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ABSTRACT 

This dissertation presents the current state-of-the-art of semiconductor-based photon counting 

detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-

mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared 

via their present and future performance in various astronomy applications. LM-APDs are studied in 

theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and 

experimentally, with a device at NASA’s Jet Propulsion Lab. The emphasis of the research is on 

GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for 

Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance 

metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel 

sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a 

cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo 

simulations and practical observation simulations was completed, including simulated astronomical 

imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental 

testing, both the current state-of-the-art performance and projected future performance of each 

detector are compared for various applications. LM-APD performance is currently not competitive 

with other photon counting technologies, and are left out of the application-based comparisons. In the 

current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long 

exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to 

clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark 

current will make them superior in both long and short exposure scenarios for extremely low flux. 

The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly 

disadvantageous for moderate to high flux rates where dark noise and CIC are insignificant noise 

sources. Research into decreasing the dark count rate of GM-APDs will lead to development of 

imaging arrays that are competitive for low light level imaging and spectroscopy applications in the 

near future. 
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1 INTRODUCTION 

As imaging science pushes towards the limits of physics, scientific detectors have come closer 

and closer to being perfect, noiseless observers. New frontiers become available for discovery 

and study with every reduction in detector noise. And with every new discovery comes the desire 

to make another, to delve deeper into the mysteries of the universe. Whether those discoveries lie 

on the edge of a distant galaxy or inside the cells of the human body, the goal is always the same: 

better measurements. 

For imaging detectors, this goal translates to counting every photon from the scene being 

imaged. While counting a few photons may seem unimportant, each photon counted reduces the 

uncertainty about a potentially critical measurement: Is there life on that planet? Will that 

asteroid collide with Earth? Are those cells cancerous? Low light level imaging applications 

have signals that are on the order of average detector noise for each image, which makes signal 

detection difficult and time-consuming, unless the noise can be reduced. Photon-counting 

detectors generally eliminate read noise, noise associated with the estimation of the collected 

signal in a pixel, in order to achieve single photon resolution. 

This dissertation will investigate the current approaches to photon-counting and the state-of-the-

art performance of current technologies. The detectors will be evaluated based on a specific set 

of criteria for various imaging and spectroscopy applications. Both the current performance and 

projected future performance of each detector will be compared. The goal of this research is to 

provide a comprehensive analysis of the future of photon-counting in semiconductor-based 

detectors. 

1.1 THE HISTORY OF SINGLE PHOTON COUNTING 

Since the inception of solid-state detectors, imaging scientists have looked for ways to count 

single photons, the smallest measurement of light. Each photon is a tiny bundle of a very specific 

amount of energy, depending on the origin of the photon. Counting individual photons means 

resolving the number of photons emitted from a source, and may even include other information 
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such as position, distance, temperature, energy, polarization, etc. And the goal of more 

information in a shorter amount of time is achieved with photon counting. 

In order to acquire the near-noiseless operation required for photon-counting, integrated circuits 

(ICs) are required. ICs are used in all modern photon detectors in the readout electronics, which 

rely on the field effect transistors (FETs) to act as switches. While the theory of the FET was 

invented by Lilienfeld in 1926, the solid state transistor was not invented until 1947 at Bell 

Laboratories by William Shockley, John Bardeen, and Walter Brattain, for which they won the 

1956 Nobel Prize in physics (Brinkman, et al., 1997).   

 

 

Figure 1 – This figure shows the first FET, invented by Bardeen, Shockley, and Brattain 

(Brinkman, et al., 1997). 

 

The solid-state transistor was pursued as a way to replace the vacuum tube, which could not 

operate at the high frequencies desired at the time. In 1957, Texas Instruments fabricated the first 

integrated circuit using discrete wire interconnections, though the modern IC using thin-film 

metal interconnections was first produced by Fairchild Semiconductor in 1959. However, it was 

not until the early 1970s that the impurity levels in the materials were controlled enough to yield 

reliable devices (Brinkman, et al., 1997). 
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Solid state transistors paved the way for array-based solid state photodiodes. The charge-coupled 

device (CCD) was invented in 1970 by Willard Boyle and George Smith at Bell Laboratories as 

an analogue to a magnetic bubble device (for storing information). Astronomers quickly saw the 

potential of the CCD for scientific imaging: in 1973, workers at NASA’s Jet Propulsion 

Laboratory (JPL) initiated a program to develop large area CCD arrays for space-based imaging 

instruments. JPL built a traveling CCD camera system, the first of its kind, to promote the 

program by its use at major observatories around the world. The CCD had a much higher 

sensitivity than film, which was the detection method at the time, such that the same 

measurements could be made 100x faster with the CCD. This not only allowed more data to be 

produced in the same amount of time, but also allowed imaging of astronomical objects that were 

invisible to the detection methods available up to that point (Janesick & Elliot, 1992). 

The most ubiquitous method of measuring a single photon was external amplification of the 

signal using photomultiplier tubes (PMTs). PMTs were first invented in 1930 by L. A. Kubetsky, 

a Soviet-Russian physicist and engineer, to amplify weak photocurrents (Lubsandorzhiev, 2006). 

Figure 2 shows a rendering of Kubetsky’s tube, the first PMT.  

 

 

Figure 2 – This figure shows the first PMT, invented by Kubetsky (Lubsandorzhiev, 2006). 

 

PMTs work by using Einstein’s photo-electric effect: a photo-cathode (which converts photons 

into photo-electrons) is linked to a series of secondary electron emitters (called dynodes), which 

have successively higher voltages to create acceleration between units. A photo-electron from 

the photo-cathode reaches the first dynode through an electric field, accelerating the electron. 
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Upon impact, the electron ionizes more electrons, which are all accelerated to the next dynode 

through an electric field. This progression continues until the end of the PMT, where the total 

output gain is g
n
, where g is the gain of the dynode stages (which is constant) and n is the 

number of dynodes. Later versions of the PMT included magnets for focusing the electrons. The 

total gain of these early devices was 10
3
-10

4
 (Lubsandorzhiev, 2006). The rest of the scientific 

community was not far behind the invention of the PMT, with other versions of the device being 

invented by RCA laboratories in 1936, among others. Later versions of the PMT incorporated 

simple detectors at the end of the tube to either measure average current or individual pulses of 

current from photons or other particles. This method resulted in calibration of the system to 

specific operation conditions for each new application (Darland, et al., 1979). This system was 

common well into the 1990s for both photon-counting and ranging applications (Donovan, et al., 

1993), and continues to be used in niche applications even today. 

Even though the CCD was invented in 1970, scientists were already in pursuit of measuring 

single photons with CCDs in the mid-1970s. Some first attempts included a mixture of PMT and 

CCD technology. The intensified CCD (ICCD) instrument used a photo-cathode to generate 

electrons from incoming photons, which were then focused via an electrostatic focus cone onto 

the CCD (Currie & Choisser, 1976). Figure 3 shows an example of an ICCD device.  



 

 

 

 

5 

 

 

 

Figure 3 – This figure shows a schematic diagram of the ICCD device (Currie & Choisser, 

1976). 

 

The photo-electrons would hit the CCD and create a charge packet, which was then read out by a 

simple parallel-to-serial transfer system to an on-chip preamplifier. The system was read out 

during integration of the next frame (Currie & Choisser, 1976). PMTs were also used in 

conjunction with CCDs, though some difficulties associated with PMTs, such as fatigue and gain 

instability, became more significant as CCDs (or other detectors) became more sensitive (Coates, 

1975).  

This method of first converting incoming photons into photo-electrons via a photo-cathode, 

separate from the detector itself, continued as a common method well into the 1980s and was 

notably pursued by Hamamatsu Photonics (Tsuchiya, et al., 1985). They used a 3-stage 

microchannel plate (MCP) as the gain mechanism, which consisted of an array of narrow tubes 

that amplify electron signal through accelerated electron collision with the sidewalls. This 

implementation allowed for PMT-like amplification while maintaining spatial resolution. Instead 

of a CCD as the detector, the sensor was a position sensitive detector (PSD), which has no 

discrete spatial bins (like pixels), but instead uses surface resistance to measure continuous 

position data. The astronomy community also used MCPs as a means of external amplification in 

space-based missions (Siegmund, et al., 1986). Eventually, alternative approaches to signal 

enhancement were pursued, including the electron bombarded CCD (EBCCD) and electron 

bombarded CMOS (EBCMOS). Whereas ICCDs used phosphor screens, MCPs, and fiber optic 

components to retain the spatial information of the signal, EBCCDs and EBCMOS devices use a 



 

 

 

 

6 

 

photocathode to generate high-energy electrons from the incoming photon signal. The electrons 

that exit the photocathode are proximity-focused onto a thinned, back-side illuminated CCD or 

CMOS (compensated metal oxide semiconductor) array, and the electron is absorbed directly 

into the array. Electron-bombardment gain then amplifies the signal with nearly noiseless gain 

inside of the array and the signal is read out (Williams, Jr., et al., 1995). 

But PMTs were not completely replaced by MCPs, as they still were used a variety of 

applications, including biological imaging of chemical reaction phot-emission (Seliger, 1980) 

and fluorescence modulation (Murray, et al., 1986). 

Avalanche photodiodes also became a popular area of research in the 1960s and early 1970s, 

with both linear- and Geiger-mode functions being topics of interest. The motivation for this 

interest was the replacement of photo-multiplier tubes (PMTs), as modern experiments were 

likely to contain high electric fields and high magnetic fields (particularly in medical imaging), 

both of which degrade PMT performance (Jackson, et al., 2003). High PMT fabrication costs 

were also a factor; much of the internal architecture had to be handmade. Geiger-mode avalanche 

photodiodes (GM-APDs) could replace PMTs as both a signal amplifier for low flux imaging 

applications and as a means to detect single photons. The first silicon (solid state) single photon 

counting detectors were developed by Robert McIntyre at RCA Laboratories (a reach-through 

type of device) and Roland Haitz at Shockley research laboratory (a planar type of device) 

(Renker, 2006). Figure 4 shows diagrams of the two devices. 
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Figure 4 – This figure shows diagrams of single elements in the first two silicon single photon 

detectors. The top diagram is Haitz’s planar device, and the bottom diagram is McIntyre’s 

reach-through device (Renker, 2006). 

 

The next generation of single photon-counting APDs came from Rockwell International Science 

Center in 1987 when they developed the solid state photomultiplier (SSPM). The device design 

utilized very high donor concentrations, which allowed the device to be sensitive even into the 

near IR (Petroff & Stapelbroek, 1989). The structure was later modified to have less sensitivity 

in the longer wavelengths and exists now as the visible light photon counter (VLPC). One of the 



 

 

 

 

8 

 

last radical improvements to the APD design occurred in Russia around 1990, called the metal-

resistor-semiconductor (MRS) APD. A thin metal layer coats either SiC or SixOy (the resistor 

layer), allowing for a local reduction of the electric field, which in turn limits the magnitude of 

the diode breakdown. A smaller breakdown magnitude leads to faster quenching, which in turn 

leads to faster cycle times (Renker, 2006). 

By the mid-1990s, silicon APDs were the subject of promising research in the area of photon-

counting, due in no small part to their commercial availability. By 1993, GM-APDs could be 

purchased with photon detection efficiencies (PDEs) near 70% near 600 nm, dark count rates 

(DCR) of 1 kHz, and relatively low operating voltages of 200-600 V (low compared to the 

PMTs, their main competitor). The notable Slik
TM

 device by Perkin Elmer, available around 

1990, was designed specifically for high PDE. Scientists also began to investigate the pros and 

cons of different quenching schemes (the mechanism by which the internal gain pulse is stopped) 

(Dautet, et al., 1993). These improvements in design and operation opened the door for more 

sensitive applications, including time-correlated single photon counting (TCSPC) for time of 

flight ranging, time-domain reflectometry, quantum cryptography (Hiskett, et al., 2000), and 

photon correlation experiments in quantum physics (Noh, et al., 1991). The 1990s also saw 

significant development in non-silicon APDs, including germanium (Owens, et al., 1994) and 

variations on InGaAs and InP such as InGaAs/InP (Ribordy, et al., 1998) and InGaAsP/InP 

(McIntosh, et al., 2002). Devices based on these semiconductor materials started to become 

available commercially for extended wavelength sensitivities into the infrared (IR) in the mid-

1990s. Materials that are sensitive at longer wavelengths are useful for direct imaging of IR 

phenomena, but are also useful for applications in which the signal being detected must also be 

generated: communications, quantum computing, quantum key distribution, etc. Some materials 

even offer specific advantages, such as noiseless gain HgCdTe in linear-mode (Kinch, et al., 

2004) or the fast reset times of InGaAs in Geiger-mode (Dixon, et al., 2009). 

The 1990s also saw the introduction of superconducting materials for photon detection, though 

mainly in x-ray applications. Previously, superconducting detectors (most commonly, 

superconducting tunnel junction detectors) were used primarily for detection of high-energy 
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particles. By the early 2000s, superconducting materials and detectors were being used with 

great success in a variety of photon-counting applications, including quantum communications 

(Robinson, et al., 2006). Microwave kinetic inductance detectors (MKIDs) were a breakthrough 

in superconducting detectors, and have since been the subject of much research (see section 

1.3.2). They are easy to fabricate, requiring only a few layers of material and a very simple 

readout system, and easy to mosaic into larger arrays. Initially, they were used mostly for 

astronomy applications, given their wide range of wavelength sensitivity (from x-ray to sub-

millimeter photons), though other disciplines have recently begun investigating their potential. 

MKIDs are particularly promising for quantum optics and communications (Gao, et al., 2012). 

Scientists also began experimenting with on-chip gain in CCDs in the early 2000s, leading to the 

electron-multiplying CCD (EMCCD). While reading out the CCD while taking many samples, as 

in the CCD Skipper readout (Janesick, et al., 1990), can reduce the read noise to sub-electron 

levels, this comes at the cost of a very slow frame rate. In EMCCDs, a gain register at the output 

of the device multiplied the standard CCD signal by a pre-determined gain, making the read 

noise of the device negligible and allowing for fast readouts. There were some drawbacks, 

however, as the gain was stochastic in nature. The more photo-electrons were multiplied at the 

gain stage, the more uncertain the measurement became. Therefore, it was important to balance 

the gain value and exposure settings with the needs of the experiment (Basden, et al., 2003). 

However, APDs still had a number of advantages, such as a fast reset for resolving higher flux 

rates for single photons Geiger-mode operation. And with the APDs in a linear-mode (limited 

gain), distinction between different numbers of simultaneous photons was also possible (Eraerds, 

et al., 2007). Distinguishing between different energies is also possible, as long as the photon has 

sufficient energy to ionize more than one electron, e.g. x-rays. This capability has a wide range 

of applications, including medical imaging and spectroscopy, synchrotron and x-ray tube spectra, 

radioactive materials analysis, and astronomy. Certain computational considerations need to be 

used in the analysis, however, since the relationship between photon energy and number of 

electrons is non-linear and depends on the detector material (Sievers, et al., 2012). 
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More recently, advancements in CMOS APS direct readout (DRO) devices have led to sCMOS 

(scientific CMOS) device architecture, which bypasses traditional trade-offs between readout 

rate and read noise (Andor, 2012). By using new CMOS design technology, sCMOS can achieve 

frame rates of 100 frames per second (10 ms readout times) with just 1.3 electrons read noise, 

and at 30 frames per second with just 1 electron read noise. The devices do sacrifice some 

quantum efficiency (roughly 57%) due to the monolithic device architecture. This could 

conceivably be increased with back-illumination processing and hybridization (as is done with 

current state-of-the-art CCD devices). These devices also have high dynamic range (30,000:1 at 

30 frames per second) and can be fabricated in large array formats. 

1.2 APPLICATIONS OF PHOTON COUNTING 

Generally, photon counting is useful in low-light-level imaging scenarios. In these photon-

starved applications, lower noise can make a significant impact on required exposure time and 

image quality. There are numerous reasons why an application is photon-starved, such as a faint 

object or the necessity of fast exposures, but the need for low noise and single-photon resolution 

is universal. 

Astronomy and adaptive optics (AO) applications are discussed here for their relevance to 

semiconductor-based detectors that measure intensity. Other applications, such as laser ranging 

and quantum computing, rely on measurements of arrival time to calculate either time of flight 

(distance) or frequency of signal on very short scales. Often, these applications rely on syncing 

the detector with the source pulses. This represents a different detection paradigm, and those 

applications are not discussed here. For superconductors, medical imaging applications are 

relevant due to the need for precise energy resolution. Because the focus of this dissertation is 

semiconductor-based detectors, the details of superconducting applications left to Appendix B:. 

1.2.1 ASTRONOMY 

There are many demanding applications in the field of astronomical spectroscopy and imaging. 

Two examples are spectroscopy and imaging of exoplanets (both direct and transit) and pulsars. 

Both applications require fast exposures that preserve signal-to-noise ratio (SNR). 
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Exoplanets (also referred to as extrasolar planets) are planets that orbit stars other than the Sun. 

There are three common approaches for the detection of exoplanets: the Doppler method, transit 

photometry, and direct imaging. In the decade that followed the detection of the first exoplanet, 

the Doppler method was the most common method of detection. This method measures small 

sinusoidal changes in velocity of a star as it orbits the center of the star-planet system. These 

measurements require very small changes. For example, a Jupiter-like planet requires measuring 

a long-term wavelength shift in a stellar absorption line of 0.1% of its width. The Doppler 

method of exoplanet detection requires a high dispersion spectrograph, high SNR of the spectral 

data, and extremely accurate wavelength calibration. The Doppler method has yielded the most 

confirmed exoplanets, but the Kepler mission’s transit photometry method has recently yielded 

the most candidates (Impey, 2013). 

 The first exoplanet orbiting a sun-like star was discovered in 1995 using transit photometry 

(Mayor & Queloz, 1995), which works by observing a star while a planet is in transit in front of 

it. By taking spectroscopic data before, during, and after the transit, scientists can calculate the 

degree to which the planet blocks some wavelengths. The larger the planet, the more light is 

blocked. Figure 5 shows an example of transit photometry data (Sing, et al., 2009). The 3% 

decrease in signal is for a very large planet. A Jupiter-like planet will induce a photometric 

variation of just 1%, while Earth-like planets have an even smaller effect. Generally, transit 

times are on the order of hours for short-period planets (Santos, 2008). 
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Figure 5 – An example of relative flux signal vs phase for a transit photometry measurement 

(Sing, et al., 2009). The 3% decrease in flux at zero phase corresponds to the transit of the 

exoplanet across the star. 

 

NASA’s Kepler planet detection mission alone has detected hundreds of candidate planets via 

transit photometry, making baseline measurements such as planet size, mass, and density, as well 

as average temperature and distance from the planets’ stars (Borucki, et al., 2010). The NICMOS 

instrument on the Hubble Space Telescope (HST) has also been used for transit photometry of 

candidate exoplanets. Some observations focus on planet composition (e.g., metal enrichment) 

(Carter, et al., 2009), while others are in search of evidence for water in the atmosphere (Sing, et 

al., 2009). The limitation of transit photometry as a means of exoplanet detection is that the 

orbital axis of the planet must be closely perpendicular to the detector’s line of sight. This is 

reasonably common (10% probability) for a Jupiter-like planet in a very short orbit (~3 days), 

but the probability of a compatible orbit for an Earth-like planet (both size and orbit) is only 

0.5%. Planets with orbital paths that do not meet the transit requirement must be imaged directly 

(Santos, 2008). 

Direct imaging observes the planet during its orbit, detecting the light reflected off of the planet 

from the star while not in transit. In this case, the star may be occulted, or blocked out, as on 

NASA’s Terrestrial Planet Finder coronagraph, or TPF-C (Ford, et al., 2004). With the starlight 
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blocked, the exposure can be optimized for the exoplanet signal. Direct imaging is also done 

without a coronagraph, as on the MOST satellite (Rowe, et al., 2006), or the ground-based Keck 

and Gemini telescopes (Marois, et al., 2008). Characterization of exoplanets requires multiple 

measurements. The distance between the star and planet candidate is important for determining 

the likelihood of planet formation (Carson, et al., 2013), and albedo (average reflection 

coefficient) measurements can be taken at multiple wavelengths to construct a detailed model of 

the atmosphere. With this model, one can identify biomarkers, or atmospheric characteristics that 

suggest a biological origin, marking a planet for future long-term study. Large arrays will 

become more desirable as the need for increased spatial resolution grows (Schneider, et al., 

2010). 

X-ray detection instruments, such as the satellite Chandra, are often used to study pulsars (Ng, et 

al., 2005) and their nebulas (Gaensler, et al., 2002), as well as stellar flares (Mitra-Kraev, et al., 

2013). Pulsars are rotating neutron stars that emit a beam of electromagnetic radiation, and are 

believed to be formed in supernova explosions. These stars are very dense and have short 

rotational periods – as the star rotates, the electromagnetic beam can be seen, causing a pulsing 

behavior in the signal (Radhakrishnan & Cooke, 1969). Figure 6 shows an image and relative 

spectral flux of the Crab pulsar, one of the first pulsars to be discovered and studied (Buhler & 

Blandford, 2014). 
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Figure 6 – A false-color image (left) and spectral signal phase diagram of the Crab Pulsar and 

nebula (right) are shown. In the false-color image, blue is x-rays, green is visible, and red is 

radio signal (Buhler & Blandford, 2014). 

 

The longest period ever recorded for a pulsar is 8.5 s, requiring sampling periods on the order of 

milliseconds to reliably capture the fluctuation of pulsar signals. Figure 7 shows the distribution 

of known pulsars as of 1999, plotted by pulsar period P (in seconds) and the surface magnetic 

dipole field strength Bs (in Gauss) (Young, et al., 1999). 
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Figure 7 – The surface magnetic dipole field strength Bs vs the pulsar period P for a large 

population of known pulsars is shown. Most pulsars have a period less than 1 s. The lines 

labeled A, B, and C represent competing models defining the minimum magnetic field for a given 

pulsar period (Young, et al., 1999). 

 

Pulsar observations are most often limited to x-rays and radio waves, but and some key features 

can also be measured in optical/IR signals (or the lack thereof) (Gotthelf, et al., 2004). 

1.2.2 ADAPTIVE OPTICS 

Adaptive optics uses wavefront sensing to correct for wavefront aberrations. Originally, AO was 

developed in the late 1960s to allow the US Air Force to image satellites from ground-based 

telescopes to correct for atmospheric aberrations (Platt & Shack, 2001). Over the course of an 

observation period, even while accounting for the rotation of the Earth, an object’s signal will 

shift in the focal plane due to interaction with the Earth’s atmosphere. AO is not limited to 

applications with only atmospheric aberrations, however, and has also been used to characterize 

aberrations of the human eye, the uniformity of laser beams, and optical system alignment (Neal, 

et al., 2002). Wavefront sensing systems can measure the tilt or curvature of a wavefront using 

optical components and a detector. In a standard setup, a beam splitter divides the signal into two 

portions: one part of the signal goes to the wavefront sensing detector and the other to the 
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imaging detector. In order to correct aberrant waveforms, the information collected by the 

wavefront-sensing detector feeds back into the system controlling the imaging optical 

components. These optical components manipulate the image signal so that the scene remains 

stationary on the focal plane of the imaging detector. 

The most common approach to wavefront sensing is the Shack-Hartmann wavefront sensor. This 

sensor is based on the Hartmann screen test, which was invented by the distinguished 

astrophysicist Johannes Hartmann to evaluate the quality of an 80 cm refracting telescope at 

Potsdam. While the screen test is still used today, applications requiring wavefront 

characterization in low-light conditions necessitated the evolution of the concept. In the early 

1970s, Roland Shack and his graduate student Ben Platt expanded on Hartmann’s system, 

introducing a lenslet array to maximize the signal collection and focus the light at a predictable 

point behind the optics. After the initial development of the sensor, the military also used the 

technology to adaptively correct the distortions of mirrors used in high-energy laser systems, 

which would become deformed under the high heat load (Schwiegerling & Neal, 2005). Figure 8 

shows an example of a Shack-Hartmann wavefront sensor (Platt & Shack, 2001). By measuring 

the displacement of the focal spots, the wavefront curvature could be calculated. 
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Figure 8 – An optical layout of the original  Shack-Hartmann wavefront sensing system for  AO 

is shown (Platt & Shack, 2001). The top figure shows the path of the incoming beam and the 

bottom figure shows a magnified view of the lens array. 

 

In the mid-1980s, Josef Bille at the University of Heidelberg was the first to use the Shack-

Hartmann technique on the human eye. It was first used to characterize the surface of the cornea, 

but later was applied to aberrations of the entire eye. These experiments led directly to the 

modern-day treatment of visual aberrations with ecximer laser sculpting (Schwiegerling & Neal, 



 

 

 

 

18 

 

2005). Zernike polynomials, coefficients used to characterize visual aberrations, can be precisely 

measured to high order (complicated aberrations, such as astigmatism and spherical aberration) 

to better inform lens prescriptions and vision correction surgeries (Liang, et al., 1994). In some 

cases, patients can have their vision improved beyond 20/20 (supernormal vision). Advanced AO 

systems have also allowed high-quality, in-vivo imaging of the retina (Liang, et al., 1997). 

While the concept of AO was appealing for astronomy applications, the sensor technology was 

behind what was needed to correct the wavefront in real-time. It wasn’t until the 1980s that AO 

was feasible, with the advent of the CCD camera, and development lagged behind that of the 

military due to scarce funding and classified research (Platt & Shack, 2001). The first actively-

corrected astronomical telescope was the 3.6 m telescope at the European Southern Observatory 

(ESO), which saw first light in 1989 (Schwiegerling & Neal, 2005). 

