $10^{33} \mathrm{~W} / \mathrm{cm}^{2}$

So we search for nonlinear crystals to mediate the interaction...

... but media having nonlinear susceptibilities large enough for practical applications are not readily available

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Prologue: Photonic Control of Photons (Probabilistic)...

Linear Optical Quantum Information Processing

- Linear Optical Transformations
- Measurements/Post selection
- Feedback/Feedforward

Control	Target In	Target Out
$\mathbf{0}$	0	0
$\mathbf{0}$	1	1
$\mathbf{1}$	0	1
$\mathbf{1}$	1	0

Success $\frac{1}{16}$ of the time*

Linear Optical Elements
Desired Characteristics:

- Scalable
- Dynamically Tunable

23 Jan 2019

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Prologue: Photonic Control of Photons (sort of)...

- 50/50 Beam Splitter
- The Hong-Ou-Mandel Effect
- Post Selection

|1)

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

R.I.T

Goal:

Scalable, tunable, on-chip quantum circuits in silicon nanophotonics ...

SOI piece

Spin coat

(This slide is included to emphasize the power of multidisciplinary collaboration ...
...personally, I have no business trying to explain the fabrication process)

2 min

SiO_{2} cladding

Si etch (RIE)

... about 24 hours later ...
$\hat{a}_{\text {RIT }}^{\dagger} \hat{a}_{\text {Correll }} \mid$ grad students and post docs; device \rangle

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Linear Quantum Optics on-a-Slide

The usual program...

$$
\begin{aligned}
& \text { Invert Hermitian Adjoints } \\
& \begin{array}{l}
{\left[\hat{a}, \hat{a}^{\dagger}\right]=1} \\
{\left[\hat{b}, \hat{b}^{\dagger}\right]=1}
\end{array} \Rightarrow \begin{array}{l}
{\left[\hat{c}, \hat{c}^{\dagger}\right]=1} \\
{\left[\hat{d}, d^{\dagger}\right]=1} \\
\hat{b}^{\dagger}=\kappa \hat{c}^{2}+\mid \tau \hat{c}^{\dagger}+\kappa^{*}=1
\end{array}
\end{aligned}
$$

$$
\left|\psi_{\text {in }}\right\rangle=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m n} \frac{\left(\hat{a}^{\dagger}\right)^{m}\left(\hat{b}^{\dagger}\right)^{n}}{\sqrt{m!n!}}|\mathrm{vac}\rangle
$$

$$
>\left|\psi_{\mathrm{out}}\right\rangle=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{j=0}^{m} \sum_{l=0}^{n} A_{m n}\binom{m}{j}\binom{n}{l} \frac{\tau^{j}\left(-\kappa^{*}\right)^{m-j} \kappa^{l} \tau^{* n-l}}{\sqrt{m!n!}}\left(\hat{c}^{\dagger}\right)^{j+l}\left(\hat{d}^{\dagger}\right)^{m+n-j-l}|\mathrm{vac}\rangle
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Linear Optical Quantum Information Processing

Knill-Laflamme-Milburn (KLM) Proposal

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

To address the problem of scalability for use in an integrated quantum circuit, we consider ...

U(2) Coupled Micro-Ring Resonator (MRR): A Fundamental Circuit Element for Quantum Optics on-a-Chip

Simple Model:

- Continuous Wave (CW) Operation
- "Internal" Modes not Pictured
- Lossless (Unitary) Operation

Practical Advantages:

- Scalable
- Can be tuned dynamically
- Stefan et al can make them (they do it all the time)

$$
\begin{aligned}
& {\left[\hat{a}, \hat{a}^{\dagger}\right]=1} \\
& {\left[\hat{f}, \hat{f}^{\dagger}\right]=1}
\end{aligned} \Rightarrow \begin{aligned}
& {\left[\hat{c}, \hat{c}^{\dagger}\right]=1} \\
& {\left[\hat{l}, \hat{l}^{\dagger}\right]=1}
\end{aligned}
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Transition Amplitudes, Quantum Interference, and Path Integrals

The transition amplitude for a system to evolve from some initial state to some final state along a particular path connecting the initial and finals states is a product of transition amplitudes for taking each individual "step" along the path

$$
\varphi_{f, i}=\varphi_{f, f-1} \cdot \varphi_{f-1, f-2} \cdots \varphi_{i+2, i+1} \cdot \varphi_{i+1, i}
$$

The transition amplitude for a system to evolve from some initial state to some final state is determined by the quantum interference between transition amplitudes along all possible paths connecting the initial and final states

$$
\Phi_{i \rightarrow f}=\sum_{\substack{\text { all } \\ \text { paths }}} \varphi_{f, i} \quad \text { (Propagator) }
$$

The transition amplitude for a system to evolve from some initial state to some final state is determined by the quantum interference between transition amplitudes along all possible paths connecting the initial and final states

$$
|f\rangle=\sum_{i}\left[\Phi_{i \rightarrow f}\right]|i\rangle
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

"Discrete Path Integral*" Approach to Linear Quantum Optics

To adapt the Feynman prescription for use in linear quantum optics ...

1) Imagine that the Boson operators represent** photons and that photons are little, classical, localized balls of light***
2) Enumerate the classical paths of the 'Boson operators' through the optical system
3) Construct the transition element along each path by multiplying the appropriate transition element for each step (phase shift, reflection, transmission, etc.) along the path
4) Propagator: sum over all paths connecting particular pairs of input and output modes
5) Use the propagator to express each output 'Boson operator' as a linear superposition of the inputs
6) Forget Step 1 and treat the 'Boson operators' like Boson operators

[^0]

Phase Shifter U(1)

(rectilinear propagation through linear optical medium)

$$
\begin{gathered}
\hat{a}_{\mathrm{in}} \xrightarrow{\boldsymbol{\theta}} \xrightarrow{\boldsymbol{\theta}=n \frac{\omega L}{c}=\omega t_{\text {int }}} \hat{a}_{\text {out }} \\
\rightarrow \hat{a}_{\text {in }} \rightarrow \hat{a}_{\text {out }}=e^{i \theta \hat{a}_{\text {in }}^{\dagger} \hat{a}_{\text {in }}} \hat{a}_{\text {in }} e^{-i \theta \hat{a}_{\text {in }}^{\dagger} \hat{a}_{\text {in }}}=\hat{a}_{\text {in }} e^{-i \theta} \\
\text { Path } \\
\hline \hat{a}_{\text {in }} \rightarrow \hat{a}_{\text {out }} \\
e^{-i \theta}
\end{gathered}
$$

