

Scientific Detectors for Astronomy

1 December 2008

James W. Beletic Teledyne Imaging Sensors

Teledyne – NASA's Partner in Astronomy

NICMOS, WFC3, ACS Repair

Bands 1 & 2

NIRCam, NIRSpec, FGS

JDEM Joint Dark Energy Mission

JWST - James Webb Space Telescope 15 Teledyne 2K×2K infrared arrays on board (~63 million pixels)

FGS (Fine Guidance Sensors)

3 individual MWIR 2Kx2K

- Acquisition and guiding
- Images guide stars for telescope stabilization
- Canadian Space Agency

- International collaboration
- 6.5 meter primary mirror and tennis court size sunshield
- 2013 launch on Ariane 5 rocket
- L2 orbit (1.5 million miles from Earth)

JWST will find the "first light" objects after the Big Bang, and will study how galaxies, stars and planetary systems form

NIRSpec (Near Infrared Spectrograph)

1x2 mosaic of MWIR 2Kx2K

- Spectrograph
- Measures chemical composition, temperature and velocity
- European Space Agency / NASA

- Wide field imager
- Studies morphology of objects and structure of the universe
- U. Arizona / Lockheed Martin

Wide Field Camera 3 Hubble Space Telescope

- High quality, substrate-removed 1.7 µm HgCdTe arrays delivered to Goddard Space Flight Center
- Will be installed in Hubble Space Telescope in 2009
- Nearly 30x increase in HST discovery efficiency

A Teledyne Technologies Company

Quantum Efficiency	= 85-90%
Dark current (145K)	= 0.02 e-/pix/sec
Readout noise	= 25 e- (single CDS

CRISM **Compact Reconnaissance Imaging Spectrometer for Mars**

and the same

NASA's and NOAA's Partner for Earth Observation

Visible to 16.5 microns

Moon Mineralogy Mapper - Visible / Near Infrared Imaging Spectrometer launched Wednesday, October 22, 2008

shipment to India

Focal Plane Assembly

Sensor Chip Assembly

2 year mission will map the entire lunar surface

Moon Mineralogy Mapper resolves visible and infrared to 10 nm spectral resolution, 70 m spatial resolution

Journey Earth to Moon 100 km altitude lunar orbit

Completion of Chandrayaan-1 spacecraft integration Moon Mineralogy Mapper is white square at end of arrow

Chandrayaan-1 in the Polar Satellite Launch Vehicle

Launch from Satish **Dhawan Space Centre**

Teledyne Infrared FPA

- 640 x 480 pixels (27 µm pitch)
- Substrate-removed HgCdTe (0.4 to 3.0 µm)
- 650,000 e- full well, <100 e- noise
- · 100 Hz frame rate (integrate while read)
- < 70 mW power dissipation
- · Package includes order sorting filter
- · Total FPA mass: 58 grams

Orbiting Carbon Observatory (OCO)

- The Orbiting Carbon Observatory (OCO) is a NASA mission that will provide:
 - precise, time-dependent global measurements of atmospheric carbon dioxide (CO₂) from an Earth orbiting satellite.
 - distribution of CO₂ over the entire globe, enable more reliable forecasts of future changes and their effect on the Earth's climate.
- The OCO is planned to launch in January 2009 with a planned operational life of 2 years.

Teledyne Focal Plane Arrays

- Three flight FPAs (and flight spares):
 - O_2A band at 0.758-0.772 μm
 - weak CO $_2$ band at 1.594 -1.619 μm
 - strong CO₂ band at 2.042-2.082 μm
- Hawaii-1RG readout is used for both HyViSI and SWIR FPAs with same mechanical and nearly same electrical interface for all three OCO spectrometers.