AO applications benefit from detectors with many pixels, high frame rates, and low noise. More 

pixels means finer spatial sampling; high frame rates mean finer temporal sampling; lower noise 

means more precise optical adjustments. Unfortunately for CCD imagers (the main alternative 

for AO applications), these three traits are generally mutually exclusive. A higher frame rate 

decreases the image latency but increases the read noise of a CCD. There are alternative 

methods, e.g. a multiple readout architecture (small sections of the larger array are read out 

individually and then combined), but this increases the complexity of a system as well as its 

power usage. In recent years, the Shack-Hartmann AO system has been applied to 2-D arrays of 

GM-APDs with promising success (Aull, et al., 2010; Aull, et al., 2015). Each lens is paired with 

a 4-element quad cell, capable of calculating the centroid of the focal spot based on the disparity 

in signal between each element. Multiple simulations of APD and CCD detectors in AO systems 

have shown that there is currently little difference in performance (Craven-Bartle, et al., 2000; 

Aull, et al., 2015). 

Figure 9 shows the displacement estimation error for the centroid of a focal spot as a function of 

the number of photons detected per sample for a CCD and a GM-APD with various levels of 

crosstalk (Aull, et al., 2015). The detectors are assumed to be quad-cell devices. 
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Figure 9 – This figure shows the displacement estimation error, δz, of the focal spot centroid as a 

function of the number of photons detected per integration time. α is the crosstalk probability for 

each blue curve. The limiting factor of the GM-APD curve with no crosstalk probability is the 

dead time of the device, and the limiting factor for the CCD is the read noise (12 e
-
). Both 

detectors reach the Shot noise limit in the ideal case: no read noise in the CCD and no crosstalk 

or dead time in the GM-APD (Aull, et al., 2015). 

 

If APD technology can reduce dark count noise (its current disadvantage), then APD could easily 

overtake CCD performance in AO systems. 

1.3 APPROACHES TO PHOTON COUNTING 

Generally, photon counting is most relevant for low-light-level applications. In these photon-

starved applications, lower noise can make a significant impact on required exposure time and 

SNR. There are numerous reasons why an application might be photon-starved, such as a faint 

object or the necessity of fast exposures, but the need for low noise and single-photon resolution 

is universal in these applications. Applications that require advances in photon counting 

(excluding time-correlated methods that require a free-running detection system) are described 

below. 
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There are two main approaches to photon counting detectors: semiconductors and 

superconductors. The main focus of this research is semiconductor-based detectors, given that 

semiconductor technology is more advanced for imaging applications. Superconductor-based 

detectors will be discussed and presented as a viable alternative for future applications, given 

some key improvements. 

Semiconductor detectors use materials that have been studied for decades, such as Si and 

HgCdTe. Other materials, such as InGaAs, Ge, and InP, have unique advantages in the 

fabrication process and in material properties. Generally, semiconductor-based approaches to 

photon counting use the internal avalanche gain mechanism, which amplifies the signal of a 

single electron or hole many times over (gains in excess of 10
6
 are not uncommon). 

Semiconductor detector arrays are fabricated on wafers, which are thin disks of semiconductor 

material sliced from an ingot. Some devices are built into the wafer material, while others are 

built on top of the wafer in a separate material grown epitaxially. Usually, more than one device 

can be fabricated on a single wafer, but large arrays are limited by wafer size. State-of-the-art 

silicon wafers are currently 300 mm, but the fabrication industry will transition to 450 mm in the 

near future (Watanabe & Kramer, 2006). Wafer size is smaller (~70 cm) for more expensive 

detector materials like HgCdTe (which generally require CdZnTe wafers on which to grow the 

HgCdTe), though efforts to grow HgCdTe on Si wafers have had promising success on wafers up 

to 150 mm (Reddy, et al., 2008). It is important to note that the detector price increases 

exponentially with increasing device size as fewer detector arrays can be fit on a single wafer. 

The cost of processing the wafer (which does not depend on the number of detectors per wafer) 

is split across fewer detectors. Also, if the number of defects per wafer remains constant, the 

number of defects per detector increases. To produce a detector with very few defects, more 

wafers must be processed, and the cost of those wafers is also added to the cost of the large 

detector. Pixel size is limited only by microlithography capabilities, though the required size is 

often set by system constraints. For example, if Nyquist sampling is required, then approximately 

two pixels must be sized to cover a resolution element. Common pixel sizes range from 10 μm to 

30 μm. 
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Superconductor detectors have begun to emerge as promising alternatives for imaging and 

spectroscopy applications. Superconducting materials are usually chosen for the critical 

transition temperature (Tc), usually on the order of 1 K, though materials with lower Tc values 

are being investigated for future instruments. Some superconductor detectors use an LC circuit 

configuration and measure photon detection by way of a change in the circuit’s resonance 

frequency, which is affected by a change in resistivity induced by absorbed energy. Others 

measure changes in current or voltage draw (indicating a change in resistivity). The current 

limitations on superconductor-based detector technologies are scalability, pixel size, and cooling 

requirements. While semiconductor-based detectors do not have inherent, noiseless energy 

resolution, they are very scalable, can have pixel sizes on the order of tens of microns, and 

require only modest cooling in most applications (on the order of -20˚ C in many instances). 

1.3.1 SEMICONDUCTOR-BASED DETECTORS 

There are many different implementations of semiconductor-based imaging detectors, and they 

can be divided into three categories: devices with no gain, devices with non-avalanche gain, and 

devices with avalanche gain. 

The first category, devices with no gain, includes CCDs and CMOS active pixel sensor (APS) 

devices. Modern CCDs generally use buried channel MOS capacitors to store charge collected 

during an exposure. Reading out the device requires physically moving the charge through the 

pixels, which is called a destructive read. CMOS APS devices use a photodiode to store charge 

in each pixel, which can be read out by measuring the change in voltage during an exposure, 

which is a non-destructive read. 

Detectors with non-avalanche gain, such as microchannel plates, ICCDs, and electron 

bombarded CCDs, are not included in this project. Generally, these devices use the photoelectric 

effect and gain due to electron bombardment, where a photon with high energy generates more 

than one electron-hole pair. 

Avalanche gain can take place either in a multiplication register or in the pixel. EMCCDs can be 

operated in either linear mode or photon counting mode and have the same pixel architecture as a 
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standard CCD. The difference is in a special gain register that amplifies the signal from the 

pixels during the readout (Daigle, et al., 2004). Linear mode operation measures the analog 

signal to estimate the number of photons that were absorbed. In photon counting mode, on the 

other hand, they are read out very quickly and a threshold circuit is used to decide whether or not 

a photon was absorbed during the very short exposure. The short exposures are repeated many 

times to estimate the probability of the arrival of one or more photons in one short exposure. This 

probability is used to calculate the average number of photons per second per pixel. Linear-mode 

avalanche photodiodes (LM-APDs) and GM-APDs both have in-pixel avalanche multiplication, 

but use it differently. LM-APDs use low gain (<100) and measure the analog signal from each 

pixel to estimate the number of photons that were absorbed. GM-APDs use very high gain and a 

thresholding circuit to determine whether or not a photon was absorbed during a very short 

exposure. Much like the EMCCD, these short exposures are repeated many times to estimate the 

probability of the arrival of one or more photons in one short exposure. This probability is used 

to calculate the average number of photons per second per pixel. Although these approaches to 

semiconductor-based imaging detectors are fundamentally different, there are a few fundamental 

concepts that they share. 

1.3.1.1 The PN Junction Diode 

A diode is a device with a junction of two oppositely doped semiconductor materials. A material 

is considered doped when impurities are intentionally added to the crystal structure. For instance, 

doping silicon with boron will cause the material to become p-type, or have a majority of 

positive carriers (holes) in the material. If silicon were doped with phosphorus instead, the 

material would become n-type, or have a majority of negative carriers (electrons). These extra 

carriers enable higher conductivity than in pure silicon. Figure 10 shows a band diagram, which 

illustrates the available energy levels for a carrier in a crystal structure with no pn junction 

(Pierret, 1996). 
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Figure 10 – A simple energy band diagram for a semiconductor is shown. 

 

Ec refers to the energy level of the conduction band (where electrons can freely move within the 

lattice), and Ev represents the energy of the valence band where electrons reside in their bound 

state. Eg is the band gap energy, or the amount of energy needed for an electron to move to the 

conduction band from the valence band, and is a constant for a semiconducting material. For 

silicon, Eg is 1.12 eV at 300 K. Ei (intrinsic energy level) refers to the energy level that has a 

50% probability of being filled in an intrinsic semiconductor, which is half the band gap 

(0.56 eV at room temperature for silicon). The probability that a carrier will occupy a certain 

energy state is a function of the Fermi energy level (Ef-n for n-type dopants and Ef-p for p-type 

dopants) and the temperature of the material. Ei is often shown in the band diagram as a 

reference for doped materials. For instance, if the Fermi level is above Ei, the material is 

negatively doped. The Fermi function describes this probability (see Eq. 1) and the expressions 

for the corresponding energy levels are shown in the Fermi level expressions (Eq. 2 and Eq. 3 ) 

(Pierret, 1996).  

 

𝒇(𝑬) =
𝟏

𝟏 + 𝒆
𝑬−𝑬𝒇
𝒌𝑻

 Eq. 1 

 

f(E) denotes the probability (under equilibrium conditions) that an electron will occupy an 

available state of energy E. k is the Boltzmann constant and T is the temperature of the material 

in Kelvin. Ef is the Fermi level, which can be calculated as in Eq. 2 and Eq. 3 (Pierret, 1996). 
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𝑬𝒇−𝒏 = 𝑬𝒊 + 𝒌𝑻𝒍𝒏 (
𝑵𝑫
𝒏𝒊
) Eq. 2 

 

𝑬𝒇−𝒑 = 𝑬𝒊 − 𝒌𝑻𝒍𝒏 (
𝑵𝑨
𝒏𝒊
) Eq. 3 

 

Eq. 2 applies to n-type (donor) dopants, with ND being the number of dopant atoms per unit 

volume. Eq. 3 applies to p-type (acceptor) dopants, with NA having the same units as ND. ni is the 

intrinsic carrier concentration for the semiconductor (~1e10 cm
-3

 for silicon). For most 

applications, only one type of dopant is used in a particular volume of the semiconductor (either 

p-type or n-type). A mode of doping exists called compensated doping, which includes both n- 

and p-type dopants in the same region, but imaging detectors do not generally utilize these 

doping schemes (Pierret, 1996). 

The carrier densities n and p (of electrons and holes, respectively), shown in Eq. 4 and Eq. 5, 

represent the number of carriers per unit volume. These values are dependent on the material’s 

intrinsic characteristics, the Fermi level, and the temperature.  

 

𝒏 = 𝒏𝒊𝒆
(𝑬𝒇−𝑬𝒊) 𝒌𝑻⁄  Eq. 4 

 

𝒑 = 𝒏𝒊𝒆
(𝑬𝒊−𝑬𝒇) 𝒌𝑻⁄  Eq. 5 

 

Eq. 6, called the law of mass action, directly relates n and p to the intrinsic carrier concentration 

of the material. Using Eq. 4 – Eq. 5, one can calculate n, p, or Ef from only one of the variables 

in the group. 
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𝒏𝒑 = 𝒏𝒊
𝟐 Eq. 6 

 

Current is defined as the net motion of carriers through the semiconductor. This does not refer to 

one carrier traveling the full length of a device, but to the average carrier motion that favors one 

direction. For an electron to be free to move about the lattice, it must gain enough energy to exist 

in the conduction band. When the electron makes this jump, it leaves behind a hole, which is a 

positive carrier. Eventually, the electron will encounter another hole and recombine. The mean 

distance that the carriers can travel before recombining is the diffusion length, and the mean time 

the carrier takes to travel that length is the carrier lifetime. 

The semiconductor physics of a common structure called the pn junction include the basic 

relationships already discussed. As its name indicates, a pn junction is a p-type layer adjacent to 

an n-type layer. The majority carriers (electrons in an n-type material and holes in a p-type 

material) on one side of the junction diffuse to the other side, giving rise to space charge layers 

on each side of the junction; the resulting electric field creates a built-in potential barrier to the 

further diffusion of carriers. This layer is also called a depletion region because the carrier 

concentrations in this region are negligible compared to the majority carrier concentrations 

outside of the layer. Eq. 7 gives an expression for the width of the depletion region (Pierret, 

1996). 

 

𝑾 = √
𝟐𝝐𝒓𝝐𝟎
𝒒

(
𝑵𝑨 +𝑵𝑫
𝑵𝑨𝑵𝑫

) (𝑽𝒃𝒊−𝑽𝒂𝒑𝒑) Eq. 7 

 

Vapp is the voltage applied to the junction, and Vbi is the built-in potential of the junction, 

described in Eq. 8 (and seen in Figure 11 as q∅𝑖). 
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𝑽𝒃𝒊 =
𝒌𝑻

𝒒
𝒍𝒏 (

𝑵𝑫𝑵𝑨
𝒏𝒊𝟐

) Eq. 8 

 

One side of the junction is usually much more heavily doped than the other. In that case, the 

larger value will fall out of the dopant term in Eq. 7, revealing a dependence on the dopant 

concentration on the lightly doped side (Pierret, 1996). 

The band structure across the depletion width changes for a pn junction as compared to a bulk 

material with no junction as in Figure 10. Figure 11 shows the altered band structure for a pn 

junction with no applied bias. 
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Figure 11 – A diagram of a standard PN junction is shown. 

 

In Figure 11, xn and –xp represent the bounds of the depletion width on the n- and p-sides of the 

junction, respectively, and the zero point is the physical location of the pn junction. qVbi is the 

potential difference due to charge distribution across the depletion region.  

Diffusion current is the movement of carriers due to a carrier density or thermal gradient, and is 

independent of applied bias. Drift current is the movement of carriers due to an applied bias. 

Electrons from the p-type region flow easily from left to right as diffusion current), but flowing 

from right to left requires more energy; the inverse is true for holes. A positive voltage applied to 

the p-side of the junction in excess of the built-in voltage Vbi eliminates the potential barrier for 
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drift current, turning the device on (Pierret, 1996). Eq. 9 describes the current flowing through a 

diode. 

 

𝑰 = 𝑰𝟎 (𝒆
𝒒𝑽𝒂𝒑𝒑
𝒌𝑻 − 𝟏) Eq. 9 

 

I0 is the leakage or dark current associated with the reverse drifting of carriers for any device, k 

is Boltzmann’s constant, T is the temperature of the device, and Vapp is the applied voltage. It can 

be obtained by I-V measurements at a large reverse bias (Pierret, 1996). 

In a regular, forward-biased diode, a positive voltage across the junction removes the potential 

barrier and free carriers will drift (current due to an electric field) across the depletion width. 

This is not the case for a photodiode, which operates in reverse bias (increasing the potential 

barrier for drift current). The only significant carrier movement is dark current (diffusion current 

due to a density or thermal gradient, independent of applied bias), which is usually very small 

(~1 nA) because it is limited by the number of minority carriers available. When reverse-biased, 

the depletion area behaves like a capacitor storing charge with capacitance defined by Eq. 10. 

 

𝑪𝒋 =
𝑨𝒋

𝟐
√
𝟐𝒒𝝐𝒓𝝐𝟎
𝑽𝒃𝒊 − 𝑽𝒂𝒑𝒑

𝑵𝑩 Eq. 10 

 

NB is the smaller of the two doping levels and Aj is the cross-sectional area of the junction. This 

equation has a built-in calculation of the depletion width. If the depletion width at the set voltage 

is known, however (or if the voltage indicates maximum depletion width), then the equation 

reverts to the standard parallel plate calculation for a capacitor with silicon as the dielectric layer 

(Pierret, 1996).  

Photodiodes operate in reverse bias, increasing the potential barrier for drift current. The only 

significant carrier movement under reverse bias is diffusion current, which is usually very small 
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because it is limited by the number of minority carriers available. In photon detection 

applications, the diffusion current under reverse bias is referred to as dark current. While the 

diode is in this reverse-biased state, a photon absorbed in the device would excite a carrier to the 

conduction band, generating an electron-hole pair. Each carrier would then travel to opposite 

sides of the junction: the electron goes to the n-side and the hole goes to the p-side of the 

depletion region. This alters the total charge contained in the junction and the capacitance value, 

which modifies the voltage across the junction (Pierret, 1996). 

1.3.1.2 Avalanche Gain 

Avalanche gain is gain due to impact ionization in semiconductors. In a strong electric field, a 

carrier may have sufficient energy to dislodge another carrier, creating an electron-hole pair. The 

newly freed carriers immediately accelerate and impact other carriers, dislodging more electron-

hole pairs. This causes an avalanche of charge to propagate through the lattice. (Pierret, 1996). 

The gain is the number of carriers generated during an avalanche by a single initiating carrier. 

Figure 12 shows the band diagram of a pn junction with avalanching carriers. Note the large 

change in the reverse bias as compared to the built-in voltage in Figure 11. 
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Figure 12 – A diagram of a pn junction with avalanche gain is shown. 

 

Once an avalanche has begun, a competition develops between the rate at which electron-hole 

pairs are generated and the rate at which they are collected at the device terminals. At biases 

below some breakdown voltage (VBR), collection dominates, causing the avalanche current to 

decay and ultimately stop. The gain (the number of carriers generated during an avalanche by a 

single initiating carrier) in this scenario is finite, and is determined by the statistics of the 

avalanche process. This type of operation is called linear-mode, since photocurrent is 

proportional to incident photon flux.  

For linear-mode operation, Eq. 11 defines an empirical relationship between the multiplication 

factor (gain) M and the reverse bias Vapp. 
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𝑴 =
𝟏

𝟏 − [
|𝑽𝒂𝒑𝒑|
𝑽𝑩𝑹

]

𝒎 
Eq. 11 

 

m takes on values between three and six, and is dependent on the material. M applies to the ideal 

diode equation when the reverse bias voltage approaches the breakdown voltage (Pierret, 1996). 

In the case where the bias is above VBR, multiplication outpaces collection. Initially, this causes 

exponential growth of the current. After some length of time, electrons and holes accumulate at 

the n- and p-edges of the depletion region, respectively. This creates an internal electric field that 

is in opposition to the applied bias and arrests the growth of the current. The device remains in 

an on state, however, until the circuit reduces the applied bias (quenches the device), allowing 

the APD to turn off. In this type of operation, known as Geiger-mode, the gain would be infinite 

if the bias were held above breakdown. By reducing the applied bias, called quenching, the gain 

is determined by the circuit. In the Geiger-mode case, an electrical event resulting from a single 

incident photon is indistinguishable from one initiated by a larger number of photons arriving 

simultaneously. 

It is important to note that even in Geiger-mode, there is a probability that the avalanche may 

dwindle in its earliest stages and result in a non-detectable signal. While gain is an important 

metric for linear-mode operation, Geiger-mode operation is better characterized by the 

probability that the avalanche will become self-sustaining, referred to as the avalanche initiation 

probability. This probability can be calculated independently in theory (McIntyre, 1973). It is a 

function of carrier ionization rate (a material property), the applied electric field, and the position 

of the carrier in the high-field region. Carriers that are generated at the beginning of the high-

field region are more likely to initiate an avalanche than carriers generated in the middle. 

Applications that utilize APDs take advantage of the avalanche mechanism to boost signal from 

a single incident photon. For example, an observation of a target emitting very low photon flux 

may have a low SNR if the photocurrent is similar in magnitude to the dark current or to the 
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readout noise. When an avalanche multiplies the signal without multiplying the dark current, the 

SNR greatly improves and the target becomes discernable in the observation (Pierret, 1996). 

1.3.1.3 MOS Capacitor 

Metal-oxide-semiconductor (MOS) capacitors are based on the same principles as the PN 

junction, though they are utilized differently. The capacitor consists of a semiconductor, an 

insulating layer (SiO2 in silicon devices, usually), and a metal contact on the insulating layer. 

Figure 13 shows an example of a biased MOS capacitor. A positive voltage applied to the 

capacitor’s metal contact (the top layer) attracts free electrons in the semiconductor. 

 

 
Figure 13 – A diagram is shown depicting the structure of a MOS capacitor. The “-“ signs represent 

electrons that are drawn to the positive voltage (Vc) on the capacitor. The top layer is the metal 

contact, the middle layer is the insulating material, and the bottom layer is the semiconcductor. 

 

MOS capacitors are used to move charge in a CCD by carefully changing the voltage across 

multiple MOS capacitors in a pixel and in neighboring pixels. As one voltage is increased, the 
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voltage next to it decreases, which causes the accumulated charge to move towards the capacitor 

with the higher voltage. 

1.3.2 SUPERCONDUCTOR-BASED DETECTORS 

Superconduction was first discovered by Kamerlingh Onnes in 1911, during the course of his 

experiments with liquefied helium. He discovered that the resistivity of many metals and alloys 

drops to zero below some material-specific critical temperature (Kittel, 2005). The transition 

between the superconducting state and a normal resistive state is leveraged in superconductor-

based detectors to measure both the number and energies of individual photons.  

Normally, nearly all incident photons are reflected off of metals because of the impedance 

mismatch at the metal-vacuum boundary. However, in sufficiently thin films (~20 Å), more 

photons can be absorbed in the superconducting state (Kittel, 2005). 

A bulk superconductor in a weak magnetic field will have zero magnetic induction in the interior 

of the material. If the material is heated above the critical temperature, and then a magnetic field 

is introduced, the resulting magnetic field will no longer be sustained inside the material when it 

is again cooled below the critical temperature. This is called the Meissner effect, discovered by 

Meissner and Ochsenfeld in 1933 (Kittel, 2005). There are thirty elemental metals that exhibit 

superconductivity and the Meissner effect, called type 1 superconductors. Type 2 

superconductors consist of alloys that also exhibit superconductivity, though they usually exist in 

a mixed state of normal and superconducting regions. This is sometimes referred to as a vortex 

state. Therefore, type 2 superconductors exhibit the Meissner effect, but not in every location in 

the material. They can tolerate higher critical magnetic fields, are mechanically harder than Type 

1 superconductors, and also have higher critical temperatures. Table 1 shows a list of selected 

examples of superconductors and their critical temperatures (Rohlf, 1994; Blatt, 1992). 
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Table 1 – Examples of superconductors, both type 1 and type 2, are shown with their critical 

temperatures (Rohlf, 1994; Blatt, 1992). 

Material (Chemical Symbol) Critical Temperature (K) 

Tungsten (W) 0.015 

Iridium (Ir) 0.10 

Titanium (Ti) 0.39 

Cadmium (Cd) 0.56 

Molybdenum (Mo) 0.92 

Aluminum (Al) 1.20 

Indium (In) 3.408 

Mercury (Hg) 4.15 

Niobium-Titanium Alloy (NbTi) 10 

Vanadium-Gallium Alloy (V3Ga) 14.8 

Niobium-Nitrogen Alloy (NbN) 15.7 

 

1.3.2.1 Cooper Pairs 

Because electrons in a superconductor exist in a Fermi gas, the band gap as understood in 

semiconductors is not a valid model for superconductors. Instead of being dependent on the 

electron-lattice interaction, the “band gap” in superconductors is based on electron-phonon 

interactions. Below the critical temperature (Tc) of a superconductor, the conducting electrons in 

the material are loosely associated in pairs, called Cooper pairs. The binding energy of Cooper 

pairs (the effective “band gap” of the superconductor) is described in Eq. 12 (Day, et al., 2003). 
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𝐸𝑏𝑖𝑛𝑑 ≈ 3.5𝑘𝑇𝑐 Eq. 12 

 

k is the Boltzmann constant and Tc is the critical transition temperature of the material. Since Tc 

is material property, different superconducting materials can be used for different wavelength 

ranges, much like semiconductor material selection. A few materials with a band gap acceptable 

for ultraviolet (UV), optical, and NIR have been characterized and used in MKID arrays, such as 

TiN and W (Mazin, et al., 2012). 

Above the critical temperature, the electrons are disordered, creating resistivity. In the 

superconductive state, Cooper pairs that are broken and subsequently excited above the band gap 

energy cause resistance in AC circuits. In DC circuits, these electrons are shorted by the 

remaining superconducting Cooper pairs (Kittel, 2005). Non-paired (excited) electrons are called 

quasiparticles, and the number of quasiparticles generated by a photon is a function of the photon 

energy, as shown in Eq. 13 (Day, et al., 2003). 

 

𝑁𝑞𝑝 = 2
𝜂ℎ𝜈

𝐸𝑏𝑖𝑛𝑑
 Eq. 13 

 

η is the absorption efficiency of the material and hν is the energy of the photon. The factor of 2 

results from the paired nature of the electrons: breaking the bond between Cooper pairs results in 

two quasiparticles. Because of the relationship in Eq. 13, superconducting detectors have the 

capability to collect both spatial and spectral information in a single pixel. This gives them an 

advantage over traditional refractive spectroscopy instruments that sacrifice spatial resolution for 

spectral information. 

The Meissner effect generally applies to DC-operated superconductors. In AC-operated circuits, 

there is a short penetration of the magnetic field (~50 nm from the surface of the material) due to 

stored kinetic energy of the electrons. This interaction results in a surface inductance, which 

contributes to a surface impedance described in Eq. 14 (Day, et al., 2003).  
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𝑍𝑠 = 𝑅𝑠 + 𝑖𝜔𝐿𝑠 Eq. 14 

 

Rs is the surface resistivity and Ls is the surface inductance of the superconducting material. 

When the superconductor is cooled to temperatures much less than the critical temperature, the 

resistance has a sharp threshold such that a single absorbed photon can cause the shift in state. A 

change between the superconducting and normal states can also be triggered by a change in 

temperature (Kittel, 2005). Generally, Cooper pairs will recombine on the order of milliseconds 

or microseconds. Regardless of the direct cause of the transition, the important effect for photon 

detection is the change in the resistivity of the material. 