Linear Quantum Optics: discrete "stepwise" transition amplitudes are generally easy to determine using the Heisenberg Picture

Feynman's Spacetime Formulation: infinitesimal transition amplitudes are determined using the classical action

Directional Coupler (or any SU(2))

$$
\binom{\hat{c}}{\hat{d}}=\left(\begin{array}{cc}
\tau & \kappa \\
-\kappa^{*} & \tau^{*}
\end{array}\right)\binom{\hat{a}}{\hat{b}}
$$

Path (input mode \rightarrow output	Transition Amplitude Along Path
$a \rightarrow c$	τ
$a \rightarrow d$	$-\kappa^{*}$
$b \rightarrow c$	κ
$b \rightarrow d$	τ^{*}

Heisenberg Picture: Rotations generated by

$$
\hat{J}_{1}=\frac{1}{2}\left(\hat{a}^{\dagger} \hat{b}+\hat{a} \hat{b}^{\dagger}\right) \quad \text { and } \quad \hat{J}_{2}=\frac{1}{2 i}\left(\hat{a}^{\dagger} \hat{b}-\hat{a} \hat{b}^{\dagger}\right)
$$

Discrete Path Integral (DPI) Formulation of the Basic Ring Resonator Quantum Circuit Element: CW Operation

$\hat{c}=[$ sum over paths in class $a \rightarrow c] \hat{a}+[$ sum over paths in class $f \rightarrow c] \hat{f}$
Similar idea for $(a, f) \rightarrow l$

DPI Solution for CW Quantum Transfer Function for Basic Ring Resonator Quantum Circuit Element
$\hat{c}=[$ sum over paths in class $a \rightarrow c] \hat{a}+[$ sum over paths in class $f \rightarrow c] \hat{f}$

$$
\begin{aligned}
& =\left[\tau+\left(-\kappa^{*}\right)\left(\eta^{*}\right)(\kappa)\left(e^{-i \theta}\right) \sum_{m=0}^{\infty}\left(\eta^{*} \tau^{*} e^{-i \theta}\right)^{m}\right] \hat{a}+\left[\left(-\gamma^{*}\right)\left(e^{-i \phi_{2}}\right)(\kappa) \sum_{m=0}^{\infty}\left(\eta^{*} \tau^{*} e^{-i \theta}\right)^{m}\right] \hat{f} \\
& =\left(\tau-\frac{\eta^{*}|\kappa|^{2} e^{-i \theta}}{1-\eta^{*} \tau^{*} e^{-i \theta}}\right) \hat{a}-\left(\frac{\gamma^{*} \kappa e^{-i \phi_{2}}}{1-\eta^{*} \tau^{*} e^{-i \theta}}\right) \hat{f} \\
& \hat{l}=-\left(\frac{\gamma \kappa^{*} e^{-i \phi \phi_{1}}}{1-\eta^{*} \tau^{*} e^{-i \theta}}\right) \hat{a}+\left[\eta-\left(\frac{\tau^{*}|\gamma|^{2} e^{-i \theta}}{1-\eta^{*} \tau^{*} e^{-i \theta}}\right)\right] \hat{f}
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{t} \equiv\left(\frac{\eta^{*}-\tau e^{i \theta}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \\
& \mathfrak{s} \equiv\left(\frac{\gamma \kappa^{*} e^{i \phi_{2}}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \\
& \mathfrak{s}^{\prime} \equiv\left(\frac{\kappa \gamma^{*} e^{i \phi_{1}}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \\
& \mathrm{t}^{\prime} \equiv\left(\frac{\tau^{*}-\eta e^{i \theta}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \\
& \mathrm{PfO}
\end{aligned}
$$

A schematic representation of an externally driven Fabry-Perot etalon. Each distinct input/ouput optical mode is labeled with its Bosonic annihilation operator. The phase conventions for the transmission and reflection amplitudes adopted here are valid parameterizations for the $\mathrm{SU}(2)$ transformations that occur at the lossless, partially reflective mirrors forming the cavity; to facilitate our comparison this is in agreement with the notation in Ref. [8]. The linear phase shift, ϕ, is the phase shift for a single crossing of the cavity; that is, a round trip through the cavity is accompanied by a phase shift of $\theta=2 \phi$.

$$
\begin{aligned}
& \hat{a}_{\text {out }}=\left(\frac{t_{1}^{*} t_{2} e^{-i \phi}}{1-r_{1}^{*} r_{2}^{*} e^{-2 i \phi}}\right) \hat{a}_{\text {in }}+\left(r_{2}-\frac{r_{1}^{*}\left|t_{2}\right|^{2} e^{-2 i \phi}}{1-r_{1}^{*} r_{2}^{*} e^{-2 i \phi}}\right) \hat{b}_{\text {in }} \\
& \hat{b}_{\text {out }}=\left(r_{1}-\frac{r_{2}^{*}\left|t_{1}\right|^{2} e^{-2 i \phi}}{1-r_{1}^{*} r_{2}^{*} e^{-2 i \phi}}\right) \hat{a}_{\text {in }}+\left(\frac{t_{1} t_{2}^{*} e^{-i \phi}}{1-r_{1}^{*} r_{2}^{*} e^{-2 i \phi}}\right) \hat{b}_{\text {in }} \text { inuntphoton intin }
\end{aligned}
$$

R•I•T Simple Model for a Lossy Ring Coupled to a Single Waveguide

1) Solve the deterministic problem:

$$
\left|\psi_{\mathrm{out}}\right\rangle=\left(\mathrm{t} \hat{c}^{\dagger}+\mathfrak{s} \hat{l}^{\dagger}\right)|\emptyset\rangle=\mathrm{t}|1\rangle_{c} \otimes|0\rangle_{l}+\mathfrak{s}|0\rangle_{c} \otimes|1\rangle_{l} \equiv \mathrm{t}|1,0\rangle+\mathfrak{s}|0,1\rangle
$$

2) Express the deterministic solution using (pure state) global density operator:

$$
\hat{\varrho}_{\text {out }}^{(\mathrm{G})}=\left|\psi_{\text {out }}\right\rangle\left\langle\psi_{\text {out }}\right|=|\mathfrak{t}|^{2}|1,0\rangle\langle 1,0|+\mathfrak{t s}^{*}|1,0\rangle\langle 0,1|+\mathfrak{s t}^{*}|0,1\rangle\langle 1,0|+|\mathfrak{s}|^{2}|0,1\rangle\langle 0,1|
$$