Leading Supplier of IR Arrays To Ground-based Astronomy

- H2RG (2048×2048 pixels) is the leading IR FPA in ground-based IR astronomy
- 4096×4096 pixel mosaic commissioned at European Southern Observatory in July 2007
 - 6th mosaic at major telescope, two more mosaics to be commissioned in 2009

Energy of a photon

Wavelength (µm)	Energy (eV)	Band
0.3	4.13	UV
0.5	2.48	Vis
0.7	1.77	Vis
1.0	1.24	NIR
2.5	0.50	SWIR
5.0	0.25	MWIR
10.0	0.12	LWIR
20.0	0.06	VLWIR

- Energy of photons is measured in electron-volts (eV)
- eV = energy that an electron gets when it "falls" through a 1 volt field.

An electron-volt (eV) is extremely small

 $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J} \text{ (J = joule)}$

 $1 J = N \cdot m = kg \cdot m \cdot sec^{-2} \cdot m$

1 kg raised 1 meter = $9.8 \text{ J} = 6.1 \cdot 10^{19} \text{ eV}$

- The energy of a photon is **VERY** small
 - The energy of a SWIR (2.5 μ m) photon is 0.5 eV
- Drop a peanut M&M[®] candy from a height of 5 cm
 - Energy is equal to $6 \times 10^{15} \text{ eV}$ (a peanut M&M[®] is ~2 g)
 - This is equal to 1.2×10^{16} SWIR photons
 - 1 million x 1 million x 12,000
 - The number of photons that will be detected in ~1 million images from the James Webb Space Telescope (JWST)
 - A 2-inch peanut M&M[®] drop is about same energy that will be detected during the 5 years operation of the James Webb Space Telescope !

E = hv

h = Planck constant (6.6310⁻³⁴ Joule•sec)

v = frequency of light (cycles/sec) = λ/c

Hybrid CMOS Infrared Imaging Sensors

Large, high performance IR arrays <u>Three Key Technologies</u>

- 1. Growth and processing of the HgCdTe detector layer
- Design and fabrication of the CMOS readout integrated circuit (ROIC)
- 3. Hybridization of the detector layer to the CMOS ROIC

6 Steps of CMOS-based Optical / IR Photon Detection

Crystals are excellent detectors of light

Structure of An Atom

- Simple model of atom
 - Protons (+) and neutrons in the nucleus with electrons orbiting

Silicon crystal lattice

- Electrons are trapped in the crystal lattice
 - by electric field of protons
- Light energy can free an electron from the grip of the protons, allowing the electron to roam about the crystal
 - creates an "electron-hole" pair.
- The photocharge can be collected and amplified, so that light is detected
- The light energy required to free an electron depends on the material.