1.3.2.2 MKIDS and TKIDS 

MKIDs and TKIDS (thermal kinetic inductance detectors) both detect photons by indirectly 

measuring the change in resistivity of the superconducting material. To achieve this, the 

superconductor is placed in an LC circuit, where any change in the quasiparticle density results 

in an increase in surface resistivity and therefore decreases the circuit’s resonant frequency. As a 

result, a microwave probe signal transmitted through the circuit will show a change in both 

power and phase at the output, which is proportional to the number of quasiparticles generated in 

the superconductor (Day, et al., 2003). A figure describing the MKID detection process is shown 

in Figure 14 (Mazin, et al., 2012). 
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Figure 14 – A diagram of the detection of a photon in an MKID detector is shown (Mazin, et al., 

2012). Figures (a) and (b) show the absorption of a photon, causing the generation of two 

quasiparticles from a Cooper Pair (C). Figures (c) and (d) show the shift in power and phase 

associated with the resonant frequency of the pixel after the generation of the quasiparticles. 

 

As a practical method of reading out an array of KIDs, a frequency-domain multiplexer is used. 

Each pixel (resonator) in an array is designed to have a slightly different resonant frequency. If 

the operational temperature is kept constant, they will have zero false counts. 

The drawback to this readout approach is that the number of pixels that can be multiplexed 

through a single read-out channel is limited. The number depends on the frequency separation 

required (separation must be greater than the width of typical resonance), the level of crosstalk 

between pixels, and the total power limit and bandwidth of the cryogenic microwave amplifier. 
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Anti-aliasing filters are often required to reject signals above the frequency domain of interest, as 

well. As an example, mosaicked array of 1k x 1k pixels would require 400 readout channels with 

the given current constraints (Mazin, 2005). This is far more than the 16-, 32-, or even 64-

channel readouts in semiconductor-based detectors. However, this is not a fundamental 

limitation of the technology, and may be overcome in future development and research efforts. 

One permanent disadvantage is the super-cooled temperatures required for superconductor 

operation, usually down to a few tenths of a Kelvin. While semiconductor-based detectors are 

cooled to improve performance, they still operate at warmer temperatures. If the cooling system 

for a superconducting detector fails, the device stops working completely. 

KID detectors also suffer from low fill factor, even with fiber optics or a microlens array, 

because pixels are patterned with inter-digitated fingers of the superconducting material (Mazin, 

2005). And while KIDs may be immune to dark noise, they are affected by other noise sources, 

the most significant being two-level system (TLS) noise and the frequency resolution of the 

readout electronics. TLS noise is an excess frequency noise caused by defects that allow 

tunneling in amorphous dielectrics at very cold temperatures (~1 K). Physically, this noise 

manifests as a jitter in the resonance frequency measurement from the capacitors in each pixel 

(Kumar, et al., 2008). 

One way to reduce TLS noise is to change the method of excitation of electrons, as is done in 

TKIDs. The response of a KID to excess quasiparticles generated by an absorbed photon is 

nearly identical the response to a change in temperature. The number of quasi-particles as a 

function of temperature is shown in Eq. 15 (Miceli, et al., 2014). 

 

𝑁𝑞𝑝(𝑇) = 2𝑒
(
−𝐸𝑏𝑖𝑛𝑑
𝑘𝑇

)
𝑁0√2𝜋𝑘𝐵𝑇𝐸𝑏𝑖𝑛𝑑 Eq. 15 

 

Once again, k is the Boltzmann constant, T is the temperature of the superconductor, Ebind is the 

Cooper pair binding energy, and N0 is the single spin density of states at the Fermi level. As the 

temperature increases, more and more quasiparticles are generated. If the incident photons are 
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absorbed in a layer that is coupled to the superconductor material, the superconductor’s 

temperature will increase in proportion to the energy of the photon absorbed (Miceli, et al., 

2014). The absorber must be a material with low heat capacity, such as Ta or Sn, and must have 

a high absorption coefficient. The material must also have good thermalization properties to 

avoid non-uniformity in efficiency and detection time within a pixel (Quaranta, et al., 2014). 

Effectively, the KID can be used as an inductive thermometer. This leads to the familiar response 

of increase in resistivity and inductance, which results in the shift in resonant frequency. While 

the TKID is currently being investigated for use in thermalized x-ray detection, there is a 

possibility that such a detector could be used for UV/Optical/IR measurements. 

1.3.2.3 Transition Edge Sensor Devices 

Transition edge sensor (TES) devices use the same theory of superconductivity as KIDs, but 

instead of measuring the resonant frequency of an LC circuit, TES devices output a change in 

current. The superconducting material is biased and cooled to just below Tc. The bias is kept 

constant during an exposure. When a photon is absorbed, the resistivity of the material changes 

and the current flowing through the superconductor decreases. The change in current is 

proportional to the number of quasiparticles in the material, and therefore to the energy of the 

absorbed photon (Chervenak, et al., 1999). While no large-array TES devices have been used for 

imaging, single-element devices in small arrays have been used as spectrophotometers for 

astronomical observations to obtain time-resolved (up to 30 kHz) and energy-resolved (up to 

0.05 eV) data (Romani, et al., 1999). 

TES devices are generally read out using a superconducting quantum interference device 

(SQUID). When coupled with an input coil that converts current to magnetic flux, the output 

voltage of the SQUID varies proportionally to the change in current. The drawback to this device 

for imaging applications is the practical readout implementation. Each SQUID current amplifier 

has eight terminals, though some wires can be connected in series for multiple devices. For 

example, an array of N x M SQUIDs can be read out using as few as 2M+N+1 terminals instead 

of 8MN, though this is still prohibitive given the standard 2k x 2k arrays used in semiconductor-

based detectors (Chervenak, et al., 1999). 
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There are two approaches to SQUID multiplexing: time-division multiplexing (TDM) and 

frequency-division multiplexing (FDM). In a TDM system, the number of detectors is limited by 

SQUID-noise aliasing (which increases as the square root of the number of detectors). FDM 

systems are limited by crosstalk in narrow-band filters, since they operate at MHz frequencies. 

Recently, alternate readout implementations have been devised to increase the scalability of TES 

devices, dubbed code-division multiplexing (CDM). Instead of modulating square waves (TDM) 

or the frequency of sinusoids (FDM) to address different pixels, CDM modulates the polarity of 

each pixel’s coupling to a SQUID amplifier. This approach eliminates SQUID-noise aliasing and 

suppresses 1/f noise. CDM also reduces the number of addressing lines to N for an array of 2
N
 

pixels, or 22 leads for a 2k x 2k array (Niemack, et al., 2010). 

1.4 COMPARISON CRITERIA 

In order to compare various detector technologies, each will be evaluated in terms of SNR for 

both short and long exposure scenarios. Specific applications will be used to benchmark each 

detector’s performance.  

For an exoplanet transit photometry experiment, it is reasonable to assume that the star is a sun-

like star that has an apparent magnitude of 12 in the g-band, centered at 520 nm (Borucki, et al., 

2010). Apparent magnitude is a measure of the brightness of a star as seen by an observer just 

outside of Earth’s atmosphere (e.g., in low-Earth orbit). An apparent magnitude of 12 in the g-

band corresponds to ~3x10
5
 photons/s for a 2m telescope. An Earth-like planet orbiting such a 

star would introduce a dip in the signal of about 0.01% (Brown, et al., 2011). For a 1 m telescope 

like the one on Kepler, this translates to a signal of 98,000 photons/s from the star and a decrease 

of roughly 10 photons/s during transit. For short transit times, the temporal sampling must be 

sufficient to accurately characterize the transit signal, requiring short exposure times. For a direct 

imaging scenario, an Earth-like planet orbiting a sun-like star at a distance of 10 parsecs has a 

magnitude of 30, a signal of 0.1 photons/s. This imaging scenario requires long exposures. 

Pulsars require short exposures to capture the oscillation of their signal. The Crab Pulsar is one 

of the first pulsars to be discovered, and has a magnitude in the V-band of 16.75 (Nasuti, et al., 

1996), which is a signal of 1755 photons/s on a 2 m telescope. 
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For AO applications, it is reasonable to assume that the system is using a bright star to track 

wavefront aberration. If the star has a magnitude of 12 in the V-band, centered at 550 nm, then a 

1 m telescope would collect 35,000 photons/s. Assuming that the signal is split across four 

detectors, each detector would receive a signal of 8700 photons/s. Given the short exposure times 

required for AO, this results in a signal of only 870 photons in a 0.1 s exposure (relatively long 

in AO) and only 87 photons in a 10 ms exposure. 

A summary of the expected signal and exposure type for each application is shown in Table 2. 

 
Table 2 – Signal and background flux levels for various missions and applications are shown. 

Application 
Wavelength 

Region 

Expected Signal 

(photons/s) 
Exposure Type 

Exoplanet  

(direct imaging) 
Optical / IR 0.1 Long 

Exoplanet 

(transit photometry) 
Optical 98000* Short 

Pulsar X-Ray / UV / Optical 1800 Short 

Adaptive Optics Optical 8700 Short 

*This signal is from the star, and is very large. The detector must be able to measure very small changes in the 

signal from the star during the transit. 
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2 THEORETICAL SNR OF SCIENTIFIC DETECTORS 

The SNR of a measurement with a specific detector or system is the mean signal detected 

divided by the variance of the measurement. It is an important metric for comparison between 

detectors or between different operating conditions of the same detector. The ideal SNR for any 

detector or system is the SNR of the incoming signal. In the case of single photon counting 

detectors, this is the SNR of the photons arriving at the detector, which follow Poisson statistics. 

For Poisson statistics, the variance of the signal is equal to the mean of the signal. The standard 

deviation is the square root of the variance, and in this case it is called shot noise (Janesick, 

2001). Therefore, 

 

𝑺𝑵𝑹 =
𝑺𝒑

√𝑺𝒑
= √𝑺𝒑 Eq. 16 

 
where Sp is the signal in photons.  

Deriving the SNR expression for detectors operating in linear mode is straight-forward: add all 

the noise sources (standard deviation) in quadrature and apply any efficiency losses to the signal. 

This is true for detectors with and without gain, such as a CCD, a CMOS APS detector, an 

EMCCD operating in analog-mode, or an LM-APD. 

The SNR expression for a photon counting mode detector becomes less intuitive, however, due 

to the digital nature of the measurements. For instance, the output of a photon counting GM-

APD pixel is a string of ones and zeroes, representing whether or not individual gates registered 

an avalanche. The same is true of an EMCCD in photon counting mode, although the ones and 

zeroes are assigned by an thresholding algorithm, not read from the pixel. In this case, the 

probability of a one must be translated to the photon flux; this translation adds some noise that is 

not Poissonian. 

The following sections detail a Monte Carlo simulation of the SNR for a variety of detectors, 

which was used to verify the derivation of the SNR expressions for CCDs, CMOS APS 



 

 

 

 

43 

 

detectors, EMCCDs in analog and photon counting mode, LM-APDs, and GM-APDs. In the 

following sections, a gate refers to a short exposure for a detector in photon counting mode. An 

exposure for these detectors is made up of many gates. Although the readout method for each 

gate is different for EMCCDs vs GM-APDs, the concept of many gates per exposure is constant. 

2.1 SIMULATIONS 

Monte Carlo simulations rely on random probability to generate the estimated output of 

complicated systems. The output of each process in a system is randomly generated using the 

constraining statistics of each process. The entire system is simulated in this way, multiple times, 

in order to estimate the mean output and the standard deviation of that output. Monte Carlo 

simulations are well-suited to detector physics, since all processes are governed by basic 

statistical processes. Photo-generation of charge is Poissonian, as is dark current generation, read 

noise is Gaussian, and low-probability processes like per-stage gain are described by the 

binomial distribution, as is the final output from a photon counting detector. 

2.1.1 PHOTON DETECTION AND SIGNAL RECONSTRUCTION 

A Monte Carlo simulation was created to calculate the observed SNR for any detector 

characteristics or operational settings. The simulation accepts a detailed list of inputs, including 

DCR / dark current, afterpulsing probability (paft), PDE / quantum efficiency (QE), gate time 

(tgate), exposure time, signal flux, and the number of gates in the exposure (ngates). The simulation 

repeats a single exposure (consisting of many gates) 10
7
 times, and then the mean and standard 

deviation of the results are calculated, giving the SNR. For devices with linear (or non-existent) 

gain, carriers are generated based on Poisson statistics and the length of the exposure, given dark 

current and QE. The readout is also simulated with charge transfer efficiency (CTE), in the case 

of CCDs, and read noise. In the case of EMCCDs, the simulation is the same as CCDs with the 

addition of clock-induced charge (CIC). At the readout, each electron is assigned a random gain 

value using a statistical model. At the output of the gain register, read noise is applied (though in 

most cases this will be negligible). The analog-mode simulation divides the total output 

(quantized by the analog to digital converter, or ADC) by the average gain to determine the pixel 
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signal, while the photon counting mode simulation applies a thresholding routine to decide 

whether to return a 0 or a 1. 

In the case of GM-APDs, carriers are generated from a random number Poisson distribution for 

each gate, based on the PDE, signal flux, and DCR. For gates where the number of generated 

carriers is greater than 0, the simulation records a 1. To add afterpulsing, a simple binomial 

random number generator is used to generate a carrier with probability paft, given that the 

simulation recorded a 1 in the previous gate. Examples of the results from the Monte Carlo 

simulation are shown below in section 2. 

To add afterpulse carriers, a simple binomial random number generator is used to generate a 

carrier with probability paft, given that the simulation recorded a 1 in the previous gate. In this 

case, the avalanche probability is calculated with Eq. 52 (which simplifies to Eq. 29 if paft = 0), 

and SNR is calculated by dividing the mean by the standard deviation of the 10
7
 trial results. 

2.1.2 ADAPTIVE OPTICS AND CENTROID ESTIMATES 

Using the detection simulation as a foundation, the AO simulation generates a calculated 

centroid position for a focal spot in a Shack-Hartmann (see section 1.2.2) quad-cell detector. In a 

quad-cell implementation, only four pixels are used to estimate the location of the focused beam 

from the lenslet array. Figure 15 shows a quad-cell group of pixels, labeled for reference. The 

lenslet focal spot is centered at (0,0), representing zero wavefront tilting. 
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Figure 15 – A quad-cell group of pixels is shown, labeled for reference. The spot in the center 

shows the lenslet focal point with no wavefront tilt. 

 

As discussed above, any shift in the center of the focal spot is linearly proportional to the 

wavefront tilt. With no wavefront tilting, the focal spot is centered on the intersection of all four 

pixels. When the focal spot moves, a simple center-of-mass centroid equation is used to estimate 

the center of the spot, shown in Eq. 17. 

 

𝑋 =
(𝑆3 + 𝑆4) − (𝑆1 + 𝑆2)

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4
 

𝑌 =
(𝑆1 + 𝑆3) − (𝑆2 + 𝑆4)

𝑆1 + 𝑆2 + 𝑆3 + 𝑆4
 

Eq. 17 

 
X and Y are the coordinates of the position of the centroid of the focal spot relative to the center 

of the quad-cell group. Sn are the signals from each pixel, as shown in Figure 15.  

It is important to note that the estimate is not perfect. The error is dependent on the focal spot 

size, as illustrated in Figure 16. When the spot no longer overlaps the cross-section of all four 

pixels, the estimate is saturated in one or both directions. If most of the spot overlaps the cross-

section, there is a linear relationship between the actual location and the estimate of the location. 
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However, once the spot begins to move off of the cross-section, the relationship ceases to be 

linear until the location estimate saturates. For spots with sigmas greater than or equal to the size 

of 1 pixel, the estimate is linear throughout the entire quad cell. If less wavefront tilt is expected, 

e.g. such that the spot is only expected to travel within ± 0.25 pixels, then a smaller spot size is 

acceptable. 

 

 
Figure 16 – This figure shows the estimated location of the centroid as a function of actual 

location without correcting for the spot size. The linear region of the estimate function 

decreases with decreasing spot size. 

 

In order to correctly estimate the location of the centroid, the simulation must be limited to the 

linear region of the function (based on the spot size) and a linear correction factor must be used. 

For ease of evaluation, the direct distance, D, to the focal spot is calculated based on the 

estimated values of X and Y, as in Eq. 18. The reported SNR is for the estimate of the direct 

distance. 
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𝐷 = √𝑋2 + 𝑌2 Eq. 18 

 
The simulation assumes that all four pixels share identical properties, including afterpulsing 

probability, dark current, detection efficiency, and read noise. Crosstalk is not considered in this 

simulation, but the method for correcting for crosstalk events has been studied previously (Aull, 

et al., 2015). The simulation can accept a non-ideal intrapixel sensitivity (IPS) function into 

account, but this introduces an error into Eq. 17 which is severe at large distances. The lenslet 

focal spot is approximated by a symmetrical 2D Gaussian function, and the signal on each pixel 

is determined mathematically using an oversampled version of the generated function. The 

Gaussian is scaled for the total fluence specified in the input to the simulation. The standard 

deviation in both x and y are assumed to be one pixel width. This assumption allows the actual 

pixel dimensions to be irrelevant, simplifying the simulation. Each pixel is simulated 

independently, based on the expected fluence determined by the relative shift in the center of the 

focal spot.  

Figure 17 shows the results from the AO SNR simulation of a GM-APD detector. R is the 

magnitude in the R band of each focal spot (not the target, which is split across many lenslets). 

The detection efficiency is 0.8, the duty cycle (the percentage of time the detector is able to 

detect photons) is 0.89, the DCR is 0.04 e
-
/s/pixel, the afterpulsing probability is zero, and the 

data for each point was simulated over ~9000 gates in 0.1 seconds. Each data point represents at 

least 10,000 iterations of the simulation and was evaluated at a unique set of simulated (x,y) 

coordinates. The magnitude reported is the effective magnitude of the light through a single 

lenslet; the total light from the guide star is spread across the lenslet array. 
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Figure 17 – This figure shows the Monte Carlo results for the AO simulation. SNR for the 

estimate of direct distance is shown for various fluence levels – R is the magnitude in the R 

band for the focal spot. The focal spot is assumed to be Gaussian with a symmetrical standard 

deviation of 1 pixel. 

 

There is a pronounced SNR dependence on both the distance from the center of the quad-cell 

group and the signal from the lenslet array. The SNR of the estimate of centroid position 

increases as the distance from the quad cell center increases, and SNR also increases with 

increased fluence.  

2.2 CCD 

Modern CCDs generally use buried channel MOS capacitors to store charge collected during an 

exposure. Reading out the device requires physically moving the charge through the pixels, 

which is called a destructive read. This movement of electrons can lead to a loss of signal when 

moved over thousands of pixels (as in large-array devices), and the CTE becomes more 

important as the number of pixels increase. As CTE increases, it is more convenient to refer to 

the charge transfer inefficiency (CTI), which is 1-CTE. While state-of-the-art, buried-channel 
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CCDs may have CTIs on the order of 1x10
-4

 (a CTE of 0.9999), this can still represent a 

significant loss (Marcelot, et al., 2014). The pixel furthest from the readout in a 4k x 4k array, 

assuming a 32-channel readout, will lose 50 electrons with a CTI of 1x10
-4

 after transfer. CCDs 

and CMOS detectors also suffer from high read noise when the frame rate is high and reduced 

sampling is required (Janesick, 2001).  

2.2.1 THEORY OF OPERATION 

The basic theory of CCD operation is the collection of charge in a pixel and the transfer of that 

charge through other pixels in the array to the readout circuit. The most common method of 

charge transfer is the 3-stage transfer, which refers to voltages applied to three electrodes in each 

pixel in succession. Consider a CCD that collects electrons during an exposure. When the charge 

is being collected, only one electrode is set high, which attracts the electrons to the electrode. 

When the charge is read out, the adjacent electrode is also set high, spreading the charge between 

the two electrodes. Next, the first electrode is set low, so that the charge is only attracted to the 

second electrode. The process repeats with the third electrode, moving the charge again towards 

the readout. The cycle then begins again by setting the first electrode voltage high while the third 

electrode voltage remains high, spreading the charge between pixels. When the third electrode is 

set low, the charge has moved by one pixel. This gradual movement helps to reduce CTI. Figure 

18 shows a schematic view of this three-phase clocking cycle (Janesick, 2001). 
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Figure 18 – A standard three-phase CCD clocking scheme is shown (Janesick, 2001). The Xs represent 

electrons that are collected during integration. Four pixels are shown, each with a different number of 

electrons to keep track of the charge packet as it is clocked through the device. 

 

Frame transfer quickly transfers the signal from an imaging array to an on-chip storage array that 

is not illuminated. The storage array is read out while the integrating array begins another 

exposure. 

Once the charge reaches the readout circuit, the analog signal is converted to a digital signal with 

an analog-to-digital converter (ADC) by quantizing the analog signal. Modern AD converters 

have many bits of quantization, and so the noise from quantization is considered negligible here. 

2.2.2 SNR 

For a non-ideal detector, the variance is not only the variance of the signal, but the sum of all the 

variances from each manipulation of the signal to the output of the detector (Janesick, 2001). For 

example, the SNR of a CCD with less than unity QE, exposure time tint, dark current idark, and 

read noise σread is shown in Eq. 19 (ignoring any losses from CTI). 
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𝑺𝑵𝑹 =
𝑺𝒑 ∙ 𝑸𝑬

√𝑺𝒑 ∙ 𝑸𝑬 + 𝒊𝒅𝒂𝒓𝒌 ∙ 𝒕𝒊𝒏𝒕 + (𝝈𝒓𝒆𝒂𝒅)𝟐
 

Eq. 19 

 
Eq. 19 is valid in the linear operating region of the device, which assumes that the pixel output is 

linearly proportional to the signal. Figure 19 shows the theoretical SNR and Monte Carlo results 

according to Eq. 19 for the same CCD detector. The results are in good agreement. 

 

 
Figure 19 – This plot shows Monte Carlo results (individual points) and the theoretical 

solution (solid line) for the relative SNR of an LM-APD detector. 

 

2.3 CMOS DETECTORS 

CMOS direct readout (DRO) APS devices use a photodiode to store charge in each pixel, which 

can be read out by measuring the change in voltage during an exposure. This is called a non-

destructive read. Read noise increases with increasing pixel rates, just as in a CCD. CTE is not 
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an issue, since charge is not being transferred, and CMOS detectors offer a distinct advantage in 

signal processing in their “up the ramp” sampling capability. In this type of sampling, a pixel’s 

signal can be read many times in the same exposure. For the purposes of this document, CMOS 

will refer to direct readout active pixel sensor devices. 

2.3.1 THEORY OF OPERATION 

Instead of transferring the charge through the array, as in a CCD, a CMOS detector uses column- 

and row-select signals. Using this method, each pixel can be addressed in succession by 

connecting the output of the photodiode to the readout circuit and estimating the change in 

voltage. The most common circuit for accomplishing this is called a 3T circuit, which has three 

transistors (Janesick, 2001). One transistor controls the reset of the pixels. When the reset signal 

is high, the reset transistor is turned on and the reset voltage is applied to the photodiode, 

clearing the charge in the pixel. The second transistor is a source-follower buffer, which allows 

the pixel voltage to be measured without removing the charge in the pixel. The third transistor is 

the select transistor, which allows a pixel to be read by the readout electronics. The row signal is 

tied to the gate of the transistor, and the column signal is tied to the source / drain. When the row 

and column signals are high, the voltage is transferred from the buffer transistor to the readout 

circuit. Although this readout method is non-destructive, the readout rate is still limited by read 

noise, just as with CCDs. Since CTE is neglected in Eq. 19, the SNR for CCD and CMOS 

detectors is the same. 

2.4 ANALOG-MODE EMCCD 

The difference between a standard CCD and an EMCCD is a special gain register that amplifies 

the signal from the pixels during the readout (Daigle, et al., 2004). When operating in analog-

mode, the number of photons that were absorbed is estimated based on the mean gain. As the 

number of electrons per pixel increases past 2 or 3, the estimate becomes so noisy that the 

number of electrons cannot be determined with any useful certainty. Therefore, short exposures 

that are read out quickly are necessary for good analog-mode EMCCD performance to keep the 

per-exposure flux near 1. Figure 20 shows an example of the degeneracy of measurements with 

many electrons (Robbins, 2003). 
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Figure 20 – The experimental (main) and theoretical (inset) distributions for the multiplication 

register output for 1, 2, 3, and 4 electrons are shown (Robbins, 2003). The multiplication 

register had 536 stages. For the theoretical case, the excess noise factor is 1, but for the 

experimental case the excess noise factor was measured to be ~1.41. This deviates from the 

theoretical value of 2. 

 

2.4.1 THEORY OF OPERATION 

The multiplication register is a 1D gain register that amplifies the signal as it passes through each 

stage. The gain in each stage is barely greater than 1. However, with an N-stage gain register, the 

total gain is Gstage
N
, where N is the number of individual stages. For the case where Gstage=1.013, 

the total gain for a 512-stage gain register would be ~750. This gain, however, is stochastic, with 

a standard deviation equal to √2𝐺𝑡𝑜𝑡𝑎𝑙 . Figure 21 illustrates the gain mechanism in the 

multiplication register of an EMCCD (Robbins, 2003). 
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Figure 21 – This figure shows the electron movement for a low-voltage three-phase clocking 

strategy (a) and a high-voltage three-phase clocking strategy (b). The high-voltage case is used 

in the multiplication register of an EMCCD, resulting in gain (Robbins, 2003). 

 

CIC in the array is not unique to EMCCDs, and is significant in any CCD that is read out very 

quickly. CIC is charge added to the original signal during the transfer from one pixel to another 

due to the high electric fields required for fast clocking during transitions. 