3) Trace over loss channel to obtain (mixed state) reduced density operator for transmission mode:

$$
\begin{gathered}
\hat{\varrho}_{\text {out }}^{(c)}=\operatorname{Tr}_{\text {mode }} l\left\{\hat{\varrho}_{\text {out }}^{(\mathrm{G})}\right\}=|\mathrm{t}|^{2}|1\rangle\langle 1|++|\mathfrak{s}|^{2}|0\rangle\langle 0| \\
P(0,1 \mid 1,0)=\frac{|\gamma|^{2}|\kappa|^{2}}{1+|\eta|^{2}|\tau|^{2}-2 \operatorname{Re}\left[\eta \tau e^{i \theta}\right]}
\end{gathered}
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Comparison with Classical Electrodynamics (Sanity Check)

Parametric Limit

Highly excited ordinary coherent state input along mode $a: \quad \hat{a}|\alpha\rangle=\alpha|\alpha\rangle$

$$
\left|\psi_{\mathrm{in}}\right\rangle=|\alpha, 0\rangle=\widehat{\mathcal{D}}^{(a)}(\alpha) \otimes \widehat{\mathbb{I}}^{(f)}|\mathrm{vac}\rangle=\exp \left(\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}\right)|\mathrm{vac}\rangle
$$

The output (pure state) is a direct product of ordinary coherent states:

$$
\left.\left|\psi_{\text {out }}\right\rangle=\widehat{\mathcal{D}}^{(c)}(\mathrm{t} \alpha) \otimes \widehat{\mathcal{D}}^{(l)}(\mathfrak{s} \alpha) \mid \text { vac }\right\rangle=|\mathrm{t} \alpha\rangle_{c} \otimes|\mathfrak{s} \alpha\rangle_{l}
$$

Specifically, in mode c $\hat{\varrho}_{\text {out }}^{(c)}=|\mathrm{t} \alpha\rangle\langle\mathrm{t} \alpha|$ where $\alpha_{\text {out }}=\mathrm{t} \alpha=\left(\frac{\eta^{*}-\tau e^{i \theta}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \alpha_{\text {in }}$

Quantity	Yariv Treatment	Classical	Fully QM Treatment w/ Coherent State
	"Circulation Method	Factor"	Physical Loss Model (Drop Port Method)
Input Field Amplitude	1		$\alpha_{\text {in }}$
Output Field Amplitude (waveguide)	b_{1}		$\alpha_{\text {out }}$
"CirculationFactor"/Internal Transmission Amplitude at Drop Port	α		η^{*}
Round Trip Phase	θ		- θ
$a \rightarrow$ ctransition Amplitude	t		τ
School of Physics \& Astronomy	\uparrow		

A. Yariv, Electronics Letters 36, 321 (2000)

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

Hong-Ou-Mandel Effect (Beam Splitter/Bulk Optics)
At the $50 / 50$ operating point: $|1,1\rangle \rightarrow|2:: 0\rangle=\frac{1}{\sqrt{2}}(|2,0\rangle-|0,2\rangle)$
HOM 2-photon interference

H-O-M Output State Fidelity:

$$
\begin{gathered}
F \equiv \mid\langle 2:: 0| \text { out }\rangle\left.\right|^{2} \\
0 \leq F \leq 1
\end{gathered}
$$

Two Photon Driving: Hong-Ou-Mandel Manifolds (HOMM)

$$
\begin{aligned}
t & \equiv\left(\frac{\eta^{*}-\tau e^{i \theta}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \\
s & \equiv\left(\frac{\gamma \kappa^{*} e^{i \phi_{2}}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \\
t^{\prime} & \equiv\left(\frac{\tau^{*}-\eta e^{i \theta}}{\eta^{*} \tau^{*}-e^{i \theta}}\right) \\
s^{\prime} & \equiv\left(\frac{\kappa \gamma^{*} e^{i \phi_{1}}}{\eta^{*} \tau^{*}-e^{i \theta}}\right)
\end{aligned}
$$

Output state: $\left|\psi_{\text {out }}\right\rangle=\sqrt{2} t s^{\prime}|2,0\rangle+\left(t t^{\prime}+s s^{\prime}\right)|1,1\rangle+\sqrt{2} s t^{\prime}|0,2\rangle$

$$
\text { HOMM: } t t^{\prime}+s s^{\prime}=0 \rightarrow|\boldsymbol{\kappa}|^{2}+|\gamma|^{2}+|\boldsymbol{\kappa}|^{2}|\gamma|^{2}+2 \operatorname{Re}\left(\eta \tau e^{i \theta}\right)=2
$$

Input state: $\left|\psi_{\text {in }}\right\rangle=|1,1\rangle=\hat{a}^{\dagger} \hat{f}^{\dagger}|\varnothing\rangle$

R.ITT

Hong-Ou-Mandel Manifolds: Robust Two-Photon "Bunching"
HOMM: $t t^{\prime}+s s^{\prime}=0 \rightarrow|\boldsymbol{\kappa}|^{2}+|\gamma|^{2}+|\boldsymbol{\kappa}|^{2}|\gamma|^{2}+2 \operatorname{Re}\left(\eta \tau e^{i \theta}\right)=2$

Parameter space of ring resonator circuit element features a differentiable manifold of operating points on which the HOM Effect occurs ... this will translate into enhanced robustness in the operation of devices that rely on this effect.

EEHIII, S.F. Preble, A.W. Elshaari, P.M. Alsing and M.L. Fanto, Phys. Rev. A89, 043805 (2014)

Hong-Ou-Mandel Manifolds Allow for Operational Optimization of a Scalable U(2) Device

$$
F_{\mathrm{A}}<1 \xrightarrow{\text { Dynamic Tuning }} F_{\mathrm{B}}=1
$$

R.ITT

Hong-Ou-Mandel Manifolds: Robust Two-Photon "Bunching"

$$
\text { HOMM: } t t^{\prime}+s s^{\prime}=0 \rightarrow|\kappa|^{2}+|\gamma|^{2}+|\kappa|^{2}|\gamma|^{2}+2 \operatorname{Re}\left(\eta \tau e^{i \theta}\right)=2
$$

A Two-Dimensional HOMM:Constraint: $P(1,1)=0$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

The Ring Resonator "Circuit Theory"