	Periodic Table																
t seen of the second se											II	III	IV	V	VI		2 Helium
3 Lthium 8.9 11 Na Sodium	4 Beryflum 9.0 12 Mignasium											5 Boron 10.8 13 Auminum	e Carbon 12.0 14 Silicon	7 Nitro gen 14.0 15 Phosphorus	8 Oxygen 16 5 Safter Safter	9 Fluorine 19,0 17 Chiorine Chiorine	10 Neon 20.2 18 Arr Argon
23.0 19 K Potassium 30.1 37 Rubidium 85.6 65 65 65 Caesium 132.9 87 FT Fandum	20 Caloium 40.2 38 ST Strontium 87.6 66 Banium 137.4 98 Radum	21 Scandium 45.0 39 Y Yayium 88.9 82.7 1	22 Titanium d7.9 40 Zirconium 91.2 72 Hafnium 178.5 104 Rf Berto rollan	23 V Vanadium 50.9 41 Nobium 92.9 73 Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta D b Dubnium	24 C r Chromium 52.0 42 MO biblybde num 96.9 74 W Tung sten 183.9 106 S CJ Seaborgium	25 Manganese 54.9 43 TC Technetium 99 75 R0 Phenium 188.2 107 Bohrium	26 F0 bon 55,0 44 Ruthenium 101,0 78 Osmium 190,2 108 H08 H08 Hassium	27 Coibatt 58.9 45 Khodium 102.9 77 II I Hidium 192.2 109 III Meitnerium	28 Nil Nokel 58.7 40 Pd Pattadium 106.4 78 Pd Pattadium 106.4 78 Pd Pattanum 195.1 110 Uunnilium	29 Cu Copper 83.5 47 AC Silver 107.9 79 AU Gold 197.0	30 21 m 20 c 48 Cd Cadmium 112.4 80 Hg Mercury 200.6	31 Galiium 69.7 49 In hdium 114.8 81 """"""""""""""""""""""""""""""""""	32 Gemanium 72.6 50 S n 118.7 82 P b Lead 207.2	33 Assenic 74.9 51 Sb Antimony 121.8 83 83 Bismuth 209.0	34 34 50 50 52 Te 127.6 84 PO Polonium 210.0	35.5 35 Bromine 79.9 53 botine 128.9 85 Actatine 210.0 Pess of 13page	40.0 36 Kr Rypton 83.8 54 Xe Xe Xen 131.3 26 Rn Radon 222.0
Last i and																	
La	Cenum	Pr	Nd	Pm	Sm	Eu	Gd	Tb Teroim	Dy Dyproteum	Ho	Er	Tm	Yb		P	ons: ince baile: errañ-receita la	
80 Ac Actinium 132.9	90 Th Thanum 232.0	91 Pa Protact nicen 231.0	92 U Uranium 238.0	93 Np Neptunium 237.0	94 Pu Plutorium 242.0	96 Am Anerioum 243.0	98 Cm Curium 247.0	97 Bk Berkelium 247.0	08 Cf Cali brium 251 0	99 Es Ensteinium 254.0	100 Fernium 253.0	101 MIC Mendelexam 258.0	102 No Nobelium 254.0	103 Lr Lawrencium 267.0	E E	ion-metak ioble gases	

Tunable Wavelength: Unique property of HgCdTe

Hg_{1-x}Cd_xTe Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

G. L. Hansen, J. L. Schmidt, T. N. Casselman, J. Appl. Phys. 53(10), 1982, p. 7099

Absorption Depth of Photons in HgCdTe

Molecular Beam Epitaxy (MBE) Growth of HgCdTe

RIBER 3-in MBE Systems

3 inch diameter platen allows growth on one 6x6 cm substrate

RIBER 10-in MBE 49 System

10 inch diameter platen allows simultaneous growth on four 6x6 cm substrates

More than 7500 HgCdTe wafers grown to date

HgCdTe Cutoff Wavelength

<u>"Standard" Ground-based astronomy cutoff wavelengths</u>						
Near infrared (NIR)	1.75 µm	J,H				
Short-wave infrared (SWIR)	2.5 µm	J,H,K				
Mid-wave infrared (MWIR)	5.3 µm	J,H,K,L,M				

6 Steps of CMOS-based Optical / IR Photon Detection

HgCdTe hybrid FPA cross-section (substrate removed)

Hybrid Imager Architecture

Cosmic Rays and Substrate Removal

• Cosmic ray events produce clouds of detected signal due to particle-induced flashes of infrared light in the CdZnTe substrate; removal of the substrate eliminates the effect

2.5um cutoff, substrate on

1.7um cutoff, substrate on

1.7um cutoff, substrate off

Substrate Removal Positive Attributes

- 1. Higher QE in the near infrared
- 2. Visible light response
- 3. Eliminates cosmic ray fluorescence
- 4. Eliminates CTE mismatch with silicon ROIC

Quantum Efficiency of substrate-removed HgCdTe

Example Anti-reflection coatings for HgCdTe

Dark Current Undesirable byproduct of light detecting materials

- The vibration of particles (includes crystal lattice phonons, electrons and holes) has energies described by the Maxwell-Boltzmann distribution. Above absolute zero, some vibration energies may be larger than the bandgap energy, and will cause electron transitions from valence to conduction band.
- Need to cool detectors to limit the flow of electrons due to temperature, i.e. the <u>dark</u> <u>current</u> that exists in the absence of light.
- The smaller the bandgap, the colder the required temperature to limit dark current below other noise sources (e.g. readout noise)