2.4.2 SNR 

CIC is best expressed as a probability of an injected carrier. As long as this probability is low, 

the probability distribution is assumed to only include 0 and 1 as outcomes, and therefore has the 

statistical characteristics of a Bernoulli trial (where p is the probability of a 1 and q = 1 – p is the 

probability of a 0). The variance of a Bernoulli trial (one transfer) is 
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𝝈𝟐 = 𝒑(𝟏 − 𝒑) Eq. 20 

 
The total variance is the single-trial variance of Eq. 20 multiplied by the number of transfers. The 

number of transfers is dependent on the number of pixels in the detector and the location of the 

signal in the focal plane, but for simplicity the average number of transfers is N/2 for an NxN 

array, assuming the CIC is negligible in one direction. Therefore, the SNR of a the CCD in Eq. 

19, adding CIC, is 

 

𝑺𝑵𝑹 =
𝑺𝒑 ∙ 𝑸𝑬

√𝑺𝒑 ∙ 𝑸𝑬 + 𝒊𝒅𝒂𝒓𝒌 ∙ 𝒕𝒊𝒏𝒕 + (
𝑵
𝟐) ∙ 𝒑𝒄𝒊𝒄

(𝟏 − 𝒑𝒄𝒊𝒄)+(𝝈𝒓𝒆𝒂𝒅)𝟐
 

Eq. 21 

 
From Eq. 21, the SNR of a CCD with gain G becomes 

 

𝑺𝑵𝑹 =
𝑮 ∙ 𝑺𝒑 ∙ 𝑸𝑬

√𝑮𝟐 (𝑺𝒑 ∙ 𝑸𝑬 + 𝒊𝒅𝒂𝒓𝒌 ∙ 𝒕𝒊𝒏𝒕 + (
𝑵
𝟐) ∙ 𝒑𝒄𝒊𝒄

(𝟏 − 𝒑𝒄𝒊𝒄)) + (𝝈𝒓𝒆𝒂𝒅)𝟐

 

=
𝑺𝒑 ∙ 𝑸𝑬

√𝑺𝒑 ∙ 𝑸𝑬 + 𝒊𝒅𝒂𝒓𝒌 ∙ 𝒕𝒊𝒏𝒕 + (
𝑵
𝟐) ∙ 𝒑𝒄𝒊𝒄

(𝟏 − 𝒑𝒄𝒊𝒄) + (
𝝈𝒓𝒆𝒂𝒅
𝑮 )

𝟐
 

Eq. 22 

 
In the first half of Eq. 22, the read noise is not multiplied by G because read noise is applied after 

the gain stage. However, G does apply to the standard deviation (and so G
2
 to the variance) of 

the charge carriers entering the gain register. Suppose now that the gain for an EMCCD is not 

constant, or that the gain value for any carrier has a probability distribution with mean G. This 

requires the addition of an excess noise factor (ENF), which will be denoted here as F, defined in 

Eq. 23 (Robbins, 2003). 
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𝑭𝟐 =
𝝈𝒐𝒖𝒕

𝟐

𝑮𝟐𝝈𝒊𝒏𝟐
 Eq. 23 

 

The denominator is the expected output variance for noiseless gain, so F is the degree to which 

the output standard deviation exceeds that for a noiseless output. Due to the quantum nature of 

electrons (i.e., a non-integer value of electrons cannot deterministically exist), the variance of the 

output from an EMCCD gain register (as long as the number of multiplication stages is large and 

the gain is high) approaches 2(𝐺𝜎𝑖𝑛)
2, or twice the expected variance. Therefore, we assume that 

𝐹 = √2 in Eq. 7. 

 

𝑺𝑵𝑹 =
𝑮 ∙ 𝑺𝒑 ∙ 𝑸𝑬

√𝑭𝟐𝑮𝟐 (𝑺𝒑 ∙ 𝑸𝑬 + 𝒊𝒅𝒂𝒓𝒌 ∙ 𝒕𝒊𝒏𝒕 + (
𝑵
𝟐) ∙ 𝒑𝒄𝒊𝒄

(𝟏 − 𝒑𝒄𝒊𝒄)) + (𝝈𝒓𝒆𝒂𝒅)𝟐

 

=
𝑺𝒑 ∙ 𝑸𝑬

√𝟐(𝑺𝒑 ∙ 𝑸𝑬 + 𝒊𝒅𝒂𝒓𝒌 ∙ 𝒕𝒊𝒏𝒕 + (
𝑵
𝟐) ∙ 𝒑𝒄𝒊𝒄

(𝟏 − 𝒑𝒄𝒊𝒄)) + (
𝝈𝒓𝒆𝒂𝒅
𝑮 )

𝟐

 

Eq. 24 

 

Figure 22 shows the theoretical and Monte Carlo results based on Eq. 24 for the same EMCCD 

detector in analog-mode. The results are in good agreement. 
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Figure 22 – This plot shows Monte Carlo results (individual points) and the theoretical 

solution (solid line) for the relative SNR of an EMCCD detector in analog-mode. 

 

2.5 LM-APD 

The LM-APD device considered in this document is a HgCdTe detector, which has effectively 

zero noise in the avalanche gain – e.g., there is no ENF with the proper junction grading and 

doping (Kinch, et al., 2004; Vojetta, et al., 2012). HgCdTe LM-APD devices are also referred to 

as e-APDs, since only electrons are avalanching and producing the gain. Other material types are 

used for LM-APD devices – silicon LM-APDs are widely available in single-element 

implementation. But the noiseless gain of the HgCdTe LM-APDs make them good candidates 

for photon-counting applications. 

2.5.1 THEORY OF OPERATION 

The output from an LM-APD is the voltage level of a pixel, which is estimated with a CMOS 

circuit or transistor-transistor logic (TTL) circuit, etc. – much like CMOS APS detectors. 

Because the gain is effectively noiseless, discrete voltage levels each represent a photon number 
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in an ideal detector. Dark current can also be multiplied, however, and so must be subtracted 

from the final signal. A more problematic source of noise is un-multiplied leakage current. This 

leakage current increases the signal voltage at a constant rate, and could saturate the AD 

converter for low photon flux levels and long exposures. Figure 23 shows an example of the 

signal from a pixel on a LM-APD detector (Cottingame, 2010). The red lines indicate the 

constant slope due to the un-multiplied leakage current, as well as the discrete signal levels 

associated with photon detection. The uncertainty in the trends is the result of read noise, which 

is not eliminated completely in these detectors, but is effectively reduced by the gain. 

 

 
Figure 23 – This plot shows a sample of the output of a Raytheon eAPD, a HgCdTe LM-APD. 

Because the gain is effectively noiseless at low levels, it is easy to distinguish between one and 

two photons. The slope (noted by the red lines) in the data is due to the un-multiplied leakage 

current (Cottingame, 2010). 

 

2.5.2 SNR 

The SNR expression for an LM-APD is straight-forward, since the device uses linear gain to 

estimate the signal. There is un-multiplied leakage current that must be subtracted periodically to 
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avoid saturation during an exposure. The resulting noise affects the estimation of the signal, 

since the gain is relatively low in these devices (10-100). Eq. 25 shows the full SNR equation. 

 

𝑆𝑁𝑅 =
𝑆𝑝 ∙ 𝑄𝐸

√𝑆𝑝 ∙ 𝑄𝐸 + 𝑖𝑑𝑎𝑟𝑘 ∙ 𝑡𝑖𝑛𝑡 +
𝑖𝑙𝑒𝑎𝑘𝑎𝑔𝑒 ∙ 𝑡𝑖𝑛𝑡

𝐺2
+ (
𝜎𝑟𝑒𝑎𝑑
𝐺 )

2
 

Eq. 25 

 

Note that the leakage current noise contribution and the read noise are divided by G
2
. This is 

because those noise contributions occur after the signal is multiplied, which diminishes their 

effect on the overall noise. Figure 24 shows the theoretical SNR and Monte Carlo results 

according to Eq. 25 for the same LM-APD detector. The results are in good agreement. 

 

 
Figure 24 – This plot shows Monte Carlo results (individual points) and the theoretical 

solution (solid line) for the relative SNR of an LM-APD detector. 
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2.6 GM-APD 

The array-based GM-APDs discussed in this thesis have been developed by Massachusetts 

Institute of Technology Lincoln Laboratory and characterized by the Center for Detectors to 

determine their suitability for space-based imaging applications, specifically for exoplanet 

missions (Figer & Kolb, 2014). A GM-APD can count single photons, which is very useful for 

low-light imaging applications. In Geiger-mode (digital) operation, the APD pixel counters 

simply record whether or not an avalanche occurred in a given exposure window (a gate), and 

repeats the process over many samples. From these samples, an avalanche probability can be 

calculated, and from that probability the estimated flux is derived (Kolb, 2014). Since this 

operation is fundamentally different from CCD or CMOS detectors, the form of the SNR 

expression is fundamentally different as well. The final form of the expression depends on DCR, 

afterpulsing probability (paft), PDE, gate length, number of gates (ngates), and signal flux. The 

inclusion of afterpulsing probability also results in a means to estimate the signal when 

significant afterpulsing is present. 

2.6.1 THEORY OF OPERATION 

It is important to note that the majority of GM-APD applications use temporal measurements or 

avalanche totals to count photons. Unlike most applications, the detector described here is used 

to measure intensity by measuring avalanche probability during a set exposure window (usually 

on the order of microseconds). SNR has been presented for temporal measurements previously 

for similar devices (Gatt, et al., 2009), but it is important to emphasize that the operation is 

fundamentally different for the device presented here. For the GM-APD detector presented here, 

the measurement is actually of the probability of an avalanche during a short exposure, and 

nearly all temporal information is lost. Timing jitter is irrelevant, and the output from each pixel 

is digital. Afterpulsing effects on noise have been investigated by others (Vinogradov, et al., 

2009), though no integration of afterpulsing statistics has been presented in the context of 

intensity imaging. Given the fundamental difference in operation between most GM-APDs and 

the device presented in this paper, a new expression for SNR must be derived from 

fundamentally different first principles. 



 

 

 

 

61 

 

Most currently-accepted NEP expressions for GM-APDs are irrelevant, given their time-

measurement paradigm (Hadfield, 2009). Other accepted expressions for NEP are derived with 

the assumption that the intensity output from the pixel is analogue, not digital (i.e., number of 

avalanches is given rather than avalanche probability), which results in a completely different 

relationship between signal and noise (Lacaita, et al., 1996). 

For this device, the detection cycle is clocked externally and reset at regular intervals. Each 

exposure is comprised of five distinct stages, repeated many times over. The first stage is the 

arming of the device, when the bias on the pixel is increased above the breakdown voltage. A set 

delay (the second stage), which constitutes the exposure gate, occurs before the next clock pulse. 

After the gate, a recording pulse is asserted (the third stage) that transfers the state of the pixel (1 

or 0) to the readout circuit. Immediately after the recording pulse is complete, the pixel is 

forcefully disarmed (the fourth stage), meaning that the voltage is set below the breakdown 

voltage. A final delay (the fifth period) is observed after the disarm signal, called the hold-off 

time. This delay is usually used to mitigate afterpulsing events. At the end of the hold-off time 

the pixel is armed again and the cycle repeats. In an ideal device, the forced disarm would be 

unnecessary because avalanches between gates (quenched normally by the thresholding circuit) 

would not affect the occurrence of avalanches during the gates. In practical use, forced disarm is 

required because of the afterpulsing mechanism, which can induce an avalanche in a subsequent 

gate with a characteristic exponential decay probability. Figure 25 shows an example of the 

clocking signals described above. 
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Figure 25 – This plot shows a sample of the clocking signals required for the GM-APD array 

operation. 

 

Afterpulsing occurs when a trap (an intermediate energy state that exists in the band gap of the 

material) releases a carrier that initiates an avalanche in the absence of a photo-generated 

electron or dark count. Carriers are released from traps at random times, with the average de-

trapping time defined as the trap lifetime.  The length of the trap lifetime depends on the type of 

trap and its energy level. Avalanching carriers can remain in these states longer than the hold-off 

time of the device, becoming free again during the next detection cycle. The electric field 

immediately accelerates the newly mobile electron or hole, which may initiate an avalanche of 

carriers in the absence of photon signal (Kindt & de Langen, 1998). 

2.6.2 SNR NEGLECTING AFTERPULSING 

To simplify the relationships, the initial assumptions are that QE is unity and there are no other 

sources of noise (these non-idealities will be added later). Instead of counting each 1 as a single 

photon, the ratio of 1s to total number of gates is measured. That ratio is an estimate of the 

probability of one or more photons arriving within a single gate. The probability of np photons in 

a specific interval for a an average number of photons λp is 



 

 

 

 

63 

 

 

𝑷(𝒏𝒑) =
𝒆−𝝀𝒑𝝀𝒑

𝒏𝒑

𝒏𝒑!
 Eq. 26 

 

For a Poisson distribution, since each trial is memoryless (independent), 

 

𝑃(𝑛𝑝 = 𝑎 𝑜𝑟 𝑛𝑝 = 𝑏) = 𝑃(𝑛𝑝 = 𝑎) + 𝑃(𝑛𝑝 = 𝑏) = 𝑒
−𝜆𝑝 (

𝜆𝑝
𝑎

𝑎!
+
𝜆𝑝
𝑏

𝑏!
) Eq. 27 

 

and the total probability than np equals any positive integer is 1, or 

 

∑
𝑒−𝜆𝑝𝜆𝑝

𝑛𝑝

𝑛𝑝!
= 1

∞

𝑛𝑝=0

 Eq. 28 

 

Since dark carrier generation is also a Poisson process, the average number of dark carriers per 

gate λd is additive in the exponential function. Changing np to n to represent the total number of 

carriers per gate (assuming dark current is the only source of noise and that there is no photon 

loss) and λp to λ to reflect the average number of total carriers per gate, the ratio of 1s to the total 

number of gates can therefore be defined as: 

 

𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

= 𝑃(𝑛 ≥ 1) = 1 − 𝑃(𝑛 = 0) = 1 −
𝑒−𝜆𝜆0

0!
= 1 − 𝑒−𝜆   

 

where                                       λ = λp + λd 

Eq. 29 

 

From this simplified solution, the estimate of the average number of photons per gate is 
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𝜆𝑝 = − 𝑙𝑛 (1 −
𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

) − 𝜆𝑑  Eq. 30 

 

In practice, λd may be estimated by applying Eq. 29 to measurements made under dark 

conditions for an isolated pixel or by directly measuring the current under reverse bias conditions 

where the electric field is not sufficient for any multiplication. The estimate of the total number 

of photons in a pixel over an exposure (the fluence for the exposure) with PDE less than unity is 

 

𝑃𝐷𝐸 ∙ 𝜆𝑡𝑜𝑡 = (− 𝑙𝑛 (1 −
𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

) − 𝜆𝑑) ∙ 𝑛𝑔𝑎𝑡𝑒𝑠 Eq. 31 

 

The variance of the estimate is slightly more complicated. To simplify the equations, let 

𝑛𝑜𝑛𝑒𝑠

𝑛𝑔𝑎𝑡𝑒𝑠
 = x and λtot = y. The variance of x is the variance of a binomial distribution based on the 

number of trials, ngates, and the probability of an avalanche during a gate, P(gate=1) = p: 

 

𝜎𝑥
2 =

𝑛𝑔𝑎𝑡𝑒𝑠 ∙ 𝑝(1 − 𝑝)

𝑛𝑔𝑎𝑡𝑒𝑠2
=
𝑝(1 − 𝑝)

𝑛𝑔𝑎𝑡𝑒𝑠
 Eq. 32 

 

The variance of the total number of ones is the Bernoulli trial variance, p(1-p), multiplied by the 

number of trials, ngates. However, x is the ratio of total number of ones to the total number of 

gates, and so the variance must be divided by the square of the scale variable, resulting in Eq. 32. 

Now, the variance of the estimate (which is a function of x) must be defined. To begin, the 

expected value of y(x) is defined in terms of the probability density function of x, or f(x), as 

follows. 
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𝐸[𝑦(𝑥)] = ∫ 𝑦(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

 Eq. 33 

 

If f(x) is concentrated about the mean (a valid assumption since x is the outcome of a series of 

Bernoulli trials, a binomial distribution), then f(x) is assumed to be negligible outside the range 

(μ – ε , μ + ε), where μ is the mean of f(x), and y(x) becomes y(μ): 

 

𝐸[𝑦(𝑥)] = 𝑦(𝜇) ∫ 𝑓(𝑥)𝑑𝑥

𝜇+𝜀

𝜇−𝜀

= 𝑦(𝜇) Eq. 34 

 

This estimate may be improved by a polynomial expansion (Papoulis & Pillai, 2002). 

 

𝑦(𝑥) = 𝑦(𝜇) + 𝑦′(𝜇)(𝑥 − 𝜇) + ⋯+ 𝑦𝑛(𝜇)
(𝑥 − 𝜇)𝑛

𝑛!
 Eq. 35 

 

Inserting Eq. 35 into Eq. 34 and neglecting higher-order terms for a parabolic approximation: 

 

𝐸[𝑦(𝑥)] = 𝑦(𝜇) + 𝑦′′(𝜇)
(𝑥 − 𝜇)2

2
= 𝑦(𝜇) + 𝑦′′(𝜇)

𝜎𝑥
2

2
 Eq. 36 

 

To find the variance of y: 

 

𝜎𝑦
2 + 𝜇𝑦

2 = 𝐸[𝑦2(𝑥)] Eq. 37 
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𝜇𝑦
2 = 𝐸[𝑦(𝑥)]2 = (𝑦(𝜇) + 𝑦′′(𝜇)

𝜎𝑥
2

2
)

2

= 𝑦2(𝜇𝑥) + 𝑦(𝜇𝑥)𝑦
′′(𝜇𝑥)𝜎𝑥

2 + [𝑦′′(𝜇𝑥)]
2
𝜎𝑥
4

4
 

Eq. 38 

 

𝐸[𝑦2(𝑥)] = 𝑦2(𝜇𝑥) + [
𝑑2

𝑑𝑥2
 𝑦2(𝜇𝑥)]

𝜎𝑥
2

2

= 𝑦2(𝜇𝑥) + 𝜎𝑥
2[|𝑦′(𝜇𝑥)|

2 + 𝑦(𝜇𝑥)𝑦
′′(𝜇𝑥)] 

Eq. 39 

 

Since σx is always less than 1, the σx
4
 term in Eq. 38 is negligible. Substituting the simplified Eq. 

38 and Eq. 39 into Eq. 37 and solving for σy
2
 (Papoulis & Pillai, 2002): 

 

𝜎𝑦
2 = |𝑦′(𝜇𝑥)|

2𝜎𝑥
2 Eq. 40 

 

Eq. 40 is the variance of the estimate of the number of photons. The derivative of y(x) (Eq. 30) is  

 

𝑦′(𝜇𝑥) =
1

1 − 𝜇𝑥
 Eq. 41 

 

Substituting Eq. 32 and Eq. 41, and letting μx equal P(gate=1) = p, the total variance for the 

exposure is 
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𝜎𝑡𝑜𝑡
2 = |𝑦′(𝜇𝑥)|

2𝜎𝑥
2𝑛𝑔𝑎𝑡𝑒𝑠

2 =
𝑝

(1 − 𝑝)
𝑛𝑔𝑎𝑡𝑒𝑠 Eq. 42 

 

Since the output of each gate is either a 1 or a 0 in the case of a photon counting mode detector, 

each gate may be modeled as a Bernoulli trial with the probability of a 1 equal to p = μx and the 

probability of a 0 equal to q = 1 – p. Assuming that only one electron is necessary to register a 1, 

p is defined by Eq. 29. Now σy
2
 may be evaluated as a function of the average number of photon-

generated carriers (λp) and the average number of dark-current-generated carriers (λd), 

substituting Eq. 29 and taking PDE into account, as 

 

𝜎𝑡𝑜𝑡
2 = (

𝐸 [
𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

]

1 − 𝐸 [
𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

]
)𝑛𝑔𝑎𝑡𝑒𝑠 = (𝑒

(𝑃𝐷𝐸∙𝜆𝑝+𝜆𝑑) − 1)𝑛𝑔𝑎𝑡𝑒𝑠 Eq. 43 

 

Therefore, the SNR for a GM-APD with no afterpulsing is 

 

𝑆𝑁𝑅 =
𝑃𝐷𝐸 ∙ 𝜆𝑝 ∙ 𝑛𝑔𝑎𝑡𝑒𝑠

√
𝑝

(1 − 𝑝)
∙ 𝑛𝑔𝑎𝑡𝑒𝑠

 

 

where                                    p = 1 − e−(PDE∙λp+λd) 

Eq. 44 

 

λp is the number of photons absorbed per gate, and λd the number of dark current carriers 

generated per gate. Figure 26 shows an overlay of the Monte Carlo results and the analytical 

solution in Eq. 44, normalized to the ideal shot noise limit of SNR. 
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Figure 26 – This plot shows Monte Carlo results vs. analytical solution for the relative SNR of 

a GM-APD in photon counting mode over a range of fluence values. DCR is 1 Hz. The dashed 

vertical line notes the fluence at which photo-generated signal and noise contributions are 

equal. Gate length is 10 μs, exposure time is 1 s, PDE is 60%, and duty cycle is ~85%. Relative 

SNR is normalized to the ideal SNR, the shot-noise limited case where SNR = √𝐹𝑙𝑢𝑒𝑛𝑐𝑒. 
 

Since there is no read noise and no CIC in a GM-APD, Eq. 43 correctly models the variance of 

the estimate neglecting afterpulsing. Any dead time losses are built into the signal and the noise 

because the estimates are always based on multiples of gate fluence. For example, if the estimate 

of the mean number of photons per gate is 2 (assume that QE is 1), the number of gates is 100, 

but the duty cycle is 50%, then the estimate of the total number of photons in the exposure is 

2·100 = 200 (instead of the total incident fluence of 400). 

2.6.3 SNR WITH AFTERPULSING 

To account for the variance added due to afterpulsing, the probability of a gate equal to 1 must 

be amended to include the probability of an afterpulse carrier. To begin, the new definition of p 

(the probability of a gate equal to 1) is 
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𝑃(𝑔𝑎𝑡𝑒 = 1) = 𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒 ∪  1|𝜆)
= 𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒) + 𝑃(1|𝜆) − 𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒)𝑃(1|𝜆) Eq. 45 

 

Here, P(afterpulse) is the probability that one or more afterpulse carriers are present during the 

gate, and P(1|λ) is the probability of one or more photon-generated or dark carriers are present 

during the gate (where λ = QE·λp + λd). The probability of an afterpulse carrier being present 

during the gate, while dependent on the previous gate avalanche probability, is statistically 

independent of the current gate. Therefore, they are not mutually exclusive and the probability of 

either happening is not a simple sum. This leads to the subtraction of the cross term in Eq. 45. 

P(1|λ) is equal to Eq. 29, but the derivation of P(afterpulse), which will be referred to as paft 

going forward, is more involved. The derivation of avalanche probability given a certain 

afterpulse probability requires a few assumptions. For this derivation to be valid, the following 

must be true. 

1. The pixels are disarmed at the end of the gate and no avalanche events occur between 

gates (see section 2.6.1). 

2. There is no (or insignificant) dependence on gates previous to the gate immediately 

preceding to the gate of interest (i.e., the probability of an avalanche in the current gate is 

only a function of the state of the gate immediately before it and the photo- and dark 

carrier generation process). 

3. There is no significant delayed crosstalk from neighboring pixels (i.e., afterpulsing occurs 

only as a result of the same pixel’s previous state, not a neighboring pixel’s previous 

state). 

Physically, paft is the integral of the exponential decay function of afterpulse arrival time from 

the beginning of the gate to the end of the gate (i.e., from thold-off to thold-off + tgate if t = 0 is the 

time of the previous avalanche). With passive quenching and clocking relative to the avalanche, 

this estimate has zero error. However, with gated clocking of the circuit, paft theoretically 

changes from gate to gate because the effective quench time is dependent on when the previous 
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gate’s avalanche occurred. In gated operation, the precise avalanche arrival time is unknown, 

though an average value of paft may be sufficient since the measurement involves many gates 

over the course of the exposure.  

The first assumption listed above is easily confirmed by determining the method of operation of 

the device in question, while the third can be confirmed with avalanche correlation tests between 

neighboring pixels. The second assumption does imply some constraints in the amount of 

afterpulsing in order for this analysis to be relevant. The assumption hinges on the behavior and 

amount of traps in the pixel. If the exponential decay function of de-trapped carriers extends past 

two arm periods with significant probability, then there is a certain probability that an avalanche 

will occur due to an avalanche in a gate more than one arm period before. If one assumes that 1% 

is a negligible probability for an afterpulse-induced avalanche two arm periods later, then it is 

easy to calculate the maximum decay lifetime allowed for assumption 2 to be valid. For example, 

in an exposure with tgate = 10 μs and an 85% duty cycle, the total arm period is ~11.8 μs. If we 

assume that dark- or photo-induced avalanches occur near the beginning of the gate on average 

(Poisson arrival statistics), then the effective time between populating a trap and the beginning of 

the next gate is roughly equal to the arm period. Therefore, the decay lifetime must be less than 

or equal to 
2

−ln (0.01)
𝑡𝑎𝑟𝑚 𝑝𝑒𝑟𝑖𝑜𝑑, or in this case the decay lifetime must be less than or equal to 

5.1 μs. For valid results, the maximum paft measured using the expression derived in this paper is 

the integral of the exponential decay over the following gate, or paft = 0.09. However, as gate 

times decrease and duty cycle increases, the maximum valid paft also increases.  