Notation: $\binom{\hat{c}_{\text {out }}}{\hat{d}_{\text {out }}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{\hat{c}_{\text {in }}}{\hat{d}_{\text {in }}}$
"Block 1"
"Block 2"
We have: $\binom{\hat{b}_{\text {out }}}{\hat{l}_{12}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{\hat{l}_{21}}{\hat{a}_{\text {in }}} \quad\binom{\hat{l}_{21}}{\hat{a}_{\text {out }}}=\left(\begin{array}{ll}F & G \\ H & J\end{array}\right)\binom{\hat{b}_{\text {in }}}{\hat{l}_{12}}$

Overall Network
We want: $\quad\binom{\hat{b}_{\text {out }}}{\hat{a}_{\text {out }}}=\left(\begin{array}{ll}\mathcal{J}_{11} & \mathcal{J}_{12} \\ \mathcal{J}_{21} & \mathcal{J}_{22}\end{array}\right)\binom{\hat{b}_{\text {in }}}{\hat{a}_{\text {in }}}$
We Introduce a set of "Mode Swap" Transformations ...
"Mode Swap" Transformation

Upper "Rail" $\quad\binom{\hat{c}_{\text {out }}}{\hat{d}_{\text {out }}}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)\binom{\hat{c}_{\text {in }}}{\hat{d}_{\text {in }}} \rightarrow\binom{\hat{c}_{\text {in }}}{\hat{d}_{\text {out }}}=\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right)\binom{\hat{c}_{\text {out }}}{\hat{d}_{\text {in }}}$

Lower "Rail" $\quad\binom{\hat{c}_{\text {out }}}{\hat{d}_{\text {out }}}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)\binom{\hat{c}_{\text {in }}}{\hat{d}_{\text {in }}} \rightarrow\binom{\hat{c}_{\text {out }}}{\hat{d}_{\text {in }}}=\left(\begin{array}{cc}A^{\prime \prime} & B^{\prime \prime} \\ C^{\prime \prime} & D^{\prime \prime}\end{array}\right)\binom{\hat{c}_{\text {in }}}{\hat{d}_{\text {out }}}$

$$
\begin{array}{ll}
A^{\prime}=\frac{1}{A}, B^{\prime}=-\frac{B}{A}, C^{\prime}=\frac{C}{A}, D^{\prime}=\frac{1}{A} \operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) & \text { Upper Rail } \\
A^{\prime \prime}=\frac{1}{D} \operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), B^{\prime \prime}=\frac{B}{D}, C^{\prime \prime}=-\frac{C}{D}, D^{\prime \prime}=\frac{1}{D} & \text { Lower Rail }
\end{array}
$$

Quantum Transfer Function for Circuit

$$
\binom{\hat{b}_{\text {out }}}{\hat{l}_{12}}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{\hat{l}_{21}}{\hat{a}_{\text {in }}} \rightarrow\binom{\hat{l}_{21}}{\hat{l}_{12}}=\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)\binom{\hat{b}_{\text {out }}}{\hat{a}_{\text {in }}}
$$

- local upper swap on block 2

$$
\binom{\hat{l}_{21}}{\hat{a}_{\text {out }}}=\left(\begin{array}{cc}
F & G \\
H & J
\end{array}\right)\binom{\hat{b}_{\text {in }}}{\hat{l}_{12}} \rightarrow\binom{\hat{b}_{\text {in }}}{\hat{a}_{\text {out }}}=\left(\begin{array}{ll}
F^{\prime} & G^{\prime} \\
H^{\prime} & J^{\prime}
\end{array}\right)\binom{\hat{l}_{21}}{\hat{l}_{12}}
$$

- result of local swaps

$$
\binom{\hat{b}_{\text {in }}}{\hat{a}_{\text {out }}}=\left(\begin{array}{cc}
F^{\prime} & G^{\prime} \\
H^{\prime} & J^{\prime}
\end{array}\right)\left(\begin{array}{cc}
A^{\prime} & B^{\prime} \\
C^{\prime} & D^{\prime}
\end{array}\right)\binom{\hat{b}_{\text {out }}}{\hat{a}_{\text {in }}}=\left(\begin{array}{cc}
\mathcal{S}_{11} & \mathcal{S}_{12} \\
\delta_{21} & \delta_{22}
\end{array}\right)\binom{\hat{b}_{\text {out }}}{\hat{a}_{\text {in }}}
$$

- global upper swap

$$
\binom{\hat{b}_{\text {out }}}{\hat{a}_{\text {out }}}=\left(\begin{array}{ll}
\mathcal{T}_{11} & \mathcal{T}_{12} \\
\mathcal{T}_{21} & \mathcal{T}_{22}
\end{array}\right)\binom{\hat{b}_{\text {in }}}{\hat{a}_{\text {in }}} \quad \text { q.e.d }
$$

$$
\mathcal{J}_{11}=\mathcal{S}_{11}^{\prime}, \mathcal{J}_{12}=\mathcal{S}^{\prime}{ }_{12}, \mathcal{J}_{21}=\mathcal{S}_{21}^{\prime}, \mathcal{J}_{22}=\mathcal{S}^{\prime}{ }_{22}
$$

A Ring Resonator Based Nonlinear Phase Shifter

Many adjustable, controllable parameters to search ...

Local Swaps

$$
\begin{aligned}
& \left(\begin{array}{l}
\hat{c}_{\text {in }} \\
\hat{b}_{\text {out }} \\
\hat{l}_{13}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & A & B \\
0 & C & D
\end{array}\right)\left(\begin{array}{l}
\hat{c}_{\text {in }} \\
\hat{l}_{21} \\
\hat{a}_{\text {in }}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\hat{c}_{\text {in }} \\
\hat{l}_{21} \\
\hat{l}_{13}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & A^{\prime} & B^{\prime} \\
0 & C^{\prime} & D^{\prime}
\end{array}\right)\left(\begin{array}{c}
\hat{c}_{\text {in }} \\
\hat{b}_{\text {out }} \\
\hat{a}_{\text {in }}
\end{array}\right) \\
& \left(\begin{array}{l}
\hat{c}_{\text {out }} \\
\hat{l}_{21} \\
\hat{l}_{13}
\end{array}\right)=\left(\begin{array}{ccc}
P & Q & 0 \\
R & S & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{c}_{\text {in }} \\
\hat{l}_{32} \\
\hat{l}_{13}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\hat{c}_{\text {out }} \\
\hat{l}_{32} \\
\hat{l}_{13}
\end{array}\right)=\left(\begin{array}{ccc}
P^{\prime \prime} & Q^{\prime \prime} & 0 \\
R^{\prime \prime} & S^{\prime \prime} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\hat{c}_{\text {in }} \\
\hat{l}_{21} \\
\hat{l}_{13}
\end{array}\right) \\
& \left(\begin{array}{c}
\hat{c}_{\text {out }} \\
\hat{l}_{32} \\
\hat{a}_{\text {out }}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & F & G \\
0 & H & J
\end{array}\right)\left(\begin{array}{c}
\hat{c}_{\text {out }} \\
\hat{b}_{\text {in }} \\
\hat{l}_{13}
\end{array}\right) \rightarrow\left(\begin{array}{c}
\hat{c}_{\text {out }} \\
\hat{b}_{\text {in }} \\
\hat{a}_{\text {out }}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & F^{\prime} & G^{\prime} \\
0 & H^{\prime} & J^{\prime}
\end{array}\right)\left(\begin{array}{c}
\hat{c}_{\text {out }} \\
\hat{l}_{32} \\
\hat{l}_{13}
\end{array}\right) \quad=\left(\begin{array}{ccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right)\left(\begin{array}{c}
\hat{c}_{\text {in }} \\
\hat{b}_{\text {out }} \\
\hat{a}_{\text {in }}
\end{array}\right)
\end{aligned}
$$