Dark Current of MBE HgCdTe

HgCdTe cutoff wavelength (microns)

6 Steps of CMOS-based Optical / IR Photon Detection

MOSFET Principles

MOSFET = metal oxide semiconductor field effect transistor

Fluctuations in current flow produce "readout noise" Fluctuations in reset level on gate produces "reset noise"

IR multiplexer pixel architecture

IR multiplexer pixel architecture

Reduction of noise from multiple samples

CDS = correlated double sample

General Architecture of CMOS-Based Image Sensors

Pixel Amplifier Options

High Performance Hybrid CMOS Arrays

High Quality MBE HgCdTe + High Performance CMOS Design + Large Area Hybridization

HAWAII-2RG 2048×2048 pixels

HAWAII-2RG (H2RG)

- 2048×2048 pixels, 18 micron pitch
- 1, 2, 4, 32 ports
- "R" = reference pixels (4 rows/cols at edge)
- "G" = guide window
- Low power: <1 mW (4 port, 100 kHz rate)
- Detector material: HgCdTe or Si
- Interfaces directly to the SIDECAR ASIC
- Qualified to NASA TRL-6
 - Vibration, radiation, thermal cycling
 - Radiation hard to ~100 krad

The SIDECAR ASIC – Focal Plane Electronics on a Chip

SIDECAR: System for Image Digitization, Enhancement, Control And Retrieval

SIDECAR ASIC – Focal Plane Electronics on a Chip

Spaceflight packaging: JWST Fine Guidance Sensor

FPA - Backside - Cover Removed

Light Facing Side - Scene

- Package for H2RG 2048x2048 pixel array
- TRL-6 spaceflight qualified
- Interfaces directly to the SIDECAR ASIC
- Robust, versatile package

- PINHOLE EYES | SILICONE OP onlinear **Spatial Solitons** Report from OFC/NFOI **High Performance** Infrared Foca Plane Arrays OSA'
- Thermally isolated FPA can be stabilized to 1 mK when cold finger fluctuates several deg K

SIDECAR ASIC & large mosaic focal plane arrays

A Teledyne Technologies Company

43

HyViSI[™] – Hybrid Visible Silicon Imager

Focal plane array performance independently verified by:

- Rochester Institute of Technology
- European Southern Observatory
- US Naval Observatory & Goddard Space Flight Center

Readout noise, at 100 kHz pixel rate

• 7 e- single CDS, with reduction by multiple sampling Pixel operability > 99.99%

HyViSI Array Formats

Mars Reconnaissance Orbiter (MRO)

TCM 6604A 640×480 pixels 27 μm pitch CTIA

TEC Package by Judson

High Speed, Low Noise, Event Driven Readout

Large IR Astronomy Focal Plane Development The Next Step: 4096×4096 pixels

- 4096×4096 pixels, 15 μ m pitch with embedded SIDECAR ASIC
- Design readout circuit for high yield (4 ROICs per 8-inch wafer)
 - New design process
- Minimize detector cost by growing HgCdTe on silicon substrate
- 4-side buttable for large mosaics
- Option: SIDECAR ASIC integrated into SCA package

Teledyne – Your Imaging Partner for Astronomy & Civil Space

CMOS Design Expertise

- Pixel amplifiers lowest noise to highest flux
- High level of pixel functionality (LADAR, event driven)
- Large 2-D arrays, pushbroom, redundant pixel design
- Hybrids made with HgCdTe, Si, or InGaAs
- Monolithic CMOS

- Analog-to-digital converters
- · Imaging system on a chip
- Specialized ASICs
- Radiation hard
- Very low power