In practice, the afterpulse lifetime can be estimated by varying the gate length and accounting for 

dark count probability (Nakata, et al., 2008). Paft is the integral of the exponential decay function 

of afterpulse arrival time from the beginning of the gate to the end of the gate (i.e., from thold-off to 

thold-off + tgate if t = 0 is the time of the previous avalanche). With passive quenching and clocking 

relative to the avalanche, this estimate has zero error. However, in gated operation, paft changes 

from gate to gate because the effective quench time is dependent on when the previous gate’s 

avalanche occurred. In gated operation, the precise avalanche arrival time is unknown, though an 

average value of paft may be sufficient since the measurement involves many gates over the 
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course of the exposure. Some researchers choose to “blank” or ignore the gates following a 

recorded event to reduce the afterpulsing noise (Ben-Michael, et al., 2006). This may be useful 

for instances of high afterpulse probabilities, but the drawback is a significant decrease in the 

number of gates (the number of samples) and the duty cycle of the device. Depending on the 

afterpulsing probability, blanking may not increase the SNR of the measurement.  

To continue the derivation, the probability of an afterpulse in first gate (n=0) is zero, since there 

were no previous gates. Therefore, the probability of an avalanche is  

 

𝑃0(𝑔𝑎𝑡𝑒 = 1) = 0 + (1 − 𝑒
−𝜆) − 0 = 1 − 𝑒−𝜆 Eq. 46 

 

For the second gate (n=1), the probability becomes more complicated. 

 

𝑃1(𝑔𝑎𝑡𝑒 = 1) = 𝑝𝑎𝑓𝑡(1 − 𝑒
−𝜆) + (1 − 𝑒−𝜆) − 𝑝𝑎𝑓𝑡(1 − 𝑒

−𝜆)(1 − 𝑒−𝜆) 

= (1 − 𝑒−𝜆)(1 + 𝑝𝑎𝑓𝑡𝑒
−𝜆) 

Eq. 47 

 

The first term, 𝑝𝑎𝑓𝑡(1 − 𝑒
−𝜆), is the probability that an afterpulse carrier is present in the second 

gate, and the second term, (1 − 𝑒−𝜆), is the probability that a photo-generated electron or dark 

carrier is present in the second gate (recall that λ = PDE·λp + λd). The third term is the cross term 

that must be subtracted, since the first two terms (probabilities) are independent of one another 

(see Eq. 45). 

Moving on to the third gate (n=2), a pattern begins to emerge. 
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𝑃2(𝑔𝑎𝑡𝑒 = 1) = 𝑝𝑎𝑓𝑡(1 − 𝑒
−𝜆)(1 + 𝑝𝑎𝑓𝑡𝑒

−𝜆) 

                                 +(1 − 𝑒−𝜆) − (1 − 𝑒−𝜆)(1 + 𝑝𝑎𝑓𝑡𝑒
−𝜆)(1 − 𝑒−𝜆) 

= (1 − 𝑒−𝜆) (1 + 𝑝𝑎𝑓𝑡𝑒
−𝜆 + (𝑝𝑎𝑓𝑡𝑒

−𝜆)
2
) 

Eq. 48 

 

That pattern continues for the fourth gate (n=3): 

 

𝑃3(𝑔𝑎𝑡𝑒 = 1) = 𝑝𝑎𝑓𝑡(1 − 𝑒
−𝜆) (1 + 𝑝𝑎𝑓𝑡𝑒

−𝜆 + (𝑝𝑎𝑓𝑡𝑒
−𝜆)

2
) 

     +(1 − 𝑒−𝜆) − (1 − 𝑒−𝜆) (1 + 𝑝𝑎𝑓𝑡𝑒
−𝜆 + (𝑝𝑎𝑓𝑡𝑒

−𝜆)
2
) (1 − 𝑒−𝜆) 

= (1 − 𝑒−𝜆) (1 + 𝑝𝑎𝑓𝑡𝑒
−𝜆 + (𝑝𝑎𝑓𝑡𝑒

−𝜆)
2
+ (𝑝𝑎𝑓𝑡𝑒

−𝜆)
3
) 

Eq. 49 

 

The expression can now be simplified into sum notation. 

 

𝑃(𝑔𝑎𝑡𝑒 = 1) = (1 − 𝑒−𝜆)∑(𝑝𝑎𝑓𝑡𝑒
−𝜆)

𝑛
𝑁

𝑛=0

 Eq. 50 

 

where P(gate = 1) is the avalanche probability. N is the total number of gates in the exposure 

(ngates), and n is the number of an individual gate. Paft is the probability that an afterpulsing 

carrier is present during a given gate,  and λ = PDE·λp + λd. For large values of N, the upper limit 

of the sum can be assumed infinite since  𝑝𝑎𝑓𝑡(1 − 𝑒
−𝜆) is always less than one, and higher 

order terms will be very small. Making these assumptions, the sum in Eq. 50 becomes a 

Maclaurin series that converges. 
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∑(𝑝𝑎𝑓𝑡𝑒
−𝜆)

𝑛
∞

𝑛=0

=
1

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
 Eq. 51 

 

And therefore 

 

𝑃(𝑔𝑎𝑡𝑒 = 1) =
1 − 𝑒−𝜆

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
 Eq. 52 

 

for large values of ngates. This probability (the probability of one or more electrons being present 

in a gate given a certain afterpulsing probability) is based on a compound Poisson distribution 

that skews from the standard distribution given the same mean (Vinogradov, et al., 2009).  

Eq. 52 behaves as expected. When paft = 0, the probability of a gate equal to 1 is simply Eq. 29. 

Similarly, when (λ = PDE·λp + λd) >> 1, the probability of a gate equal to one is Eq. 29 again; 

the additional number of gates triggered due to afterpulse carriers approaches zero because the 

other carrier generation rates are very high. Figure 27 shows the relationship between avalanche 

probability, gate fluence, and afterpulse probability. 
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Figure 27 –Analytical solution for the probability of a triggered gate for various afterpulse 

probabilities. Higher afterpulse probabilities cause higher avalanche probabilities for the 

same gate fluence. Monte Carlo simulations match this behavior. 

 

Since paft < 1 and e
-λ

 ≤ 1, Eq. 50 quickly converges for large values of N. As long as the total 

number of gates is greater than 10
3
, the error due to assuming an average avalanche probability 

will be negligible even for very high values of paft. 

It is interesting to note that the probability of a gate equal to 1 due solely to afterpulse carriers 

has a peak value. At a certain point, the probability of a coincidence of afterpulse and any other 

carrier is significant, and so most of the gates with afterpulse carriers in them would have been 

triggered anyway. The probability that an afterpulse carrier alone is responsible for a triggered 

gate is 

 

𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒 𝑜𝑛𝑙𝑦) = 𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒 ∩ 0|𝜆) = 𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒)𝑃(0|𝜆) Eq. 53 

 

Again, because the afterpulse condition is independent of the current gate, the two probabilities 

can be multiplied to form the overall probability. For the first gate (n=0): 
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𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒 𝑜𝑛𝑙𝑦) = 0 ∙ 𝑒−𝜆 = 0 Eq. 54 

 

This makes sense, since there was no previous gate to create an afterpulse carrier. Moving on to 

the second gate (n=1), 

 

𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒 𝑜𝑛𝑙𝑦) = (1 − 𝑒−𝜆)𝑝𝑎𝑓𝑡𝑒
−𝜆 Eq. 55 

 

where Eq. 46 provides the probability of an avalanche in the previous (first) gate to define 

P(afterpulse). Using Eq. 47 in the same fashion, the probability in the third gate is  

 

𝑃(𝑎𝑓𝑡𝑒𝑟𝑝𝑢𝑙𝑠𝑒 𝑜𝑛𝑙𝑦) = 𝑝𝑎𝑓𝑡(1 − 𝑒
−𝜆)(1 + 𝑝𝑎𝑓𝑡𝑒

−𝜆)𝑒−𝜆

= (1 − 𝑒−𝜆) (𝑝𝑎𝑓𝑡𝑒
−𝜆 + (𝑝𝑎𝑓𝑡𝑒

−𝜆)
2
) Eq. 56 

 

Here, a familiar pattern emerges, except that the first term in the sum is now 0 instead of 1. 

Using the same assumptions as for Eq. 51, the expression can be simplified to  

 

𝑃(afterpulse only) = (1 − e−λ)∑(pafte
−λ)

n
∞

n=1

=
1

1 − pafte−λ
− 1

= (
1 − e−λ

1 − pafte−λ
)pafte

−λ 

Eq. 57 

 

As shown in Figure 28, P(afterpulse only) is low for low fluence and increases for higher 

fluences until the probability that an avalanche would occur without afterpulsing (afterpulse 

carriers coincide with a dark count or photon-generated carriers) becomes significant. 
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Figure 28 – Theoretical solutions for the probability of a triggered gate due solely to the 

afterpulse contribution as a function of gate electron fluence (photon-generated and dark 

carriers) for various afterpulse probabilities. 

 
The peak value of the probability function (the gate fluence with the most noise due to 

afterpulsing) is where the derivative of Eq. 57 with respect to λ equals 0, or  

 

𝜆𝑝𝑒𝑎𝑘 = 𝑙𝑛 (1 + √1 − 𝑝𝑎𝑓𝑡) Eq. 58 

 

To find a new estimate for the average number of photons per gate, Eq. 29 must be solved again, 

but with the new expression for P(n≥1). 
𝑛𝑜𝑛𝑒𝑠

𝑛𝑔𝑎𝑡𝑒𝑠
 (avalanche probability) is now equal to Eq. 52, 

and the estimate of the mean number of photo-generated carriers per gate (λp) is now 
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�̂�𝑝 = − 𝑙𝑛 [

1 −
𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

1 − 𝑝𝑎𝑓𝑡
𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

] − 𝜆𝑑  Eq. 59 

 

Going back to Eq. 40, the variance is a function of the first derivative of the estimate and the 

variance of 
𝑛𝑜𝑛𝑒𝑠

𝑛𝑔𝑎𝑡𝑒𝑠
= 𝑥. The latter value is not the same as Eq. 42, however, and Figure 29 

illustrates this point. For a standard binomial distribution the comprising Bernoulli trials are 

independent tests. In the case of afterpulsing, however, each trial has a correlation to the trial 

before. This means that the distribution will have the same mean (the probability derived in Eq. 

52), but the variance will be increased. Some trials will have many interactions between 

Bernoulli trials and the total number of triggered gates will be large, while other trials may result 

in very few triggered gates. The variance will increase as a function of the afterpulse probability. 

 

 
Figure 29 – Monte Carlo results for the probability density function of the total number of 

triggered gates in an exposure in 1000 gates for various afterpulse probabilities. Each curve is 

for a gate electron fluence of 0.0048 electrons. 
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As a point of comparison, Figure 30 shows the expected binomial distribution for an exposure 

with the avalanche probability equal to Eq. 52, but with no correlation between gates (Bernoulli 

trials). The real distribution with the self-correlated binomial distribution is overlaid. 

 

 
Figure 30 – Monte Carlo results for the probability density function of the total number of 

triggered gates in an exposure of 1000 gates, with a constant electron flux per gate of 0.0048 

electrons. The black curve shows the un-correlated Bernoulli trial experiment, while the green 

curve shows the real distribution with inter-gate dependencies due to afterpulsing. 

 

The correlated data set has the same mean (~9.5), but larger variance (wider distribution) than 

the standard binomial distribution, which indicates that the variance of x must be dependent on 

the afterpulsing probability as well. Unlike the previous derivation of the variance for the 

number of counts, however, this variance is derived via the Markov Chain method. 

The Markov Chain method ascertains the distribution of events that are dependent on the present 

state and nothing else (Papoulis & Pillai, 2002). In this case, the “present state” is the n
th

 gate 

value, while the predicted value is for the (n+1)
th

 gate (dependent on the present state). This 

particular process is discrete, which simplifies the derivation somewhat. 

To start the derivation, the probabilities of every state transition must be defined. Figure 31 

shows a state diagram for the case of afterpulsing and gate values. 
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Figure 31 – State diagram for gate values from the n

th
 to (n+1)

th
 gates 

 

P01 is the probability of a 1 in the (n+1)
th

 state given a 0 in the n
th

 state, and so on for the other 

probabilities. The sum of the probabilities leaving a state must equal 1. Eq. 60 – Eq. 63 show the 

expressions for each probability (λ is the total electron fluence from photon and dark current 

processes during a single gate). 

 

𝑃01 = 1 − 𝑒
−𝜆 Eq. 60 

 

𝑃00 = 1 − 𝑃01 = 𝑒
−𝜆 

Eq. 61 

 

𝑃11 = 𝑝𝑎𝑓𝑡 + 𝑃01 − 𝑝𝑎𝑓𝑡𝑃01 = 1 − 𝑒
−𝜆(1 − 𝑝𝑎𝑓𝑡) 

Eq. 62 

 

𝑃10 = 1 − 𝑃11 = 𝑒
−𝜆(1 − 𝑝𝑎𝑓𝑡) 

Eq. 63 
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Since afterpulsing has no effect on gates after a zero (per the assumptions in this derivation), the 

probability for P00 and P01 are straightforward Poisson probabilities. For P11, the probability of an 

afterpulse or a λ-generated carrier is the sum of both probabilities minus the cross term. The 

equation for P10 follows. These probabilities comprise the matrix M that calculates the 

probability of a one and zero based on the probabilities for the previous gate (see Eq. 64). The 

columns of M are the probabilities leaving each state. 

 

[
𝑝0(𝑛 + 1)

𝑝1(𝑛 + 1)
] = [

𝑃00 𝑃10
𝑃01 𝑃11

] [
𝑝0(𝑛)

𝑝1(𝑛)
] Eq. 64 

 

In a steady state approximation, where the probability of  1 or 0 is independent of the outcome of 

a gate many gates before, Eq. 64 reduces to Eq. 65 and further to Eq. 66.  

 

[
𝑃0
𝑃1
] = [

𝑃00 𝑃10
𝑃01 𝑃11

] [
𝑃0
𝑃1
] Eq. 65 

 

The determinant of M is zero as a result of the defined state relationships, and P1 + P0 = 1. Using 

these relationships, Eq. 65 can be solved to find P1 and P0 (the steady state probabilities for 1 and 

0, respectively). The expression for P1 in Eq. 66 should match the expression previously derived 

in Eq. 52, as a check. 
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[
𝑃0
𝑃1
] = [

𝑒−𝜆 𝑒−𝜆(1 − 𝑝𝑎𝑓𝑡)

1 − 𝑒−𝜆 1 − 𝑒−𝜆(1 − 𝑝𝑎𝑓𝑡)
] [
𝑃0
𝑃1
] → 𝑃1𝑒

−𝜆(1 − 𝑝𝑎𝑓𝑡) = 𝑃0(1 − 𝑒
−𝜆) 

𝑃1 =
1 − 𝑒−𝜆

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
 

𝑃0 = 1 − 𝑃1 =
𝑒−𝜆(1 − 𝑝𝑎𝑓𝑡)

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
 

Eq. 66 

 

To calculate the variance of the number of counts, the standard definition of variance will be 

used and interpreted in terms of M and the state probabilities, as shown in Eq. 67. 

 

𝜎𝑐
2 = 𝐸[𝑐2] − (𝐸[𝑐])2 =∑∑𝑝1(𝑖)𝑝1(𝑗) − 𝑝1(𝑖)  𝑝1(𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

= ∑ (𝑁 − |𝑘|)(𝑃1𝑝1(𝑘) − 𝑃1
2)

𝑁−1

𝑘=−(𝑁−1)

= (𝑁 − 0)𝑃1(1 − 𝑃1) +2𝑃1∑(𝑁 − 𝑘)(𝑝1(𝑘) − 𝑃1)

𝑁−1

𝑘=1

= 𝑁𝑃1𝑃0 + 2𝑝1∑(𝑁 − 𝑘)(𝑝1(𝑘) − 𝑃1)

𝑁−1

𝑘=1

 

Eq. 67 

 

where N is the number of gates (ngates), k = € – j, and p1(k) is the probability of a 1 given that a 1 

was recorded k gates before. P1(k) is also, by definition, the bottom right corner term of M
k
, or 
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𝑝1(𝑘) = [0 1]𝑀𝑘 [
0
1
] Eq. 68 

 

To find a closed-form solution for p1(k), M must be diagonalized, or a matrix A must be found 

such that 

 

𝐴−1𝑀𝐴 = 𝐷 

𝑀𝑘 = 𝐴−1𝐷𝑘𝐴 

Eq. 69 

 

where the columns of A are the eigenvectors of M and D is a diagonal matrix of the eigenvalues 

of M (Anthony & Harvey, 2012). The eigenvalues of M and the matrices A and D are defined in 

Eq. 70-Eq. 72. 

 

𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 = [
1

𝑝𝑎𝑓𝑡𝑒
−𝜆] Eq. 70 

 

𝐴 = [
𝑒−𝜆(1 − 𝑝𝑎𝑓𝑡)

1 − 𝑒−𝜆
−1

1 1

] 

Eq. 71 

 

𝐷 = [
1 0
0 𝑝𝑎𝑓𝑡𝑒

−𝜆] 

Eq. 72 

 

Since D is a diagonal matrix, D
k
 (Eq. 69) is calculated simply as a matrix of the k

th
 power of the 

individual terms. Referring back to Eq. 68 and Eq. 69, p1(k) can be calculated as in Eq. 73. 
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𝑝1(𝑘) = [0 1]𝐴−1𝐷𝑘𝐴 [
0
1
] =

(1 − 𝑒−𝜆) + 𝑒−𝜆(1 − 𝑝𝑎𝑓𝑡)(𝑝𝑎𝑓𝑡𝑒
−𝜆)

𝑘

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
 

=
𝑝01 + 𝑝10(𝑝𝑎𝑓𝑡𝑒

−𝜆)
𝑘

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
 

Eq. 73 

 

Figure 32 shows both the Monte Carlo results and analytical solution for p1(k). Note that as k 

approaches infinity (many gates), p1(k) approaches P1, which is the steady state value of 

avalanche probability. 

 

 
Figure 32 – p1(k) as a function of fluence and afterpulse probability. Colored points represent 

Monte Carlo results and the solid lines represent the analytical solution for each value of k. 

 
Substituting Eq. 73 into Eq. 67, and using some geometric series identities, the variance of the 

total number of counts is 
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𝜎𝑐
2 = 𝑃1𝑃0 (𝑁 + 2

𝑝𝑎𝑓𝑡𝑒
−𝜆 ((𝑝𝑎𝑓𝑡𝑒

−𝜆)
𝑁
+ 𝑁(1 − 𝑝𝑎𝑓𝑡𝑒

−𝜆) − 1)

(1 − 𝑝𝑎𝑓𝑡𝑒−𝜆)
2 ) Eq. 74 

 

If N is assumed to be very large, the expression simplifies to 

 

𝜎𝑐
2 = 𝑁𝑃1𝑃0 (1 + 2

𝑝𝑎𝑓𝑡𝑒
−𝜆

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
) Eq. 75 

 

It is interesting to note that the variance is a scaled version of the standard binomial variance. Eq. 

75 is the variance of the total number of counts, but the variance of x is a scaled version, or 

 

𝜎𝑥
2 =

𝜎𝑐
2

𝑁2
=
𝑃1𝑃0
𝑁
(1 + 2

𝑝𝑎𝑓𝑡𝑒
−𝜆

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
) Eq. 76 

 

Now, going forward with the derivation of the SNR, Eq. 40 still provides the correct expression 

for the variance of the estimate. 

 

�̂�𝑝 = 𝑦(𝜇𝑥) = −𝑙𝑛 (
1 − 𝜇𝑥

1 − 𝑝𝑎𝑓𝑡 ∙ 𝜇𝑥
) Eq. 77 

 

Solving Eq. 59 in terms of λ and letting y = λ and μx = P(gate=1) from Eq. 52, the total variance 

for the entire exposure is 
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𝜎𝑦
2 = |𝑦′(𝜇𝑥)|

2𝜎𝑥
2𝑛𝑔𝑎𝑡𝑒𝑠

2

= 𝑁𝑃1𝑃0 (
1 − 𝑝𝑎𝑓𝑡

𝑃0(1 − 𝑝𝑎𝑓𝑡 ∙ 𝑃1)
)

2

(1 + 2
𝑝𝑎𝑓𝑡𝑒

−𝜆

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
) Eq. 78 

 

When paft is zero, the variance of the estimate reduces to Eq. 40.  Combining Eq. 78 with the first 

half of Eq. 43, the SNR of a GM-APD in photon counting mode is 

 

𝑆𝑁𝑅 =
𝑄𝐸 ∙ 𝜆𝑝 ∙ 𝑛𝑔𝑎𝑡𝑒𝑠

√𝑃1𝑃0 (1 + 2
𝑝𝑎𝑓𝑡𝑒−𝜆

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
)(

1 − 𝑝𝑎𝑓𝑡
𝑃0(1 − 𝑝𝑎𝑓𝑡 ∙ 𝑃1)

)

2

𝑛𝑔𝑎𝑡𝑒𝑠

 

  

where                                     P1 =
1−e−λ

1−pafte
−λ 

𝑃0 =
𝑒−𝜆(1 − 𝑝𝑎𝑓𝑡)

1 − 𝑝𝑎𝑓𝑡𝑒−𝜆
 

𝜆 = 𝑃𝐷𝐸 ∙ 𝜆𝑝 + 𝜆𝑑 

Eq. 79 

 

Note that Eq. 79 simplifies to Eq. 44 (SNR neglecting afterpulsing) when paft = 0. Figure 33 

shows an overlay of Monte-Carlo simulation results and the theoretical solution according to Eq. 

79 for the same detector. The simulation agreed with the theoretical data in both mean and 

standard deviation. 
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Figure 33 – This plot shows Monte Carlo results (individual points) and analytical solutions 

(corresponding solid lines) for the relative SNR of a GM-APD in photon counting mode vs gate 

fluence for multiple afterpulse probabilities. The dashed vertical line notes the fluence at which 

photo-generated signal and DCR contributions are equal. Relative SNR is normalized to the 

ideal SNR, the shot-noise limited case where SNR = √𝐹𝑙𝑢𝑒𝑛𝑐𝑒. 
 

It is important to note that, as explained at the beginning of section 2.6.3, an actual value of 

paft = 0.75 or even 0.25 is unlikely for most operating conditions if the assumptions stated at the 

beginning of section 2.6.3 hold. However, since the simulation is based on the same assumptions 

as the derived expression for SNR, and the inputs are given without regard to feasibility, the 

comparison of simulated to calculated results in Figure 33 is valid. The exaggerated values of paft 

more easily illustrate the overall trends in SNR behavior across a range of fluence values as the 

afterpulsing probability changes. 

The earlier onset of roll-off at high fluence for larger values of paft is due to an effective decrease 

in saturation level. Given the same fluence, the avalanche probability will increase with 
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increasing afterpulse probability. The roll-off at low fluence is still due to background noise 

(DCR). While the relative SNR still has a maximum of √𝑃𝐷𝐸 for the case of paft = 0, the 

maximum for cases where paft > 0 is lower.  

2.7 PHOTON-COUNTING MODE EMCCD 

In photon-counting mode, EMCCDs are read out very quickly and a threshold circuit is used to 

decide whether or not a photon was absorbed during the very short exposure. The short 

exposures are repeated many times to estimate the probability of the arrival of one or more 

photons in one short exposure. This probability is used to calculate the average number of 

photons per second per pixel. 

2.7.1 THEORY OF OPERATION 

The operation of an EMCCD in photon-counting mode is very similar to operation in analog-

mode. The only difference is in the timing and the data analysis. In terms of timing, the short 

exposures should be set such that the average electron fluence (e
-
/pixel/gate) is near 1. 

2.7.2 SNR 

The derivation of an SNR expression for EMCCDs in PC mode builds on concepts encountered 

in the GM-APD SNR derivation. To start, consider the physical meaning of the string of 1s and 

0s that are the output of the detector. The system will output a 1 when the magnitude of carriers 

at the output is greater than or equal to a threshold value. Therefore, the probability of a gate 

equal to 1 is the probability density function of the carriers at the output of the gain register, 

integrated from the threshold value to infinity. Figure 34 shows an example of a gain register 

output probability density function and the probability of a gate equal to 1. 
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Figure 34 – This figure shows a sample output probability density function and the key values 

to derive the probability of a 1 for an EMCCD in PC mode. T is the threshold, μ is the 

distribution mean, and the shaded area is the integral representing the probability. Λ is the 

number of carriers at the output of the gain register. 

 

The probability distribution of the number of output carriers is simplified when one considers the 

output to be the sum of the outputs for each individual input carrier. For example, if there are 3 

electrons at the input of the gain register, the number of output electrons is the sum of 3 random 

variables chosen from the correct gain probability density function. Since, for a single carrier, the 

gain is equal to the number of output carriers, this simplifies the derivation.  

The probability distribution for the number of output carriers for one input carrier (and thus the 

distribution of the gain value) is an exponential distribution with mean G (Daigle, 2009). The 

probability distribution of the sum of multiple random variables is the convolution of the 

probability distributions of each random variable. Conveniently, the convolution of n 

exponentially-distributed random variables (with the same rate constant) has a closed-form 

solution, shown in Eq. 80 (Akkouchi, 2008). 
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𝑓𝑛(𝑡) =
𝛽𝑛𝑡𝑛−1

(𝑛 − 1)!
𝑒−𝑡𝛽 Eq. 80 

 

fn(t) is the probability density function for n exponentially-distributed random variables, t is the 

random variable assigned to the output, and β is the rate constant of the input distributions. For 

the case of the EMCCD gain register, n is the number of input carriers (the number of input 

distributions to convolve), t is the actual gain value for any given trial, and β is the reciprocal of 

the mean gain. Therefore, 

 

𝑓𝑛(𝑔) =
(𝐺)−𝑛𝑔𝑛−1

(𝑛 − 1)!
𝑒−
𝑔
𝐺  Eq. 81 

 

where g is the actual gain (random variable), G is the mean gain, and n is the number of input 

carriers to the gain register. The integral of Eq. 81 from the threshold value to infinity is the 

shaded region of Figure 34, or the probability of a gate equal to 1. Even though the random 

variable for the gain must be discrete, since the gain values are large (>100), it is reasonable to 

treat the distribution as continuous. 