Global Middle Rail Swap

$$
\left(\begin{array}{c}
\hat{c}_{\text {out }} \\
\hat{b}_{\text {in }} \\
\hat{a}_{\text {out }}
\end{array}\right)=\left(\begin{array}{lll}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right)\left(\begin{array}{c}
\hat{c}_{\text {in }} \\
\hat{b}_{\text {out }} \\
\hat{a}_{\text {in }}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\hat{c}_{\text {out }} \\
\hat{b}_{\text {out }} \\
\hat{a}_{\text {out }}
\end{array}\right)=\frac{1}{\alpha_{22}}\left(\begin{array}{cc}
\alpha_{12} & -M_{31} \\
-\alpha_{21} & 1 \\
-M_{13} & \alpha_{32} \\
M_{12}
\end{array}\right)\left(\begin{array}{l}
M_{\text {in }} \\
\hat{b}_{\text {in }} \\
\hat{a}_{\text {in }}
\end{array}\right)
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Essential Ideas About Quantum Optics/Information
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Figure 2 A schematic diagram of a NonLinear Sign Gate (a) in bulk optics and (b) as implemented via our proposal using directionally coupled silicon nanophotonics waveguides and microring resonators (mrr). The nonlinear sign flip is effected on the state in mode c, as given in Eq. (1); modes a and b are auxiliary modes required for the probabilistic action of the gate. The black arrow connecting parts (a) and (b) of the figure effectively summarizes the advancement we discuss in detail in this paper.

R•ITT

Our Proposal for the Essential Piece of a Scalable KLM CNOT Gate ...

A Ring Resonator Based NonLinear Phase Shifter (NLPS)

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

The NonLinear Phase Shifter (we'll have two, please)

What it does: $\quad|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle+\alpha_{2}|2\rangle \xrightarrow{\text { NLPS }}\left|\psi^{\prime}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle-\alpha_{2}|2\rangle$
How it works (when it works):

$$
|\Psi\rangle=|\Psi\rangle_{1} \otimes|1\rangle_{2} \otimes|0\rangle_{3} \xrightarrow{\text { Unitary }}\left|\Psi^{\prime}\right\rangle=\hat{U}|\Psi\rangle=\beta\left|\Psi^{N L P S}\right\rangle+\sqrt{1-|\beta|^{2}}\left|\Psi^{\perp}\right\rangle \xrightarrow{\text { Projection }}\left|\Psi^{N L P S}\right\rangle=\frac{\hat{P}^{N L P S}\left|\Psi^{\prime}\right\rangle}{\sqrt{\left\langle\Psi^{\prime}\right| \hat{P}^{N L P S}\left|\Psi^{\prime}\right\rangle}}
$$

How often it works: $\quad p_{\text {suceess }}^{N L P S}=\left\langle\Psi^{\prime}\right| \hat{P}^{N L P S}\left|\Psi^{\prime}\right\rangle=|\beta|^{2}$
Unitary Part: $\quad\left(\begin{array}{c}\hat{a}_{\text {l.in }}^{\dagger} \\ \hat{a}_{\text {2in }}^{\dagger} \\ \hat{a}_{\text {3.in }}^{\dagger}\end{array}\right)=\mathbf{S}^{T}\left(\begin{array}{c}\hat{a}_{\text {lout }}^{\dagger} \\ \hat{a}_{\text {a.out }}^{\dagger} \\ \hat{a}_{\text {s.out }}^{\dagger}\end{array}\right)$
"DPI" Formulation: $\left(\begin{array}{l}\hat{a}_{1, \text { out }} \\ \hat{a}_{2, \text { out }} \\ \hat{a}_{3, \text { out }}\end{array}\right)=\delta_{2}^{(3)}\left[\delta_{2}^{(3)}\left[\mathbf{T}^{(3)}\right] \delta_{2}^{(3)}\left[\mathbf{T}^{(2)}\right] \delta_{2}^{(3)}\left[\mathbf{T}^{(1)}\right]\right]\left(\begin{array}{l}\hat{a}_{1 \text { in }} \\ \hat{a}_{2, \text { in }} \\ \hat{a}_{3, \text { in }}\end{array}\right)$
Mode Swap Algebra:

$$
\delta_{1}^{(3)}[G] \equiv \frac{1}{g_{11}}\left(\begin{array}{ccc}
1 & -g_{12} & -g_{13} \\
g_{21} & m_{3,3} & m_{3,2} \\
g_{31} & m_{2,3} & m_{2,2}
\end{array}\right) \quad \delta_{2}^{(3)}[G] \equiv \frac{1}{g_{22}}\left(\begin{array}{ccc}
m_{3,3} & g_{12} & -m_{3,1} \\
-g_{21} & 1 & -g_{23} \\
-m_{1,3} & g_{32} & m_{1,1}
\end{array}\right) \quad \delta_{3}^{(3)}[G] \equiv \frac{1}{g_{33}}\left(\begin{array}{ccc}
m_{2,2} & m_{2,1} & g_{13} \\
m_{1,2} & m_{1,1} & g_{23} \\
-g_{31} & -g_{32} & 1
\end{array}\right)
$$

Case 1: On-resonance, no phase delays:
$\delta_{i}=0, \theta_{i}=2 \pi, t_{i}=t_{i}^{*}$

mrrs on resonance

Figure 3: The one dimensional manifolds $\eta_{i}^{2}\left(\tau_{i} ; T_{i}\right)$ vs $\tau_{i}^{2}(i=\{1,3\}$, black solid; $i=2$, black dashed) from Eq. 57 on which optimal operation of the scalable NLPSG occurs under conditions of resonant $\left(\theta_{\mathrm{i}}=0 \bmod 2 \pi\right)$, balanced mrrs and $\delta_{\mathrm{i}}=0 \bmod 2 \pi$ phase shifts in the waveguides. In contrast with bulk optical realizations, these curves provide theoretical evidence for vastly enhanced flexibility in implementation and integration of the NLPSG based on directionally coupled mrrs in silicon nanophotonics.

Case 2: Outer MRR not on resonance

$\delta_{\mathrm{i}}=0, \quad \theta_{2}=2 \pi, \theta_{1,3} \neq 2 \pi, \mathrm{t}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}^{*}$

$$
\text { Surface }\left(t_{1,3}^{*}\right)^{2} \equiv \frac{\eta^{2}+\tau^{2}-2|\eta||\tau| \operatorname{Cos}[\theta]}{1+\eta^{2} \tau^{2}-2|\eta||\tau| \operatorname{Cos}[\theta]}
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Essential Ideas About Quantum Optics/Information
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

R.I.T

Reality Check: Losses, etc.

Theoretical analysis of losses ("whistles" and spectral effects (bells"):
P.M. Alsing, EEHIII, C. C. Tison, and A. M. Smith, Phys. Rev. A95, 053828 (2017)

Theoretical analysis of photon pair generation (all the whistles and bells):
P.M. Alsing and EEHIII, Phys. Rev. A96, 033847 (2017)
P.M. Alsing and EEHIII, Phys. Rev. A96, 033848 (2017)

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Outline

- The Goal
- Essential Ideas About Quantum Optics/Information
- Input/Output Theory: A General Solution Under Ideal Conditions
- Hong-Ou-Mandel Manifolds: A Promising Result
- Formulation of a Quantum Optical Circuit Theory
- A Scalable KLM CNOT Gate!?
- Engineering and Design: The Fine Print
- Summary and Outlook

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Summary

- Ring resonators in silicon nanophotonics offer a promising architecture for quantum information processing devices (scalable, tunable, "easy" to fabricate)
- Passive Quantum Optical Feedback leads to a "topological" enhancement of the parameter space of this class of device - first example: Hong-Ou-Mandel Manifolds (HOMM)
- The existence of Hong-Ou-Mandel Manifolds (HOMM) suggest that there are robust regimes for operating quantum information processors based on ring resonator technology
- We now have a systematic way to formulate and search the parameter spaces of these systems under realistic conditions with respect to finite pulse widths and environmental losses

Outlook

- There are many quantum gates and networks that could be pivotal to quantum information processing, communications, metrology, and imaging - we are starting with the KLM CNOT
- We are working to develop numerical device design software to inform the planning and assembly of experimental tests of our theoretical results, and, from there, to better inform device design and integration
- Do you have any ideas for interesting quantum optical systems to investigate? We love to collaborate!

R.ITT

Thank You for Listening!

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Back-Up Slides

M.S. and Professional Master's Programs Coming Fall 2019

https://www.rit.edu/programs/physics-ms

R•ITT

Single Photon Transport: Quantum Dynamics

(Scattering Theory Approach)

$\hat{H}_{\mathrm{eff}}=\int d x c^{+}(x)\left(\omega_{0}-i v_{g} \frac{\partial}{\partial x}\right) c(x)+\left(\omega_{\mathrm{c}}-i \frac{1}{\tau_{\mathrm{c}}}\right) \hat{a}^{+} \hat{a}+\int d x \delta(x)\left[V c^{+}(x) \hat{a}+V^{*} \hat{a}^{+} c(x)\right]$

$$
i \frac{\partial}{\partial t}\left|\Phi_{1}(t)\right\rangle=\hat{H}_{\mathrm{eff}}\left|\Phi_{1}(t)\right\rangle
$$

$$
\left.\left|\Phi_{1}(t)\right\rangle=\left(\int d x \tilde{\phi}(x, t) \hat{c}^{+}(x)+\tilde{e}_{\mathrm{cav}}(t) \hat{a}^{+}\right) 0,0\right\rangle
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Single Photon Transport: Quantum Dynamics

Finite Difference Time Domain Results: Wave Packet

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Single Photon Transport: Quantum Dynamics

Finite Difference Time Domain Results: Adiabatic Wavelength Change
Adiabatic Invariant:

$$
\begin{array}{r}
\oint p d q=\frac{U}{\omega}=\mathrm{N} \hbar \\
\therefore \frac{\Delta \lambda}{\lambda}=\frac{\Delta U}{U}
\end{array}
$$

$\mathrm{R} \cdot \mathrm{I} \cdot \mathrm{T}$

Single Photon Transport: Quantum Dynamics Single Photon Storage: Toward Quantum Memory

Outline

- KLM Design for Nonlinear Sign Gate with beam splitters
- Essential element of KLM CNOT gate
- NLSG design with mrr
- Review of single-bus and double-bus mrr,
- Extension of dimension of parameter space by using; HOM Manifolds
- Results
- Papers
- Raymer, M. and McKinstrie, C., "Quantum input-output theory for optical cavities with arbitrary coupling strength: application to two-photon wave-packet shaping," Phys. Rev. A 88, 043819 (2013)
- E. E. Hach III, S. F. Preble, A. W. Elshaari, P. M. Alsing, and M. L. Fanto, "Scalable Hong-Ou-Mande/ manifolds in quantum-optical ring resonators," Phys. Rev. A 89, 043805 (2014).
- Alsing, P. M., Hach III, E. E., Tison, C. C., and Smith, A. M., "A quantum optical description of losses in ring resonators based on field operator transformations," Phys. Rev. A 95, 053828 (2017)
- Alsing, P. M. and Hach III, E. E., "Photon-pair generation in a lossy-microring resonator. I. Theory," Phys. Rev. A 96 (3), 033847 (2017); (1705.09227v2)
- Alsing, P. M. and Hach III, E. E., "Photon-pair generation in a lossy-microring resonator. II. Entanglement in the output mixed Gaussian squeezed state," Phys. Rev. A 96 (3), 033848 (1708.01338) (2017)