 

𝑃(𝑔𝑎𝑡𝑒 = 1 | 𝑛) = ∫
(𝐺)−𝑛𝑔𝑛−1

(𝑛 − 1)!
𝑒−
𝑔
𝐺

∞

𝑇

  𝑑𝑔 

=
(𝐺)−𝑛

(𝑛 − 1)!
∫ 𝑔𝑛−1𝑒−

𝑔
𝐺

∞

𝑇

  𝑑𝑔 

Eq. 82 

 

Here it is helpful to note the definition of the incomplete gamma function, 
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𝛤(𝑛, 𝑥) ≡ ∫
𝑢𝑛−1

𝑒𝑢
𝑑𝑢

∞

𝑥

 Eq. 83 

 

With a simple substitution of u = g/G, Eq. 82 becomes 

 

∫
(𝐺)−𝑛𝑔𝑛−1

(𝑛 − 1)!
𝑒−
𝑔
𝐺

∞

𝑇

  𝑑𝑔 =
𝐺 ∙ (𝐺)−𝑛𝐺𝑛−1

(𝑛 − 1)!
∫

𝑢𝑛−1

𝑒𝑢

∞

𝑇

  𝑑𝑔 

=
𝛤 (𝑛,

𝑇
𝐺)

(𝑛 − 1)!
 

Eq. 84 

 

where x  T/G because the probability can be thought of as the probability that the input is 

greater than or equal to the threshold scaled by the mean gain (as opposed to the probability that 

the input, when multiplied, is greater than or equal to the threshold). This simplifies the 

expression. 

At this point in the derivation, the probability of a gate equal to 1 is known for a given number of 

input carriers, n. The probability of a gate equal to 1 for a random number of input carriers is the 

more useful probability, however. This probability is the sum of the product of the probability of 

n carriers at the input and the probability that n carriers will be greater than the threshold at the 

output, over all possible values of n. 

 

𝑃(𝑔𝑎𝑡𝑒 = 1) = ∑(
𝑒−𝜆𝜆𝑘

𝑘!
)(
𝛤 (𝑘,

𝑇
𝐺
)

(𝑘 − 1)!
)

∞

𝑘=1

 Eq. 85 

 

The sum in Eq. 85 begins at 1 because the probability that zero input carriers will be greater than 

the threshold at the output is zero. The first term is the Poisson probability of k carriers, where λ 
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is the number of absorbed photons per gate on average, while the second term is taken from Eq. 

84. Eq. 85 does not take into account the dark noise, the parallel CIC in the array, the serial CIC 

in the gain register or the read noise. 

Since the probability of a parallel CIC carrier is small in general, it can be described as a 

Bernoulli trial variable (see Eq. 20). However, when the Bernoulli trial results for each transfer 

are added together, the distribution can be described as Poissonian, since each carrier represents 

a rare event. Once this assumption is made, the parallel CIC rate can be added to the photo-

generated carrier and dark carrier rates to create a Poisson random variable that defines the 

distribution for the number of carriers at the input of the gain register. 

 

𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

= 𝑃(𝑔𝑎𝑡𝑒 = 1) 

=∑(
𝑒−(𝜆𝑝+𝜆𝑑+𝜆𝑝𝐶𝐼𝐶)(𝜆𝑝 + 𝜆𝑑 + 𝜆𝐶𝐼𝐶)

𝑘

𝑘!
)(
𝛤 (𝑘,

𝑇
𝐺)

(𝑘 − 1)!
)

∞

𝑘=1

 

Eq. 86 

 

Rearranging Eq. 86 and solving for �̂�𝑝, 

 

�̂�𝑝 = −𝑙𝑛

(

 
 𝑥

∑
(�̂�𝑝 + 𝜆𝑑 + 𝜆𝐶𝐼𝐶)

𝑘
𝛤(𝑘, 𝑇 𝐺⁄ )

𝑘! (𝑘 − 1)!
∞
𝑘=1 )

 
 
− (𝜆𝑑 + 𝜆𝐶𝐼𝐶) Eq. 87 

 

where x is the ratio of the number of 1s recorded to the total number of gates recorded, 

𝑃(𝑔𝑎𝑡𝑒 = 1). The estimate is a function of itself because of the exponential term, but the 

solution may be found arithmetically. 

The variance of the estimate in Eq. 87 is now more complicated to derive, since the estimate is 

now a function of itself. However, by rearranging Eq. 40, the variance can be found when the 
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equation is inverted (solved for the variable as a function of the estimate). The function x(y) has 

no intuitive meaning, but the mathematics still hold. Letting  
𝑛𝑜𝑛𝑒𝑠

𝑛𝑔𝑎𝑡𝑒𝑠
= 𝑥 and �̂�𝑝 = 𝑦, the variance 

per gate is 

 

𝜎𝑦
2 =

𝜎𝑥
2

|𝑥′(𝑦)|2
 Eq. 88 

 

The derivative of the function x(y) is 

 

𝑥′(�̂�𝑝) =
𝑑

𝑑�̂�𝑝
(𝑒−(�̂�𝑝+𝜆𝑑+𝜆𝐶𝐼𝐶)∑

(�̂�𝑝 + 𝜆𝑑 + 𝜆𝐶𝐼𝐶)
𝑘
𝛤 (𝑘,

𝑇
𝐺)

𝑘! (𝑘 − 1)!

∞

𝑘=1

) 

= 𝑒−(�̂�𝑝+𝜆𝑑+𝜆𝑝𝐶𝐼𝐶)∑
(�̂�𝑝 + 𝜆𝑑 + 𝜆𝐶𝐼𝐶)

𝑘−1
𝛤 (𝑘,

𝑇
𝐺) (𝑘 − (�̂�𝑝 + 𝜆𝑑 + 𝜆𝐶𝐼𝐶))

𝑘! (𝑘 − 1)!

∞

𝑘=1

 

Eq. 89 

 

The variance of x is simply Combining Eq. 88 and Eq. 89 yields Eq. 90. 
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𝑆𝑁𝑅 =
𝑄𝐸 ∙ 𝜆𝑝 ∙ 𝑛𝑔𝑎𝑡𝑒𝑠

√𝑥(1 − 𝑥)𝑛𝑔𝑎𝑡𝑒𝑠
∙ (𝑒−(𝜆)∑

(𝜆)𝑘−1𝛤 (𝑘,
𝑇
𝐺)
(𝑘 − 𝜆)

𝑘! (𝑘 − 1)!

∞

𝑘=1

) 

 

Where                                           λ = 𝑄𝐸 ∙ 𝜆𝑝 + λd + λCIC 

𝑥 =
𝑛𝑜𝑛𝑒𝑠
𝑛𝑔𝑎𝑡𝑒𝑠

=∑(
𝑒−(𝜆)(𝜆)𝑘

𝑘!
)(
𝛤 (𝑘,

𝑇
𝐺)

(𝑘 − 1)!
)

∞

𝑘=1

 

 

Eq. 90 

 

This equation assumes that read noise and serial CIC from the multiplication register are 

negligible. The thresholding may be set so that it is above the sCIC level for much of the time, 

though the probability distribution of the output of the gain register for sCIC is not derived here. 

In order for the read noise to be negligible, e.g. an error less than 0.1%, Eq. 91 must be true. 

 

1

2
(1 − 𝑒𝑟𝑓 (

𝑇

𝜎𝑟√2
)) ≤ 0.001 

𝜎𝑟 ≤ ~
𝑇

3
  𝑜𝑟  𝑇 ≥ 3𝜎𝑟  

Eq. 91 

 

The first expression is the integral from T to infinity of a Gaussian distribution with mean zero 

and standard deviation σr. The contribution from the read noise causing a change in gate status 

from 0 to 1 is assumed to cancel itself out (an equal number of trials will results in the change 

from 1 to 0). Eq. 91 represents the cases where, absent any input to the gain register, the read 

noise alone will cause the gate to be recorded as a 1. It is also assumed that any secondary 

interaction between the read noise and the sCIC noise is negligible. 
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Figure 35 shows the SNR of an EMCCD in photon-counting mode, both Monte Carlo results and 

the analytical solution from Eq. 90. Monte Carlo results below 0.02 e
-
/s/pixel have a problem 

with the estimation of very small numbers in the incomplete gamma function. 

 

 
Figure 35 – Monte Carlo results vs. analytical solution for the SNR of an EMCCD in photon-

counting mode over a range of fluences. The gate length is set to 0.05s, the QE is 80%, and 

the exposure time is 800s (15686 gates with a frame read time of 1 ms). The dark noise (both 

dark current and pCIC) is 0.002 electrons per gate. The gain is set to 100σr (read noise is 

negligible). Relative SNR is the SNR of the device normalized to the ideal SNR, the shot-noise 

limited case. 

 

Figure 36 shows the derived SNR for this research and the experimentally-calculated SNR for 

identical detector characteristics (Daigle, 2009). The gate time is 50 ms, the dark current and CIC 

contribution per gate is 0.0023 e
-
/pix, the QE is 95%, and the threshold is set to 5x the read noise 

with a gain of 3000. 
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Figure 36 – This plot shows derived results (green dotted line) and published experimental 

results (individual + signs) for an EMCCD in photon-counting mode with the same settings 

and noise values. The thin solid line is the SNR expression used in the reference. The only 

discrepancy is in the shape of curve during saturation, but there is no experimental data to 

compare the theoretical curves. The derived results have a slightly better fit to the data points 

at the highest flux values. The derived results are overlaid on the published data figure with the 

same axis scaling (Daigle, 2009). 

 

The derived results are in good agreement with the published experimental results, though there 

is a discrepancy in the saturation behavior of the model used by the published source and the 

derived model presented here. The model used in the paper is very simplistic and does not take 

into account the noise due to thresholding, which adversely affects the SNR when the device 

begins to saturate. The derived model in this proposal matches the measured data at the 

beginning of saturation better than the model presented in the published source, though the 

difference in fit is small. 
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Eq. 90 can be simplified if a few assumptions are made. Instead of simplifying the SNR equation 

as a whole, a more convenient simplification is available at the beginning of the derivation. If the 

read noise contribution is assumed to be negligible and the thresholding loss is also considered to 

be negligible, then the probability of a 1 (see Eq. 85) can be expressed exactly like that of a GM-

APD, as in Eq. 29. 

Comparing Eq. 85 to the Poisson probability expression in Eq. 28, the similarities are clear. As 

(
Γ(𝑘,

T

𝐺
)

(𝑘−1)!
) Approaches 1, Eq. 85 approaches P(k≥1). For an error of less than 1%, the ratio of the 

threshold to the mean gain must be less than or equal to 0.01, while maintain the threshold at 

≥3σr as in Eq. 91. In this case, the term may be dropped from the expression. Figure 37 shows 

the incomplete gamma function term subtracted from 1 as a function of k and T/G. At T/G ratios 

less than 0.01, the error in assuming that the function is always 1 becomes very small. 

 

 
Figure 37 – Incomplete gamma function term for various k and fractional threshold (T/G) 

values 

 



 

 

 

 

97 

 

In this approximation, any carrier that is multiplied is counted (no thresholding loss) and no read 

noise is counted (zero read noise). Therefore, the derivation becomes identical to the GM-APD 

case with no afterpulsing probability. The only difference is that the CIC must be counted as a 

contributor to the dark current and scaled appropriately, since it is applied per read as opposed to 

per unit time.  
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3 GM-APD TESTING 

The GM-APD devices testing in this project were the product of MIT Lincoln Laboratory (MIT 

LL). The CfD and MIT LL worked together on a project funded by the Gordon and Betty Moore 

Foundation, entitled “Zero Noise Detector for the Thirty Meter Telescope.” The detector arrays 

were fabricated at MIT LL facilities, and the readout integrated circuits (ROICs) were fabricated 

by IBM and bump-bonded to the detector arrays to make the complete device. Early on in the 

project, testing of on-wafer test devices characterized multiple internal architectures for the 

detector arrays (Kolb, 2011). These architectures included low-fill-factor (LFF), medium-fill-

factor (MFF), and high-fill-factor (HFF) architectures. Figure 38 shows the internal structure of a 

single pixel in an LFF device, which was originally designed for light detection and ranging 

(LIDAR) systems. The MFF and HFF designs had larger multiplication and absorption regions. 

The HFF devices collect more photons and have higher efficiencies than the LFF devices. 

However, due to extraordinarily high crosstalk (see section 3.11), only the LFF devices are tested 

fully for this project. 

 

 
Figure 38 – This figure shows the GM-APD design for one pixel (not to scale). 
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Each pixel in the LFF devices is made up of three distinct regions, each with a specific function. 

The absorber depletion region has a medium-strength electric field that moves carriers to the 

multiplier region, which has a strong electric field (above breakdown voltage) to facilitate 

avalanches. A weak electric field, called a “scupper,” surrounds the absorption and 

multiplication regions of each pixel to direct carriers generated outside of these regions to the 

cathode without initiating an avalanche, reducing the DCR (Aull, et al., 2010).  

Except for the implanted regions, the silicon material is nearly intrinsic. It is very lightly p-doped 

with boron with a carrier concentration of 8.5x10
13

 cm
-3

. The boron-doped silicon is epitaxially 

grown and is 15 μm thick. The carrier lifetime is 10-100 μs. The n+ implant is circular and doped 

with arsenic, with a peak concentration of 4x10
18

 cm
-3

 at the surface. The spread of this implant 

is narrow, with a spatial distribution decay constant of 0.1 μm. The n+ implant has a diameter of 

13 μm. The p+ implant between the absorption and multiplication regions is also circular, and 

has a diameter of 9 μm. The peak concentration of the implant is 8.5x10
16

 cm
-3

, with a narrow 

distribution (± 0.17 μm) centered at 1 μm from the silicon surface. There is a phosphorus guard 

ring implant that encircles the n+ implant to spread out the field lines at the edge of the 

multiplication region.   The inner diameter of the ring is 12 μm and the outer diameter is 

14 μm.  The implanted ring creates a low-doped halo around the periphery of the diode. Between 

pixels, there is a channel-stop implant, which is designed to electrically isolate each pixel. It is 

blocked in each pixel over a circular region, which encompasses the implants shown in Figure 

38, with a diameter of 19 μm. The illuminated surface of the device is underneath 725 μm of 

quartz, which does not significantly affect the reflectance of light at visible wavelengths. There is 

an anti-reflection coating at the illuminated surface of the device: a 65.8 nm thick layer of Ti3O5. 

Figure 39 shows the reflectance at the silicon/quartz interface with the anti-reflective coating for 

various wavelengths. 
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Figure 39 – This figure shows reflectance vs wavelength at the quart-silicon interface with a 

68.5 nm layer of Ti3O5. The incident light is assumed to be perpendicular to the surface of the 

detector. 

 

A GM-APD exposure is comprised of many individual detection cycles, each of which contains 

three main signals. At the start of the cycle, an arm pulse is asserted to set the reverse bias across 

the diodes above the breakdown voltage. The voltage is kept high for a short period of time 

(generally on the order of 0.1 μs), after which an individual pixel may or may not avalanche. In 

the event of an avalanche, the quenching circuit detects an increase in current and actively sets 

the voltage below the breakdown voltage, or disarms the pixel, to stop the avalanche. At the end 

of the gate (the time that the voltage is allowed to be high), the pixel state is recorded, a “one” or 

“zero,” corresponding to whether the pixel experienced an avalanche. After the state is recorded, 

the pixels are actively disarmed, regardless of state, and after a specified delay (the hold-off 

time) the pixel is armed again.  

The output of a pixel from a given exposure is the total number of avalanches recorded. The ratio 

of avalanches to number of gates is the avalanche probability, from which the flux can be 

estimated. Since this estimation method is fundamentally different from that used for CCD or 

CMOS detectors, the form of the expression for the SNR is fundamentally different, as well. For 
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the detector discussed here, the dominant noise characteristics for SNR are determined by DCR, 

afterpulsing probability, and PDE. DCR and PDE are analogous to dark current and QE, but 

DCR and PDE values include the avalanche initiation probability, which degrades the device’s 

ability to detect a carrier when it is less than 1 (McIntyre, 1973). 

The GM-APD array devices were mounted in the dewar with a custom mount. The detectors 

were positioned so that they could be exposed to light when the dewar port cover was removed 

(see Figure 58). Figure 40 shows three GM-APD detectors mounted in the dewar before 

installing the heat shield and the dewar lid. 

 

 
Figure 40 – Three GM-APD detectors are shown mounted in the dewar. The empty quadrant 

was used to house a temperature sensor mounted to a flex package for detector temperature 

measurements. 

 

GM-APD device characterization included evaluation of DCR, afterpulsing probability (Paft), 

intra-pixel sensitivity (IPS), PDE, and the effects of radiation damage on each. Crosstalk for 

these devices is negligible, roughly 0.5%, and was not affected by radiation damage. Post-

radiation data was taken at the same applied bias as the pre-radiation data, though this represents 
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a change in applied overbias due to a shift in breakdown voltage after irradiation. Although three 

devices were tested, the devices were very consistent with each other and only one set of data is 

presented here for brevity. 

3.1 ELECTRONICS 

A number of circuit boards and external power supplies are required to operate the GM-APD 

detectors. The system of control is referred to as the Photon Counting ReadOut Integrated Circuit 

(PCROIC) system, after the ROIC implemented in the GM-APD imaging devices. Four FPGAs 

are required to do the necessary signal processing. The FPGAs in this system have very basic 

programming that consists of simple in/out and enable commands, and they are programmed via 

JTAG protocols. 

If only one device were being operated, a single circuit board would be required (called the 

Warm Electronics Board, or WEB). The WEB has an Opal Kelly clocking board and some signal 

conditioning components. Two power supplies are required to operate the WEB, one at 10 V and 

another at 3.3 V. The connector for supplying those voltages is shown on the bottom wall of the 

warm electronics housing in Figure 41. 

In order to test up to four devices at once, however, two more circuit boards had to be used. One 

is used to split the signals to each detector into differential signals for better signal integrity 

while being fed through the dewar wall (called the Warm Daughter Board, or WDB), and the 

other is used to make the signals single-ended again before being sent on to the detectors (called 

the Cold Fanout Board, or CFB). The high voltage applied to the GM-APD devices is provided 

by dedicated power supply connections on the WDB, via ports on the outside of the warm 

electronics housing (top wall in Figure 41). A separate power supply is required for each detector 

that is installed in the dewar for testing. The WEB (left) and WDB (right) are shown in Figure 41 

inside the warm electronics housing. The Opal Kelly control (USB connection) and the 

CameraLink connector are accessible through the left wall of the housing, and the differentiated 

signals exit through cables on the right wall of the housing. 
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Figure 41 – The warm electronics housing with power supply connector (circled in yellow) is 

shown. 

 
Along with the signals from the WDB, temperature sensor signals were connected via ports 

through the dewar wall. Figure 42 shows a top-down view of the electrical connections for the 

control and monitoring of the GM-APD devices and CFB. PCROIC PWR carries the supply 

voltage to the detectors as well as enabling voltages for a variety of internally-driven clock 

signals. PCROIC DIN carries data acquisition commands to the detectors, and PCROIC DOUT 

carries data acquisition responses from the detectors. PCROIC test carries signals that control the 

gating and timing of the detection cycle. The Lakeshore C/D cable relays temperature sensor 

data for monitoring the temperature of the circuit board, and Lakeshore A/B carries temperature 

sensor data for the control heater and the detectors. Also visible in Figure 42 are the detector raft 

mounts on the cold plate, as well as the thermal strap that connects the detector raft to the final 

stage cold finger of the closed-system cryogenic cooler. 
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Figure 42 – An internal view of the wiring for electronic control and monitoring of the GM-

APD devices is shown. The detectors are not mounted in this view.  

 
Thermal heating straps were attached to each dewar port flange to prevent condensation and 

shorting of signals going into and out of the dewar while cold. 

3.2 BREAKDOWN VOLTAGE 

All GM-APD bias settings are relative to the breakdown voltage. The applied bias is defined in 

terms of the overbias, or the number of volts applied above the breakdown voltage. Even though 

the breakdown voltage may vary between devices, tests done at the same overbias setting are 

valid for comparison. 

To estimate the breakdown voltage, the current draw from the array is measured as the voltage is 

varied. Ideally, every pixel in the array would have the same effective breakdown voltage, and 

the current-voltage curve would have a steep rise in current at the breakdown voltage. In reality, 

voltage sagging across the array leads to a slightly lower applied voltage in the center of the 

array, causing a higher effective breakdown voltage in the center. Voltage sagging occurs when 
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the voltage applied at the edges of the array is higher than the voltage supplied at the center of 

the arrays due to parasitic resistance. Process variations across the array also lead to small 

differences in the breakdown voltage of each device. The result of these variations is a slow 

increase in current as more and more pixels are biased above their breakdown voltage. Figure 43 

shows an example of the measured current vs applied voltage. 

 

 
Figure 43 – This figure shows a plot of the array current vs applied voltage for a GM-APD 

array device (top) and the derivative of the current vs voltage curve (bottom). 

 

Since the slope of the current is shallow until most of the pixels are in breakdown, it is easier to 

find the point at which most pixels are avalanching by taking the derivative of the current vs 
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voltage curve. The inflection point of the exponential increase is defined as the effective 

breakdown voltage for the array. A fitting routine attempts to fit the derivative curve to an 

exponential function, but the curve itself is not a perfect exponential. In the case of an 

exponential fit, the characteristic voltage value would be the breakdown voltage. However, 

failing an exponential fit, the first voltage value where the current exceeds some threshold is 

chosen as the breakdown voltage. As a final resort, if neither the fit nor the threshold yielded a 

value that represents the breakdown voltage, the value is chosen by eye. It is important to note 

that the applied bias in Figure 43 is an externally-applied voltage to the system. The control 

electronics reduce the voltage by 5 V by default (the disarm state of the device), and so the actual 

breakdown voltage is 5 V less than reported. In normal operation, the full bias is applied to the 

detector when armed. 

The effective breakdown voltage decreases linearly with temperature, but the slope must be 

confirmed to accurately adjust the applied bias based on the detector temperature. If the applied 

bias is not adjusted, the overbias will vary across different temperature settings. Figure 44 shows 

the breakdown voltage of a GM-APD array vs temperature. 
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Figure 44 – This plot shows breakdown voltage vs temperature (individual points) and a linear 

fit to the data (dashed line). 

 

The breakdown voltage at 280 K and the change in breakdown voltage per Kelvin were stored in 

a configuration file for each detector. During each experiment, the settled temperature of the 

detector was used to calculate the appropriate applied bias to achieve the specified overbias. 

3.3 RADIATION DAMAGE SIMULATIONS 

The radiation testing plan was done by CfD engineer Dr. Joong Lee (Figer, 2010). A summary of 

his work is provided here for reference. 

In order to simulate detector performance degradation in space, due to radiation damage, 

equivalent radiation damage must be introduced to the detectors in a controlled environment 

while characterizing detector performance. Radiation damage is categorized into two types: 

ionizing radiation and nonionizing radiation. Generally, ionizing radiation effects scale with total 

ionizing dose (TID), while nonionizing radiation effects scale with displacement damage dose 

(DDD) in the absorber layer(s).  
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Because the variety of energies and particles in space will normally exceed what is practically 

available on the ground, some equivalence must be used to simulate the same amount and type of 

damage. It is often the case that monoenergetic high-energy protons are the only radiation source 

used in testing. A dose of 60 MeV protons that provides the same TID and DDD as the spectrum 

of high-energy radiation particles on orbit can be used to simulate the damage received as well as 

the performance degradation over time. This approach has worked well in space-qualifying 

several missions for imagers for NASA, including Chandra, ASCA, SUZAKU, and HETE (Figer, 

2010). The energy of 60 MeV has been used widely for testing CCDs since it is one of the most 

common energies for several low-earth orbits (Edmonds, et al., 2000). 

Eq. 92 relates the change in dark current for an exposure to a proton spectrum (∆ID,spectrum) to the 

change in dark current for samples exposed to a monoenergetic beam of 60 MeV radiation 

(∆ID,60 MeV)..  

 

∆𝐼𝐷,𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚

∆𝐼𝐷,60 𝑀𝑒𝑉
=

∫𝑁𝐼𝐸𝐿(𝐸)𝜙(𝐸)𝑑𝐸

𝑁𝐼𝐸𝐿60 𝑀𝑒𝑉𝜙60 𝑀𝑒𝑉𝐹𝑊𝐻𝑀60 𝑀𝑒𝑉
 Eq. 92 

 

NIELE and 𝜙€ are the energy-dependent non-ionizing energy loss (NIEL) and flux of the proton 

spectrum (transported through any shielding) on orbit, respectively. NIEL60 MeV and 𝜙60 MeV  are 

the NIEL and flux used in the proton irradiation experiment at the radiation testing facility, and 

FWHM60 MeV is the full-width-at-half-maximum energy spread of the proton beam. 

Any ground-based radiation testing program begins with simulation of the radiation environment 

and transport simulation of the radiation spectrum in space. Together, these simulations are used 

to calculate the radiation dose on the detector on orbit. For this purpose, SPENVIS
1
 (and other 

simulation packages, such as SPACERAD
2
) were used. The radiation testing program considered 

both a low Earth orbit (LEO) and an L2 orbit location
3
. Calculations of the radiation environment 

were done using SPENVIS (see Figure 45). The calculations assume a 2015 launch date and five 

                                                 
1
 http://www.spenvis.oma.be/ 

2
 http://www.spacerad.com/ 

3
 http://earthobservatory.nasa.gov/Features/OrbitsCatalog/page2.php 
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year mission duration. The relevant mission parameters for TESS and WMAP, representative of 

the missions at LEO and L2, respectively, were used in the calculations. Because the actual dose 

over the mission lifetime is dependent on the relative phasing between the mission launch date 

and the solar cycle, Figure 45 also shows the expected radiation fluence for the duration of an 

entire solar cycle (Figer, 2010). A solar cycle refers to the 11-year cycling of solar radiation and 

ejection of solar material, which influences space weather and the amount of radiation from the 

sun for the Earth and objects in orbit. The mission in the L2 orbit presents a harsher radiation 

environment than the LEO orbit. 
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Figure 45 – This figure shows the integrated fluence, from indicated energy to infinity, vs particle 

energy at L2 (top) and LEO (bottom), assuming mission durations of 5 years and one solar cycle 

(Figer, 2010). 
 

The radiation spectrum seen by the detector in the radiation environment is used in a radiation 

transport simulation to calculate the ionizing and non-ionizing radiation dose on the detector. 

There are a number of radiation transport packages available, in either SPENVIS or as a 

standalone application, such as Mulassis
4
. The results of the simulation, using Mulassis to 

calculate the radiation dose at the L2 orbit, are shown in Figure 46 (Figer, 2010). The L2 orbit 

                                                 
4
 http://reat.space.qinetiq.com/mulassis 
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presents a relatively benign radiation environment as the expected dose for a 5 year mission is 1 

krad(Si), and for an 11 year mission is 5 krad(Si). To mitigate the uncertainties in radiation 

simulation, a mission duration of 11 years was assumed for the radiation testing, the length of an 

entire solar cycle. In addition to a single solar cycle, a margin of 10, or 50 krad(Si), was 

assumed for the simulated radiation dose on orbit for the case of extreme events or extended 

mission lifetimes. 

 

 

 
Figure 46 – This figure shows ionizing radiation dose for a mission at L2 (top) and 

displacement damage dose expected for a mission at L2 (bottom) (Figer, 2010). 
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3.4 RADIATION TESTING 

Three GM-APD devices were irradiated at Massachusetts General Hospital’s (MGH) Francis H. 

Burr Proton Therapy Laboratory with monoenergetic 60 MeV protons. They were exposed to a 

cumulative dose of 50 krad(Si) in geometrically spaced doses, simulating 10 solar cycles at an 

L2 orbit (assuming a 1 cm Al shield). The dose was calibrated behind a 0.08 in aluminum plate 

to simulate the dewar cover between the detectors and the radiation beam. The energy spread of 

the protons was 6.6 MeV at full-width half-maximum (FWHM), or 2.8 MeV standard deviation 

(assuming a Gaussian fit). This distribution is insignificant to the total dose, given that there is no 

significant difference between 55 MeV protons and 60 MeV protons in terms of dose in silicon. 

The entire testing system was transported and set up at the proton beam facility so that the 

detectors could be tested between radiation doses in a vacuum- and temperature-controlled 

environment. The system was set up so that the detectors were in the beam path inside the dewar, 

with the radiation passing through a thin metal cover, which kept the dewar completely dark. 

Figure 47 shows the setup of the dewar, control electronics, and cooling system used at the MGH 

facilities. Lead bricks were used to shield the control electronics behind the dewar, as well as the 

electronics inside the dewar with strategic placement (see Figure 49). 
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Figure 47 – The experimental setup at MGH is shown. The vacuum pump and dewar were 

shipped from the CfD, the compressor used for the cryogenic pump was borrowed from the 

MGH facility, and the control electronics were shielded behind a wall of lead bricks. 

 

Figure 48 shows the remote control room for the radiation experiments. Due to the danger of 

radiation exposure, the detectors had to be controlled from a remote location. The computer 

shown, called the remote computer, was logged into the computer near the dewar, called the 

local computer. The local computer controlled the detector electronics as well as the periphery 

electronics (power supplies, temperature control, etc.) and had to be physically connected to 
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them. The remote computer was connected to the local computer via a 500 ft. ethernet cable and 

was used to monitor the detector output data in real time during the experiment and note the 

precise start and end times of the radiation beam for each radiation dose. 

 

 
Figure 48 – The experimental setup at MGH is shown. The experiments were controlled 

remotely from a radiation-safe location. 

 

In order to measure the spatial distribution of the radiation dose, radiochromic film was placed 

over the dewar port cover during the experiments. Figure 49 shows the sheet as well as the lead 

bricks used to shield the electronics inside the dewar. 
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Figure 49 – This figures shows a close-up of the radiation testing setup around the dewar port. 

The top image shows a side view, and the bottom image shows the view as seen from the end of 

the radiation beam hardware (see Figure 47). 

 

The radiochromic film was not left on for the duration of the experiment. It was left on during 

the very first radiation dose of 0.1 krad(Si) and then removed. The radiation profile for the first 

dose is a valid measurement of the total radiation profile. Figure 50 shows a greyscale image of 

the radiochromic film and the pixel values along the cut line shown in white. The spatial 

distribution of the radiation beam is within 1.7% across each device and 1.4% between devices. 
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Figure 50 – The exposed radiochromic film is shown after a 0.1 krad(Si) dose (top) with a cut 

line of the value of each pixel marked by the white line (bottom) .The dark dots in the upper 

image note the placement of the screws on the dewar port cover for reference. The sharp edges 

of the radiation exposure are due to the shielding effect of the lead bricks in Figure 49. 

 

Figure 51 shows the in-situ results for the radiation testing of the devices. Data was taken for 20 

minutes (wall time) per detector between radiation doses and overnight after the final radiation 

dose. The detectors were kept cold (~220 K) for the duration of the experiment. After the final 

dose, the electronics suffered some failures, which were likely single-event upsets from the 

secondary neutron scattering. The electronics were reset and reprogrammed before starting the 

final data set, leaving a small gap in the data. 
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Figure 51 – Median DCR vs time over incremental radiation doses is shown for a GM-APD 

device. The radiation dose is marked at the time when the radiation beam stopped for that 

dose. 

 

In Figure 51, some exponential decay occurs in the DCR following each radiation dose, and the 

1
/e lifetime and steady-state DCR appear to increase with increasing dose. After the final 

radiation dose, the data for each detector showed an exponential decay. The measured 1/e 

lifetime for the final data set was 5.28 hours. The temporary rise in DCR immediately following 

a radiation dose is likely due to secondary radiation from the irradiated dewar and system 

components. At lower radiation doses, it is likely that there was a small increase, but that the 

increase was not large enough to detect. The increase in steady-state DCR is likely due to lattice 

damage caused by the proton radiation. Atoms that are dislodged from the lattice structure create 

intermediate energy states and become carrier generation sites.  

There were no detector failures during in-situ radiation testing. However, despite being 

behind a shield of lead bricks, the electronics suffered a single-event upset that resulted in 

the failure of one readout channel on all the detectors. After resetting the electronics, they 

operated normally. The four FPGAs in the control electronics were re-programmed, as a 

precaution, before testing continued. 
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Following the cold in-situ radiation testing, the detectors were warmed to 300 K and brought 

back to the CfD. Cold testing resumed when the DCR reached 99% of the settling point, 

calculated with an exponential decay function. Figure 52 shows warm data, taken with the same 

settings as when the detectors were cold. 

 

 
Figure 52 – This figure shows median DCR vs time at room temperature for one of the GM-

APD devices. 

 

The 
1
/e lifetime of the DCR decay at room temperature in Figure 52 is ~66.5 hours. Unlike the 

decay in in-situ radiation data, the decay at room temperature was likely due to annealing, or 

self-healing, of the lattice using energy from increased temperature. Because the crystal lattice 

structure of a material represents the least amount of potential energy stored in the material, 

atoms that are dislocated from the lattice will move back into position to rest in the lowest 

potential energy state. Over time, the DCR will approach a new steady-state value, which will be 

higher than pre-radiation levels because some lattice damage will not anneal at room 

temperature. Once the DCR settled, the detectors were cooled. Over the course of three weeks, 

DCR data was taken at multiple temperatures in four separate experiments. Figure 53 shows the 

results from these four runs overlaid on the same plot. The mean percent standard deviation 
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between the DCR data points at each temperature was ~1%. This consistency verified that the 

DCR had reached its new post-radiation steady-state level. 

 

 
Figure 53 – This figure shows median DCR vs temperature for a GM-APD detector. Each run 

is a separate experiment in a three week period. 

 

3.5 POST-RADIATION BREAKDOWN VOLTAGE 

The breakdown voltage of all the devices increased by ~1.5 V after irradiation. This increase 

corresponds to a ~4.5% increase in absorber resistivity due to radiation damage, calculated based 

on the dimensions and doping profiles of the pixels as presented in the introduction to section 3. 

As atoms in the silicon lattice become displaced by radiation damage, the resistivity of the bulk 

material increases
 
(Li, 2002). The applied voltage in a GM-APD is across the entire diode 

structure, so the voltage is divided between the multiplication and absorption regions (see Figure 

38). The absorber region sustains more damage because of its larger volume. If the resistance of 

the absorber region significantly increases after irradiation, less of the applied voltage falls 

across the multiplication region, and more applied voltage is necessary to achieve the critical 

electric field necessary for breakdown. 



 

 

 

 

120 

 

To match the testing conditions of the pre-radiation characterization, post-radiation testing at 

2.0 V was done. The post-radiation DCR of the devices were measured at 2.0 V overbias and 

0.5 V overbias and the results are shown in Figure 54. At 2.0 V overbias, the DCR was very high 

(nearly 200x higher at 150 K) and dominated by afterpulsing, especially at temperatures below 

200 K. 

 

 
Figure 54 – Post-radiation DCR results for S47 are shown with an overbias of 2.0 V and 0.5 V. 

The hold-off time for each run was 5 ms unless otherwise noted. The DCR for the higher 

overbias results at temperatures below 200 K are significantly affected by afterpulsing. 

Afterpulse testing results for the 0.5 V overbias confirm that afterpulsing does not affect the 

DCR at a hold-off time of 5 ms. 
 

The 2.0 V overbias results are significantly affected by afterpulsing at temperatures below 

200 K, even at hold-off times of 10 ms. The increase in DCR at colder temperatures implies that 

there are many traps with long lifetimes. There was no measured improvement between hold-off 

times of 5 ms and hold-off times of 10 ms. This result implies that the trap lifetimes of the device 

are much longer than 10 ms. 

In order to measure the afterpulse probability, data must be taken at a hold-off time long enough 

to assume there is no afterpulsing. In the post-radiation case at 2.0 V overbias, the longest hold-
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off time required may be on the order of 1 s. Measuring the afterpulsing with hold-off times 

longer than 1 s is not practical using the standard method (described in section 3.8); a single data 

set at one temperature would take over 11 days.  

Given the length of the trap lifetimes expected at 2.0 V overbias, it was reasonable to assume 

that the effects of afterpulsing could be measured in a persistent charge experiment. In this 

experiment, the detectors are illuminated so that the avalanche probability is 1, and then the light 

source is shut off while data collection continues. Figure 55 shows the persistent charge results 

for an overbias of 2.0 V. 
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Figure 55 – Post-radiation persistent charge results for S47 are shown with an overbias of 

2.0 V. The 
1
/e lifetime of the post-illuminated decay in the settling data is ~6 minutes. 

 

The post-radiation persistence at 2.0 V overbias is significant with a 
1
/e lifetime of 5.8 minutes at 

116 K. This level of persistence makes operation of the device at 2.0 V overbias impractical. 

Therefore, after 50 krad(Si) of radiation, the device was operated at a lower overbias setting of 

0.5 V. Because dark exposures could not be taken with zero afterpulsing probability, post-
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radiation results at 2.0 V overbias are not possible for the DCR, afterpulsing, IPS, PDE, or 

crosstalk experiments. Instead, the post-radiation results below are presented for an overbias of 

0.5 V. While the comparison is not ideal, an overbias of 2.0 V would not be viable for testing or 

for general operation. A 0.5 V overbias in the post-radiation data represents the realistic 

operating conditions for a device with a 50 krad(Si) radiation dose. 

3.6 READ NOISE 

The read noise for the GM-APD array devices is expected to be zero due to the way in which 

signal is stored and read out. The pixel signal is stored in an in-pixel counter that increments 

when an avalanche occurs (see Figure 25). A pixel can only be in one of two states: avalanched 

or not avalanched. The state of counter is read out by a digital circuit and no estimation is 

required. Therefore, there is no estimation noise, and there should be no noise in the transfer of 

the signal. 

To verify that there was no read noise, the output of each pixel was artificially set to either a 1 or 

a 0 and read out. In pre-radiation testing, there were zero instances of a false output out of 10,000 

trials for each of the 256 x 256 pixels in an array. This demonstrates the read noise is less than 

one count per 6.55 x 10
8
 reads before radiation. No post-radiation testing was done, but the 

nature of the threshold circuit and robustness of the pre-radiation testing suggests that there 

would be no affect due to radiation damage. 

3.7 DCR  

DCR is the rate of counts generated in the absence of light. In this report, DCR is corrected for 

dead time and the experiments to measure it are designed to minimize counts from afterpulsing. 

As such, the DCR is expressed as electrons/s/pixel (Hz). The necessary exposure time was set by 

calculating the number of gates required for the desired SNR. The SNR of a measurement is 

proportional to the square root of the total number of gates. With this in mind, the number of 

gates was set to 1 million, equivalent to an exposure time of 10 s, and the experiment was done 

in a light-tight dewar. The minimum SNR for the entire DCR experiment was 14 using these 

settings for the DCR levels measured. 
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The probability of an avalanche in a single gate (P) is the number of avalanches divided by the 

number of gates. Since the rate at which electrons enter the multiplication region is Poissonian, 

the Poisson probability model can be used to solve for the mean electron flux, given P and tgate. 

Eq. 93 shows the relationship between P, tgate, and the DCR (λe). Note that Eq. 93 cannot be used 

if the afterpulsing probability is not zero. Afterpulse counts are not Poissonian, and so they 

cannot be included in λe. The statistics regarding the characterization of afterpulsing are 

discussed in the next section. 

  

𝑃 = 1 − 𝑒−𝜆𝑒𝑡𝑔𝑎𝑡𝑒 

𝜆𝑒 =
−ln(1 − 𝑃)

𝑡𝑔𝑎𝑡𝑒
 

Eq. 93 

 

The expected trend for a silicon device is the doubling of dark current (which is proportional to 

DCR) roughly every 8 K (Fry, 1975), but these devices show doubling roughly every 17 K in 

pre-radiation testing. This shallow slope may be caused by biasing effects, or it may be cause by 

dark carrier generation sites with low activation energies (as might be caused by backside defects 

introduced in the thinning process – see section 6.5). Although the bias is adjusted with 

temperature to account for the change in breakdown voltage (see section 3.1), there is no way to 

know if the adjustment compensates perfectly for the change. Additionally, the breakdown 

voltage for each pixel in a detector array is not uniform. This is likely due to processing non-

uniformity across the wafer, specifically implant depths and doses, as well as local defects in the 

material. This non-uniformity in breakdown voltage, combined with changes in the shape of the 

effective multiplication region due at different biases, leads to uncertainty in the overbias for any 

given pixel.  

Figure 56 shows the pre- and post-radiation DCR results for a GM-APD device operated at the 

same applied bias setting. The pre-radiation testing is at an overbias of 2.0 V and the post-

radiation testing is at an overbias of 0.5 V (see section 3.5). 
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Figure 56 – This plot shows median DCR vs temperature for a GM-APD device, pre- and post-

irradiation. Longer arm periods were used to ensure that afterpulsing was insignificant at 

lower temperatures. 

 

The apparent decrease in DCR at lower temperatures after irradiation is due to the lower overbias 

for the post-radiation data. Because the overbias is lower, the avalanche initiation probability is 

also lower, which reduces the DCR as well as the efficiency. The post-radiation DCR curve is 

shifted down by a factor proportional to the decrease in avalanche initiation probability at all 

temperatures. It is important to note that, even at a reduced overbias, the post-radiation DCR is 

still greater than the pre-radiation DCR at temperatures above 165 K. 

3.8 AFTERPULSING 

Afterpulsing is an increase in count rate following an avalanche in the same pixel. Afterpulsing 

is often caused by traps, which are energy levels that exist only around material defects in the 

detector material. Instead of being collected, charge becomes “trapped” in these energy states 

and released a random amount of time later. Afterpulsing increases the measured DCR and 

decreases the SNR. Afterpulsing probability (paft) can be measured experimentally by observing 
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individual gates (Itzler, et al., 2012; Jensen, et al., 2006), but the operation of these devices is not 

conducive to that method.  

Here, Paft is calculated by comparing measured DCR at various hold-off times. At hold-off times 

that are much longer than the trap lifetime of traps in the detector, afterpulsing probability is near 

zero. By taking data at a very long hold-off time, the measured DCR (λe) at that hold-off time 

can be assumed to be unaffected by afterpulsing. The afterpulsing probability at shorter hold-off 

time settings was determined using a theoretical model for avalanche probability and λe. In this 

case, afterpulsing probability (paft) is the probability of an afterpulse carrier initiating an 

avalanche during a gate, given an avalanche in the previous gate. This model assumes that the 

state of a gate is only dependent on the state of the gate immediately before it. This assumption 

allows for the representation of avalanche probability (P) for each gate in an infinite series 

(n=0,1,2,…). With the use of the Maclaurin series identity, that infinite series simplifies to the 

closed-form solution in Eq. 94. It is important to note that Eq. 94 assumes that there are no 

incident photons, though it would be possible to calculate paft if the photon signal were constant 

by substituting (PDE·λp+ λe) for λe. 

  

𝑃 =
1 − 𝑒−𝜆𝑒𝑡𝑔𝑎𝑡𝑒

1 − 𝑝𝑎𝑓𝑡𝑒
−𝜆𝑒𝑡𝑔𝑎𝑡𝑒

 

𝑝𝑎𝑓𝑡 =
1 − 𝑒𝜆𝑒𝑡𝑔𝑎𝑡𝑒(1 − 𝑃)

𝑃
 

Eq. 94 

 

Recall Figure 27, which shows that the change in avalanche probability is not linearly 

proportional to afterpulsing probability. The figure shows avalanche probability (P) vs. gate 

fluence for various values of paft. Gate fluence is the number of electrons per pixel per gate that 

could initiate an avalanche. The avalanche probability values are calculated using Eq. 94. Note 

that the avalanche probability converges at small and large gate fluence values. When gate 

fluence is low, any additional avalanches from afterpulsing are unlikely because the avalanche 

probability is very low to begin with. At high gate fluence, afterpulse events are often coincident 

with avalanches that would have occurred because of the gate flux.  
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In the GM-APD array devices, the traps that cause afterpulsing are most likely located in the 

multiplication region. It is the only region that is subjected to high current density during an 

avalanche. There is a smaller probability that traps in the absorption region will also be 

populated, but the trapping of carriers in the absorption region occurs at random times, as 

opposed to during an avalanche, and the carriers are less likely to reach the multiplication region 

and initiate an avalanche than carriers released from traps in the multiplication region. While the 

number of traps in the material remains the same regardless of the overbias, the avalanche 

initiation probability at various positions inside the multiplication region increases with 

increased electric field. Traps positioned at the boundary of the avalanche region, near the 

implant that separates the multiplication and absorption regions (see Figure 38), will release 

carriers with a higher avalanche initiation probability than traps near the middle of the 

multiplication region. Although traps will likely be populated during an avalanche regardless of 

location, the released carriers will have limited impact if the location decreases the avalanche 

initiation probability. However, with increased overbias, the electric field in the multiplication 

region increases so that carriers released further towards the middle of the region have a 

significant avalanche initiation probability. This leads to a large increase in afterpulsing 

probability with a higher applied overbias. 

Since afterpulsing was too high to measure at 2.0 V overbias post-radiation, the afterpulsing 

probability results after irradiation are shown for an overbias of 0.5 V. Afterpulsing probability 

decreases with decreasing avalanche initiation probability and therefore with decreasing 

overbias. Figure 57 shows Paft vs tho, pre- and post-irradiation. 
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Figure 57 – Median afterpulsing probability vs hold-off time is shown for various 

temperatures. The plot on the left shows pre-radiation results, and the plot on the right shows 

post-radiation results. 

 

It is important to note that measurements of the afterpulsing probability in excess of ~0.1 are not 

physically possible with the model used (see section 2.6.3). This means that measurements in 
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excess of paft = 0.1 imply that the effects of traps extend beyond a single arm period. In these 

cases, the afterpulsing cannot be corrected in the estimate of the signal, and the detector should 

not be operated at the hold-off times that correspond to paft > 0.1. For paft ≤ 0.1, the 

measurements are valid for a single arm period. An increase in the measured afterpulsing 

probability indicates an increase in the actual afterpulsing probability, but the exact afterpulsing 

probability is indiscernible with the current model. When the state of a gate depends on 

avalanches more than one gate prior, the Markov chain model is no longer applicable.    

The decrease in afterpulse probability at the shortest hold-off time in the pre-radiation results is 

not likely due to any physical phenomenon, but is more likely a result of an experimental 

inconsistency. The afterpulsing probability is very sensitive to small changes in avalanche 

probability when the measured probability is so high. 

Paft increased at all temperatures after irradiation, even at the lower overbias. After irradiation, a 

new trend emerged in which paft increased at temperatures above 183 K with a nearly exponential 

slope. The minimum tho required to avoid afterpulsing was 1 ms before irradiation. After 

irradiation the minimum tho was 1 ms below 183 K and 5 ms for warmer temperatures. For tho up 

to 10 ms, there was no discernible decrease in post-radiation afterpulsing probability at 0.5 V 

overbias. 

The increase in afterpulsing probability at warmer temperatures may be due to self-emission re-

triggering: photons emitted during the avalanche are reabsorbed in the same pixel and trigger an 

avalanche during the next gate. It stands to reason that crosstalk may also be higher at shorter 

higher temperature, though an analysis of crosstalk at multiple temperatures was not done. 

Future iterations of device design would benefit from such a study. 

3.9 IPS  

IPS is the PDE as a function of 2D location inside a pixel. Ideally, the IPS function would be 1 

across the entire pixel, but for the GM-APDs tested, the active area is concentrated at the center 

of each pixel and can be modeled as a 2D Gaussian function. IPS was measured by projecting a 

small pinhole image, with a FWHM of 4.1 μm, onto the detectors. The focal spot size was 
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measured outside of the dewar using a knife-edge test, and the focal spot size inside the dewar 

was simulated using a program called OpticalRayTracer.
5
  

A homing routine was run before each scan to center the laser on the pixel of interest. The spot 

was moved through a 2x2 pixel grid of 2.5 μm steps, with exposures at each grid location. It was 

important to keep the exposures short to avoid spot drift due to the heavy load on the linear stage 

motors (see Figure 58). The measured IPS function was de-convolved with the expected laser 

spot size to calculate the actual IPS function of the pixel. Reported values for fill factor and 

FWHM are calculated from IPS functions corrected in this manner.  

The pre-radiation IPS data was taken at an overbias of 2.0 V, and the post-radiation IPS data was 

taken at an overbias of 0.5 V. No change in IPS due to radiation damage was expected. The 

shape of the implants and the electric field inside the pixels would not change with the uniform 

damage introduced by radiation. IPS is normalized to the peak sensitivity, and reflects only the 

efficiency as a function of location. 

 

                                                 
5
 http://arachnoid.com/OpticalRayTracer/ 
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Figure 58 – The testing setup at the CfD for measuring IPS is shown. During experiments, a 

light-tight box is placed over the entire assembly. On the top, the full setup is shown: three 

linear stages, mounted orthogonally, are secured to a support structure that allows the laser 

spot to scan across a detector inside the dewar. On the bottom, a close-up of the objective lens 

is shown scanning across a detector behind the dewar window. 
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Figure 59 shows the measured IPS of two pixels on one detector. Note that the scan area is 2x2 

pixels, but each plot only shows the signal from one pixel (outlined).  

 

 

 
Figure 59 – Sample IPS results from pixels on a GM-APD detector are shown. The centers of 

the pixel are inside the central contours. The upper plot shows pre-radiation results, and the 

lower plot shows post-radiation results. There is no statistically significant difference between 

the FWHM values. The boxed outlines show the pixel boundaries. 

 

The raw measured data at each scan location was dark-subtracted and normalized to the peak 

signal. At this point in the data reduction, the measured IPS is spatially convolved with the laser 
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spot. In order to correct for the convolution, the laser spot profile (assumed to be Gaussian with a 

FWHM of 3.8 μm) and the measured IPS function were converted to Fourier space. In Fourier 

space, a spatial convolution becomes a frequency-domain multiplication. A simple division of 

the Fourier transforms of the measured data by the laser spot frequency data results in the Fourier 

transform of the de-convolved IPS data. A reverse Fourier transform is applied to the de-

convolved frequency data to yield the de-convolved spatial IPS function. The equation used for 

the de-convolution is shown in Eq. 96, IPSde-convolved(x,y) is the de-convolved IPS function, 

IPSconvolved(x,y) is the as-measured IPS function (normalized and centered), and Laser(x,y) is the 

laser spot profile. ℑ{} is the Fourier transform operator, and ℑ-1
{} is the inverse Fourier 

transform operator. 

  

𝐼𝑃𝑆𝑑𝑒−𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒𝑑(𝑥, 𝑦) = ℑ
−1 {

ℑ{𝐼𝑃𝑆𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒𝑑(𝑥, 𝑦)}

ℑ{𝐿𝑎𝑠𝑒𝑟(𝑥, 𝑦)}
} Eq. 95 

 

The pre-radiation FWHM was 10.2 μm ± 5 μm, and the post-radiation FWHM was 

11.7 μm ± 1.3 μm. The pre- and post-radiation FWHM values are not statistically different. The 

size of the laser spot is highly dependent on the focus, so it is likely that the variance in FWHM 

is a function of the variance of the spot size when moving the spot projector and re-focusing. The 

mean pre-radiation fill-factor was 18.7% and the mean post-radiation fill-factor was 24.2%. 