- Last Year (SPIE: Warsaw 2017): Nonlinear Sign Gate mrr
-Proposed KLM Nonlinear Sign Gate with mrrs
-Wider parameter range of operation (akin to HOM manifolds in mrr, in 2017 talk)
(Bulk Optics)

$$
\left|\psi_{i n}\right\rangle_{c}=\alpha_{0}|0\rangle_{c}+\alpha_{1}|1\rangle_{c} \oplus \alpha_{2}|2\rangle_{c}
$$

$$
\xrightarrow{\text { NLS }}\left|\psi_{\text {out }}^{\prime}\right\rangle_{c}=\alpha_{0}|0\rangle_{c}+\alpha_{1}|1\rangle_{c} \Theta \alpha_{2}|2\rangle_{c},
$$

$$
t_{1}^{*}=t_{3}^{*}=\frac{1}{\sqrt{4-2 \sqrt{2}}}, \quad t_{2}^{*}=\sqrt{2}-1
$$

$$
\left|\beta_{\max }\right|^{2}=1 / 4
$$

$U \quad V \quad W$
KLM CNOT gate

(Bulk Optics)

$|0\rangle$
Block 1 Block 2 Block 3 $\hat{a}_{\text {out }}|\mathbf{0}\rangle$

$$
M_{1}=\left(\begin{array}{cc}
t_{1} e^{i \phi_{1}} & \sqrt{1-t_{1}^{2}} \\
\sqrt{1-t_{1}^{2}} & -t_{1} e^{-i \phi_{1}}
\end{array}\right), \quad M_{2}=\left(\begin{array}{cc}
-t_{2} e^{-i \phi_{2}} & \sqrt{1-t_{2}^{2}} \\
\sqrt{1-t_{2}^{2}} & t_{2} e^{i \phi_{2}}
\end{array}\right)
$$

$$
\begin{array}{lllr}
\text { Transition 1: } & |010\rangle_{c b a} & \rightarrow & \beta|010\rangle_{c b a} \\
\text { Transition 2: } & |110\rangle_{c b a} & \rightarrow & \beta|110\rangle_{c b a} \\
\text { Transition 3: } & |210\rangle_{c b a} & \rightarrow & -\beta|210\rangle_{c b a}
\end{array}
$$

$$
\left(\begin{array}{c}
c_{\text {out }} \\
b_{\text {in }} \\
a_{\text {out }}
\end{array}\right)=B_{3} B_{2} B_{1}\left(\begin{array}{c}
c_{\text {out }} \\
b_{\text {out }} \\
a_{\text {out }}
\end{array}\right),
$$

$$
=\left(\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right)\left(\begin{array}{c}
c_{i n} \\
b_{i n} \\
a_{i n}
\end{array}\right)
$$

Quantum Input-Output Theory for MRR

Standard Langevin Quantum I/O Theory Wall \& Milburn, Quantum Optics Springer (1994)

$$
\begin{aligned}
\dot{\hat{a}}_{\text {int }}(t)= & -\frac{i}{\hbar}\left[\hat{a}_{\text {int }}, H_{\text {sys }}\right]+\frac{\gamma_{c}}{2} \hat{a}_{\text {int }}(t)-\sqrt{\gamma_{c}} \hat{a}_{\text {out }}(t) \\
\dot{\hat{a}}_{\text {int }}(t) & =-\frac{i}{\hbar}\left[\hat{a}_{\text {int }}, H_{\text {sys }}\right]-\frac{\left(\gamma_{c}+\gamma_{\text {int }}\right)}{2} \hat{a}_{\text {int }}(t) \\
& +\sqrt{\gamma_{c}} \hat{a}_{\text {in }}(t)+\sqrt{\gamma_{\text {int }}} \hat{f}(t)
\end{aligned}
$$

Raymer \& McKinstrie, PRA 88, 043819 (2013)

$$
\begin{aligned}
&\left(\partial_{t}+v_{a} \partial_{z}\right) a(z, t)=\alpha_{\text {polz }} P(z, t) \\
& a\left(0_{+}, t\right)=\rho_{a} a\left(L_{-}, t\right)+\tau_{a} a_{i n}(t) \\
& a_{o u t}(t)=\tau_{a} a\left(L_{-}, t\right)-\rho_{a} a_{i n}(t)
\end{aligned}
$$

$$
\left|\rho_{a}\right|^{2}+\left|\tau_{a}\right|^{2}=1
$$

$$
a_{\text {out }}(\omega) \equiv G_{\text {out }, \text { in }}(\omega) a_{\text {in }}(\omega)
$$

$$
G_{o u t, i n}(\omega)=e^{i \omega T_{a}}\left\lceil\frac{1-\rho_{a} e^{-i \omega T_{a}}}{1-\rho_{a} e^{i \omega T_{a}}}\right\rceil
$$

$$
\left|G_{\text {out }, \text { in }}(\omega)\right|=1
$$

$$
a_{\text {out }}(\omega)=\left(\frac{\rho_{a}-\alpha_{a} e^{i \theta_{a}}}{1-\rho_{a}^{*} \alpha_{a} e^{i \theta_{a}}}\right) a_{\text {in }}(\omega)-i\left|\tau_{a}\right|^{2} \sqrt{\Gamma_{a}} \sum_{n=0}^{\infty}\left(\rho_{a}\right)^{n} \int_{0}^{(n+1) L} d z e^{i \xi_{a}(\omega)[(n+1) L-z]} \hat{s}(z, \omega)
$$

High Cavity Q Limit

The high cavity Q limit recovers the usual Langevin results valid near cavity resonances

Dual Rail MRR: HOM Manifolds
 Alsing, Hach, PRA 96, 033847 (2017); PRA 96, 033848 (2017);

$$
\left.\begin{array}{rl}
\hat{c} & =\left(\frac{\tau-\eta^{*} \alpha e^{i \theta}}{1-\tau \eta^{*} \alpha e^{i \theta}}\right) \hat{a}-\left(\frac{\gamma^{*} \kappa \sqrt{\alpha} \theta^{i \theta / 2}}{1-\tau \eta^{*} \alpha e^{i \theta}}\right) \hat{b} \\
- & -i \sqrt{\Gamma}\left(|\kappa|^{2} \eta^{*} \hat{f}_{a}+\gamma^{*} \kappa \hat{f}_{b}\right) \\
\hat{d}= & -\left(\frac{\kappa^{*} \gamma \sqrt{\alpha} e^{i \theta / 2}}{1-\tau \eta^{*} \alpha e^{i \theta}}\right) \\
-i \sqrt{\Gamma}\left(\kappa^{*} \gamma \hat{f}_{a}+|\gamma|^{2} \tau^{*} \hat{f}_{b}\right) \\
1-\tau \tau^{*} \alpha e^{i \theta} \alpha e^{i \theta}
\end{array}\right) \hat{b}
$$

$|\Psi\rangle_{\text {in }}=\left|1_{a}, 1_{b}, 0_{\text {env }}\right\rangle=\hat{a}^{\dagger} \hat{b}^{\dagger}\left|0_{a}, 0_{b}, 0_{\text {env }}\right\rangle$

$$
\hat{\vec{a}}_{\text {in }}^{\dagger}=\mathcal{M}\left(\hat{\vec{c}}_{\text {out }}^{\dagger}-\hat{\vec{F}}^{\dagger}\right), \quad \mathcal{M}=M^{-1 *}
$$

$$
|\Psi\rangle_{o u t} \equiv\left|\Psi^{(2)}\right\rangle_{c, d} \otimes|0\rangle_{e n v}+\left|\phi^{(1)}\right\rangle_{c, d} \otimes \hat{F}_{c}^{\dagger}|0\rangle_{e n v}+\left|\varphi^{(1)}\right\rangle_{c, d} \otimes \hat{F}_{d}^{\dagger}|0\rangle_{e n v}+|0,0\rangle_{c, d} \otimes\left|\Phi^{(2)}\right\rangle_{e n v}
$$

$$
\left|\Psi^{(2)}\right\rangle_{c, d}=\sqrt{2} \mathcal{M}_{11} \mathcal{M}_{21}|2,0\rangle_{c, d}+\operatorname{Perm}(\mathcal{M})|1,1\rangle_{c, d}+\sqrt{2} \mathcal{M}_{12} \mathcal{M}_{22}|0,2\rangle_{c, d}
$$

$$
\operatorname{Perm}(\mathcal{M}) \equiv \mathcal{M}_{11} \mathcal{M}_{22}+\mathcal{M}_{12} \mathcal{M}_{21}
$$

Dual Bus MRR: HOM Manifolds

E. E. Hach III, et al., Phys. Rev. A 89, 043805 (2014); Alsing, P. M., et al. Phys. Rev. A 95, 053828 (2017)

$$
\begin{gathered}
\left|\Psi^{\prime}\right\rangle=\left[\alpha_{0} S_{22}|0\rangle_{1}+\alpha_{1}\left(S_{11} S_{22}+S_{21} S_{12}\right)|1\rangle_{1}+\alpha_{1} S_{11}\left(S_{11} S_{22}+2 S_{21} S_{12}\right)|2\rangle_{1}\right] \otimes|1\rangle_{2} \otimes|0\rangle_{3} \\
+\left\{\alpha_{0} \sum_{j \neq 2} S_{j 2} a_{j}^{\dagger} \dagger\right. \text { out } \\
\left.+\alpha_{1} \sum_{(j, k) \neq\{(1,2),(2,1)\}} S_{j 1} S_{k 2} \hat{a}_{j, \text { out }}^{\dagger} \hat{a}_{k, \text { out }}^{\dagger}+\frac{\alpha_{2}}{\sqrt{2}} \sum_{(j, k, l) \neq\{\text { perm(}(1,1,2)\}} S_{j 1} S_{k 1} S_{l 2} \hat{a}_{j, \text { out }}^{\dagger} \hat{a}_{k, \text { out }}^{\dagger} \hat{a}_{l, \text { out }}^{\dagger}\right\}|0,0,0\rangle \\
\alpha_{0} S_{22}=\beta \alpha_{0} \\
\alpha_{1}\left(S_{11} S_{22}+S_{21} S_{12}\right)=\beta \alpha_{1} \\
\alpha_{2} S_{11}\left(S_{11} S_{22}+2 S_{21} S_{12}\right)=-\beta \alpha_{2} \\
S_{11}=1-\sqrt{2} \\
p_{\text {success }}^{N P P S}=|\beta|^{2}=\left|S_{22}\right|^{2}=\frac{1}{2}\left|S_{21}\right|^{2}\left|S_{12}\right|^{2}
\end{gathered}
$$

R.ITT

Conceptual Picture of Evanescent Coupling

PfQ

$$
\begin{gathered}
\left|\Psi^{\prime}\right\rangle=\left[\alpha_{0} S_{22}|0\rangle_{1}+\alpha_{1}\left(S_{11} S_{22}+S_{21} S_{12}\right)|1\rangle_{1}+\alpha_{1} S_{11}\left(S_{11} S_{22}+2 S_{21} S_{12}\right)|2\rangle_{1}\right] \otimes|1\rangle_{2} \otimes|0\rangle_{3} \\
+\left\{\alpha_{0} \sum_{j \neq 2} S_{j 2} a_{j, \text { out }}^{\dagger}+\alpha_{1} \sum_{(j, k) \neq\{(1,2),(2,1)\}} S_{j 1} S_{k 2} \hat{a}_{j, \text { out }}^{\dagger} \hat{a}_{k, \text { out }}^{\dagger}+\frac{\alpha_{2}}{\sqrt{2}} \sum_{(j, k, l) \neq\{\text { perm(1,1,2)\}}} S_{j 11} S_{k 1} S_{l 2} \hat{a}_{j, \text { out }}^{\dagger} \hat{a}_{k, \text { out }}^{\dagger} \hat{a}_{l, \text { out }}^{\dagger}\right\}|0,0,0\rangle \\
\alpha_{0} S_{22}=\beta \alpha_{0} \\
\alpha_{1}\left(S_{11} S_{22}+S_{21} S_{12}\right)=\beta \alpha_{1} \\
\alpha_{2} S_{11}\left(S_{11} S_{22}+2 S_{21} S_{12}\right)=-\beta \alpha_{2} \\
S_{11}=1-\sqrt{2} \\
p_{\text {success }}^{N L P S}=|\beta|^{2}=\left|S_{22}\right|^{2}=\frac{1}{2}\left|S_{21}\right|^{2}\left|S_{12}\right|^{2}
\end{gathered}
$$

Case 3: vary middle interblock phase delay:

$$
\delta_{1}=\delta_{3}, \delta_{2} \neq 0, \theta_{\mathrm{i}}=2 \pi, \mathrm{t}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}^{*}
$$

1D intersection of the ${ }_{\eta_{2}}^{0.0}$ two surfaces for $\delta_{2}=\pi / 30$

[^0]: * Skaar et al, and some others, thought of this, too
 ** They don't
 *** They aren't