3.10 PDE 

PDE is the inferred photo-generation rate divided by the incident photon rate. The GM-APD data 

presented here is for a LFF architecture, which limits PDE. This performance is not 

representative of what is expected for detectors optimized for imaging applications, which have a 

peak PDE of ~15% (Figer & Kolb, 2014). Additionally, the PDE was measured at a moderate 

overbias (2 V) to limit DCR – a higher applied overbias would result in higher PDE. The PDE of 

a device is very dependent on overbias because overbias increases the avalanche initiation 

probability. Figure 60 shows PDE at 520 nm as a function of overbias. DCR increases with 
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overbias due to increased avalanche initiation probability as well. In order to avoid high DCR, 

PDE was measured with a moderate overbias of 2 V. 

 

 

Figure 60 – PDE (%) vs. overbias for a single pixel is shown for a wavelength of 520 nm. PDE 

increases with overbias until a certain point at which the multiplication region begins to be 

pinched off by the high electric field in the absorber region. 
 

Eq. 96 gives the expression for the number of photo-generated electrons entering the 

multiplication region during a gate that can initiate an avalanche. The expression is a function of 

avalanche probability, DCR, and tgate. The equation assumes that afterpulsing is negligible. 

  

𝑃 = 1 − 𝑒−𝑡𝑔𝑎𝑡𝑒(𝜆𝑝+𝜆𝑒) 

𝜆𝑝 =
−ln(1 − 𝑃)

𝑡𝑔𝑎𝑡𝑒
− 𝜆𝑒 

Eq. 96 

 

A calibrated photodiode (UV-enhanced Si) was used to determine the number of photons 

incident on the detectors. This was done by measuring the flux inside of an integrating sphere 

illuminated by a monochromator. In order to account for changes in flux at the detectors vs. the 
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calibrated photodiode, an experiment was run with two diodes simultaneously: one in the 

integrating sphere position and one inside the dewar at the same position as the detectors (see 

Figure 61). The ratio of photon flux between the two photodiodes was calculated and used to 

estimate the flux on the detectors based on the diode readings inside the integrating sphere.   
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Figure 61 – The detector replacement calibration setup is shown. On the top, the calibrated 

diode can be seen mounted inside the dewar at the same height and location as the detectors 

when mounted. On the bottom, the diode as seen from the outside of the closed dewar is shown. 
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Eq. 97 shows the expression for PDE in terms of λp (photoelectrons/gate/pixel), SD (diode signal 

in photons/s/mm
2
), K (the ratio of photons incident on the detectors to photons incident on the 

calibrated diode in the integrating sphere), Apix (the area of a pixel in mm
2
), and tgate. 

  

𝑃𝐷𝐸 =

𝜆𝑝
𝑡𝑔𝑎𝑡𝑒 ∙ 𝐴𝑝𝑖𝑥

𝑆𝐷 ∙ 𝐾
 Eq. 97 

 

For each new wavelength setting, the mechanical parts of the monochromator move, which 

causes the background light level to change at each wavelength. Therefore, dark exposures were 

taken at each wavelength setting to account for the changes in background light level. Λe was 

calculated from each dark exposure and subtracted from the total number of electrons detected to 

calculate λp as in Eq. 96. Eq. 97 was then used to calculate the PDE for each pixel. 

The maximum SNR occurs at P=0.797, which can be arranged by setting the gate time, assuming 

that the photon flux is constant for all gates. In order to ensure statistically relevant results, the 

gate time was optimized for four separate wavelength intervals based on the signal level 

expected at the detectors. Choosing a minimum SNR of 3, minimum and maximum gate times 

were calculated using extrapolated values for photon flux, PDE, and DCR from a preliminary 

experiment. Figure 62 shows the ideal gate time vs. wavelength for the pre-radiation PDE 

experiment, which was repeated for the post-radiation experiment, but is not shown. The 

minimum and maximum gate times at each wavelength are the error bar bounds. The green line 

shows the gate times that were chosen for the experiment. 
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Figure 62 – This plot shows the ideal gate time (solid black line) vs. wavelength for the pre-

radiation PDE experiment. The ideal gate time gives an avalanche probability of 0.797 per 

gate. The minimum and maximum gate times (error bars) are calculated by assuming a 

minimum SNR of 3, with a minimum allowable gate time of 1 μs. The stepped line shows the 

chosen gate times at each wavelength for the experiment. 
 

Figure 63 shows the expected SNR vs. wavelength for the PDE experiment. The expected SNR 

is calculated using the chosen gate time values from Figure 62 and extrapolated values for 

photon flux, PDE, and DCR from a preliminary experiment. Some data points for S47 fall below 

an expected SNR of 3 at wavelengths less than 400 nm because S47 has higher DCR than the 

other two detectors. The same gate time setting is applied to all three detectors, even though they 

each have different DCR levels, and the gate times chosen yield greater than an SNR of 3 on 

average. 
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Figure 63 – This plot shows the expected SNR vs. wavelength for each of three GM-APD 

detectors (pre-radiation). Expected SNR is calculated based on chosen gate times and 

extrapolated values for photon flux, PDE, and DCR from a preliminary experiment. 
 

Figure 64 shows the median pre- and post-radiation PDE of a GM-APD device for a range of 

wavelengths at the same applied bias and temperature (130 K). The results are corrected for 

transmission loss at the detector surface (see Figure 39). The short-wavelength cutoff was 

~480 nm in pre- and post-radiation results. The peak PDE occurred at 730 nm, and was 

0.27% ± 0.03% before irradiation, and 0.19% ± 0.002% after. In pre-radiation testing, 46% of 

pixels were within 10% of the median and 7% were dead or hot pixels. In post-radiation testing, 

55% of pixels were within 10% of the median and 8% were dead or hot pixels. The decreased 

sensitivity after irradiation is likely due to the shift in breakdown voltage discussed in section 

3.1. The PDE experiment was repeated after adjusting the applied bias to reflect the new 

breakdown voltage. The PDE at 730 nm was 0.25% ± 0.0002%, which is not statistically 

different from pre-radiation results. 



 

 

 

 

140 

 

 

 
 

Figure 64 – This figure shows pre- and post-radiation PDE (%) vs wavelength for a GM-APD 

detector. 

 

Post-radiation PDE was measured at 2 V overbias at 0.25% ± 0.001%. It is important to note 

that afterpulsing probability is not well-characterized at 2 V overbias, though it is high. 

Therefore, the measured PDE is likely an underestimate, given that the probability of additional 

counts due to afterpulsing is higher for lower count rates (dark measurements) than for high 

count rates (illuminated measurements). If corrected for afterpulsing, the PDE might increase to 

the 0.27% of pre-radiation levels, though it is not statistically different from the pre-radiation 

PDE without correction. 

The PDE presented in Figure 64 is not corrected for fill factor, and is equivalent to the mean of 

the sensitivity over the entire pixel. The measured PDE would be much higher if the signal were 

concentrated in the center of the pixel (e.g., by a microlens
 
(Itzler, et al., 2010)). The IPS 

function and the measured PDE were used to calculate the sensitivity at the center of the pixel. 

The pre- and post-radiation peak sensitivity at 730 nm were 1.3% and 0.7% (1.2% for the bias-

corrected results), based on the IPS functions in section 3.9. 



 

 

 

 

141 

 

3.11 CROSSTALK 

Crosstalk is the correlation of events in neighboring pixels. To measure crosstalk, the IPS 

experiment was updated to minimize the impact of the laser spot size on the result. Since the 

laser spot size is smaller than the pixel size (even when slightly out of focus) crosstalk was 

measured as the nearest neighbor trigger probability when the laser spot was focused on the 

center of the pixel. The laser had a wavelength of 632 nm and was pulsed at 40 MHz, averaging 

400 pulses per gate. 

Crosstalk probability was not expected to change due to radiation damage. Like IPS and PDE, 

crosstalk is a function of the internal structure of the GM-APD pixels. Since the structure itself is 

not affected by radiation damage, it is unlikely that radiation damage would induce any change 

in crosstalk probability. 

The devices showed very low crosstalk probabilities before irradiation, with a mean nearest 

neighbor crosstalk probability 0.44% ± 0.23%. The post-radiation crosstalk probability was 

0.49% ± 0.17%, which falls within the range of pre-radiation crosstalk probability. Pre- and 

post-radiation crosstalk probabilities are not statistically significant. 

For crosstalk generated by avalanche emission, wavelength does not influence crosstalk 

probability. As long as the photo-generated carrier initiates an avalanche, the photon emission 

from the avalanching carriers will follow the same distribution. For crosstalk due to insufficient 

electrical isolation between pixels (e.g., a weak electric field), shorter wavelengths absorbed 

closer to the back side may be more likely to find their way to an adjacent pixel. This type of 

crosstalk is the most likely cause of crosstalk in the LFF devices because of the small volume of 

the multiplication region. The low level of crosstalk measured is likely due to insufficient 

electrical isolation, and is mitigated by the scupper regions that surround each pixel’s active area 

(see Figure 38). These regions prevent carriers that are generated outside of the active region 

from initiating an avalanche. 

Poor optical and electrical isolation can result in very high crosstalk, as was seen in HFF devices 

when tested at the CfD. Nearest neighbor firing probabilities of ~2% were measured (after 
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background subtraction), most likely due to optical crosstalk as a result of large avalanche 

volumes. Figure 65 shows crosstalk probability as a function of pixel location from a central 

pixel that fires (Figer & Kolb, 2014). The point spread function extends with significant 

afterpulsing probability up to 3 pixels away from the firing pixel at low overbiases (shown). At 

higher voltage settings, group firing occurs, where large blocks of pixels fire with very high 

probability, as the optical crosstalk propagates during a gate. 

 

 
Figure 65 – This figure shows crosstalk probability as a function of distance from the central 

pixel (in black). Crosstalk probability was calculated using a correlation matrix method from 

individual gate data (Figer & Kolb, 2014). 

 

3.12 GM-APD PERFORMANCE SUMMARY 

For the 1 solar cycle post-radiation interpolated values, the effects of radiation on PDE are 

considered to be linear and the relative trend in DCR is assumed to be the same as in pre-

radiation measurements. The post-radiation results presented in previous sections represent a 
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cumulative radiation dose of 50 krad(Si), or 10 solar cycles at an L2 orbit. Based on in-situ 

radiation testing, extrapolated performance after 1 solar cycle, 5 krad(Si), are also included in 

simulations. For all simulations, tgate = 300 μs and λ = 730 nm. The duty cycle is calculated by 

assuming that tho is the minimum required to avoid afterpulsing at the optimum operating 

temperature. 

 
Table 3 – SNR characteristics for a GM-APD device at various radiation levels are shown. 

Parameter Pre-Radiation Value 
Post-Radiation Value 

(1 solar cycle) 

Post-Radiation Value 

(10 solar cycles) 

DCR (Hz) 38.2 50.7 17.4 

PDE (%) 0.3 0.3 0.2 

Duty Cycle (%) 96.8 96.8 85.7 

Optimum Operating 

Temperature (K) 
160 160 140 

 

The effective overbias for the post-radiation data at 10 solar cycles is 0.5 V, which is why the 

DCR is lower than the other two radiation levels. For reference, at the same temperature and 

overbias, the pre-radiation DCR was 5.9 Hz. This means that the DCR at those settings increased 

by 11.5 Hz after 10 solar cycles of simulated radiation, or 2.3 e
-
/s/pix/krad(Si). 

Figure 66 shows the expected SNR for pre- and post-radiation performance characteristics. The 

projected SNR of a detector at a specific fluence helps determine if the detector could be used for 

a given application. 
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Figure 66 – This figure shows pre- and post-radiation SNR of a GM-APD for a 1000 s (wall 

time) exposure. The SNR is normalized to the maximum relative SNR before irradiation. 
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4 EMCCD TESTING 

The EMCCD testing was done at NASA JPL under the direction of Dr. Shouleh Nikzad. The 

device was the e2v CCD201, which is being considered as a possible candidate for the WFIRST 

mission (NASA, 2014). Figure 67 shows a schematic of the device, including an overview of the 

active area and readout elements (e2v technologies, Nov. 2011).  

 

 
Figure 67 – This schematic shows the layout of the e2v CCD201 EMCCD chip (e2v 

technologies, Nov. 2011). 

 

The device can be read out in two different ways. The first is through the standard output amp 

after the transfer register at the bottom of the store section. The second is through the 
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multiplication register, which is shown beneath the transfer register and has 604 multiplication 

elements or stages. Effectively, the signal is either read out through a standard output amplifier 

or it is routed through a multiplication register and then to another output amplifier. The voltage 

across each stage in the multiplication register is set by RØ2HV, a high voltage clocked input. 

Figure 68 shows the clocking pattern for RØ2HV in relation to the standard register clocking 

signals RØ1, RØ2, and RØ3 (e2v technologies, Nov. 2011). This is the pattern that was used for 

the testing presented, with the maximum amplitude of RØ2HV equal to 42 V. 

 

 
Figure 68 – This figure shows the clocking pattern required to operate the multiplication 

register in high gain mode (e2v technologies, Nov. 2011). 

 

To reduce CIC in the readout stemming from high fields during the rise and fall of the RØ2HV 

signal, a sine wave input can also be used, as shown in Figure 69 (e2v technologies, Nov. 2011). 
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Figure 69 – This figure shows an alternate clocking pattern for reducing CIC in high gain 

mode (e2v technologies, Nov. 2011). 

 

Figure 70 shows multiplication gain as a function of RØ2HV voltage and temperature (e2v 

technologies, Nov. 2011). As the voltage across the multiplication register elements increases, 

the gain increases. Similarly, as the temperature decreases and thermal resistance decreases, the 

gain associated with the same voltage increases. This is similar to the shift in breakdown voltage 

seen in GM-APDs when the temperature changes (see Figure 44). The testing presented here was 

done at 168 K, which is not shown in Figure 70. 
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Figure 70 – The relationship between RØ2HV amplitude, temperature, and multiplication gain 

through the multiplication register is shown (e2v technologies, Nov. 2011). 

 

The EMCCD was read out using LEACH
6
 electronics, developed by Dr. Bob Leach at Astro-

Cam, and coding and clocking developed by Dr. Timothy Goodsall of JPL. 

4.1 EMCCD GAIN CHARACTERIZATION 

In order to measure the gain, the RØ2HV voltage was changed from 12.5 V to 42 V in 9 steps. 

Then, ten frames were taken with varying exposure times from 0.1 s to the shorter of 250 s or the 

90% saturation time. The slope was measured in digital number (DN) per second with a linear fit 

to the mean measured data in a central region of the detector. Figure 71 shows an example of the 

data at a single RØ2HV setting of 37.8 V. 

                                                 
6
 http://www.astro-cam.com/ 
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Figure 71 – This figure shows the mean measured signal from a 300 x 1000 region of pixels in 

the center of the detector as a function of exposure time for RØ2HV = 37.8 V. 

 

Assuming that the multiplication register gain is equal to 1 e
-
/e

-
 at the RØ2HV = 12.5 V setting, 

the mean measured “dark current” in DN/s at each voltage setting can be divided by the dark 

current at the 12.5 V setting to calculate the gain. Figure 72 shows the results from the 

experiment for various values of RØ2HV, labeled as Vreg, assuming that the output from the 

supply voltage scales linearly. Vstage, in mV, is the voltage across each multiplication element in 

the register. The gain does not start to increase significantly until Vreg is greater than roughly 

35 V, and Vstage approaches 60 mV. 
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Figure 72 – This figure shows the measured multiplication register gain as a function of the 

voltage across the register (RØ2HV) and across each stage. 

 

4.2 SERIAL CIC VS GAIN 

As the voltage across the gain register increases, the serial CIC increases as well. Serial CIC is 

caused by high electric fields in the gain register between each stage, and results in tunneling and 

charge injection, even when there is no signal. To measure serial CIC, the values in the overscan 

rows and columns are measured for different gain voltage settings (see Figure 67). The overscan 

regions are extra reads taken when reading out the array. It contains no pixel information, and is 

an estimate of read noise for standard CCDs, and read noise and serial CIC for EMCCDs in high 

gain mode. Figure 73 shows the measured serial CIC at each voltage setting. 
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Figure 73 – This figure shows the measured serial CIC for each gain register voltage setting. 

 

Serial CIC may be generated in any one of the multiplication register stages, and so the carriers 

may be multiplied by the gain in the register. This leads to a wide distribution, characterized by a 

non-Poissonian increase in the variance of the output at high gain settings. Figure 74 shows the 

measured variance of the overscan rows and columns as a function of the multiplication register 

voltage. 
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Figure 74 – This figure shows the measured variance of the overscan region for each gain 

register voltage setting. 

 

In order to avoid counting serial CIC in photon-counting mode, the threshold must be set 

sufficiently high so that a non-detection does not artificially trigger a photon count with any 

significant probability. This condition may become prohibitive at the higher gain values when 

balanced in the overall SNR (see section 2.7.2). 
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5 LM-APD PERFORMANCE 

As discussed in section 2.5, only HgCdTe LM-APD devices are discussed in this paper due to 

their noiseless gain properties. Other detector materials, such as silicon or InGaAs, have an ENF 

due to uncertainty in the gain.  

The sensitivity range of HgCdTe devices can be tuned by engineering the band gap of the 

material. When the ratio of HgTe and CdTe is altered, the band gap decreases with the increased 

presence of mercury (a metal). Given the temperature, T, and a material composition of 

Hg1-xCdxTe the band gap of the device can be described by Eq. 98 (Norton, 2002). 

  

𝐸𝑔 = −0.302 + 1.93𝑥 − 0.81𝑥
2 + 5.35(1 − 2𝑥)𝑇2 Eq. 98 

 

Therefore, the cut-off wavelength varies with both temperature and composition, as shown in 

Figure 79. 
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Figure 75 – The band gap and cut-off wavelength for a HgCdTe device are shown for various 

temperatures and stoichiometric ratios (Norton, 2002). 

 

By tuning the band gap of the absorption and multiplication regions, the device can have 

sensitivity ranging from the visible to the IR. 

5.1 GAIN UNCERTAINTY 

In the ideal case, a deterministic number of electrons will be generated by the avalanche process, 

but there are exceptions that must be taken into consideration when designing the device. 

Electrons travelling the full width of the multiplication region of the device will have a noiseless 

gain as anticipated. Electrons that are generated inside the multiplication region, however, will 

have decreased gain. The gain is deterministic for any given location, since the gain will simply 

scale with the width of the multiplication region that is travelled. The uncertainty in aggregate 

gain comes from uncertainty in the position of the generated electron. 

The photon absorption distribution function is exponentially distributed from the surface of the 

device. For shorter wavelengths, almost all of the photons are absorbed within a short distance 

from the surface because the mean absorption depth is small. For longer wavelengths, the mean 

absorption depth is large, resulting in a flatter distribution and a significant number of photons 
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being absorbed deep in the material. When the distribution extends into the multiplication region, 

the randomly-distributed absorption depth causes uncertainty in the gain for a photon of a given 

wavelength. This noise is exacerbated when using band-pass filters, as photons can have a range 

of wavelengths within the band. The problem is worse at longer wavelengths, as shown in Figure 

76 (Finger, et al., 2013). While the figure shows two different growth styles, the important 

distinction is the difference in the ENF for the K (2.2 μm) and H (1.65 μm) bands in the same 

growth style (MOVPE, or metal-organic vapor phase epitaxy). The ENF for the longer 

wavelength in the K band is higher than for the H band. 

 

 
Figure 76 – This figure shows the excess noise factor, F, as a function of the gain of a HgCdTe 

LM-APD. The highest values of F are for the LPE (liquid phase epitaxy material growth style) 

device in the K-band (2.2 μm). The MOVPE (metal-organic vapor phase epitaxy growth style) 

devices show a difference in F for K and H (1.65 μm) bands, where the longer wavelengths in 

the K band have a higher excess noise factor (Finger, et al., 2013). 

 

One solution to this problem is to increase the optical thickness of the absorption region of the 

LM-APD so that nearly all photons travel the full width of the multiplication region. A thicker 

absorption region will decrease the QE at shorter wavelengths, however, because the electrons 

will have farther to travel to reach the multiplication region before recombining. 
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Another solution is to redesign the structure of the pixel itself. Instead of using the vertical GM-

APD design (see Figure 38), a ring structure can be used to eliminate the effects of wavelength 

on absorption depth and the ENF. This ring structure is common for APD structures in all 

material types, though they are usually used in large-scale, single-element devices. In an imaging 

device, each pixel is built as a set of concentric rings, with the absorption region in the outermost 

ring encircling the multiplication region. Figure 77 shows an example of this structure (Beck, et 

al., 2006). The ring structure minimizes the amount of time required for carriers to reach the 

central depletion region and limits the effects of wavelength-dependent ENF. However, there is 

still an ENF associated with all wavelengths, since photons may still be absorbed in the 

multiplication region and have reduced travel time (and therefore reduced gain). 

 

 
Figure 77 – Top-down and cross-sectional views of a HgCdTe ring APD are shown (Beck, et 

al., 2006). 

 

5.2 TUNNELING CURRENT 

In addition to keeping the ENF low, the leakage current and DCR must be kept low. For 

detectors with long wavelength cut-offs (small band gaps), the thermal dark current is too high to 

use for astronomy applications unless the detector is cooled to cryogenic temperatures. This is a 

fundamental limitation of small band gap devices and is common to all IR detectors. In a LM-

APD, there is another concern due to the high electric field in the multiplication region: 

tunneling. With high electric field and significant trap density, electrons can tunnel through the 

band gap, assisted by a trap energy state in the middle of the band gap (Beck, et al., 2006). 
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Figure 78 shows the relationship between electric field in the depletion (multiplication) region 

and tunneling current (Finger, et al., 2013). 

 

 
Figure 78 – This figure illustrates the relationship between electric field and tunneling current. 

Top left: band structure diagram for a narrow depletion width with high electric field that is 

conducive to tunneling. Bottom left: dark image taken with the device design shown in top left. 

Top right: band structure diagram for a wider depletion region and lower electric field to 

reduce tunneling. Bottom right: dark image taken with the device design shown in top right 

(Finger, et al., 2013). 

 

While some users choose to operate HgCdTe LM-APDs at very high gains (on the order of 

10,000), the benefits of the noiseless gain mechanism are better realized as smaller gains ≤ 100 

due to tunneling current. Tunneling probability decreases exponentially with decreasing electric 

field, which means that decreasing the gain also helps to reduce tunneling noise. There is a 

balance to be struck, however, since the gain must be high enough to make the read noise 
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negligible, or photon counting is not possible. Depending on the readout rate, the read noise 

might be on the order of tens of electrons, which necessitates gain on the order of hundreds.  
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6 CURRENT AND FUTURE STATE-OF-THE-ART 

In order to objectively compare detectors, the state-of-the-art performance for each detector type 

must be defined. CCDs have had a long history of improvement, and as such are a very mature 

technology with very little noise under optimum conditions. CMOS APS detectors are also a 

mature technology with low noise and certain advantages in imaging applications, including a 

non-destructive read out for up-the-ramp sampling. EMCCDs, both analog and photon counting, 

are based on CCD detectors, the main difference being an added multiplication register in the 

readout circuitry. Because EMCCDs are based on an already-mature technology, the CCD, they 

also have low noise in optimum conditions. They are limited in their performance, however, by 

the ENF associated with the gain and the maximum frame rate for a large format device.  

Geiger-mode and linear-mode APDs both make use of avalanche gain, but avalanche noise is not 

a concern for either. GM-APDs make us of a digital readout that detects any self-sustaining 

avalanche. The LM-APDs presented here avoid excess noise due to the avalanche gain by using 

electron injection in HgCdTe, which has noiseless avalanche gain. 

It is important to understand not only the noise source specifications, but the way in which each 

noise source affects the SNR of the detector. Each detector’s state-of-the-art performance is 

outlined below, as well as predictions for future state-of-the-art. 

6.1 CCDS 

Current state-of-the-art CCDs have very low dark current and very low read noise at slower 

frame rates and heavily-sampled signals. Wide Field Camera 3 (WFC3) on HST has dark current 

on the order of 0.0002 e-/s/pixel at standard operating temperature and a minimum read noise of 

just 2 e
-
/frame (Gilliland, et al., 2010; Basden, et al., 2003). Other state-of-the-art CCDs show 

the same low noise (Basden, et al., 2003). The full-well saturation limit for WFC3 is 72,000 e
-
, 

which is typical. Duty cycles of CCDs for long exposures are nearly 100% because the only dead 

time the detector sees during operation is the final readout. For short exposures, if the readout 

time is greater than the exposure time, the detector cannot be read out during the subsequent 
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exposure. This leads to smaller duty cycles. Additionally, faster readouts lead to higher read 

noise that can be 10x greater than the minimum read noise of the detector. 

As array sizes grow, faster frame rates become more difficult to achieve. Pixel readout rates rise 

geometrically with increasing format, but even maintaining pixel readout rates leads to 

geometrically longer readout times. As pixel rates increase, CIC becomes a concern due to the 

high electric fields during the faster clocking, and CTE starts to suffer as well. The solution is 

more parallel channels to read out all the pixels, but data rates eventually become a limiting 

factor as well. What this means for future state-of-the-art is that large-format CCDs will be 

difficult to use for high frame rate applications, even more than they are now. And for noise 

levels, there is not much room left for improvement. Faster reads will exacerbate read noise 

because of reduced sampling capability, and dark current is already at a minimum. 

6.2 EMCCDS 

Analog-mode EMCCDs make use of a multiplication register in the detector read out circuit that 

applies a gain to the signal in each pixel. Due to the nature of the multiplication, an ENF is 

introduced that effectively halves the QE in SNR calculations. However, the read noise 

associated with fast readouts in CCDs and CMOS APS detectors is reduced by a factor equal to 

the gain, making the read noise negligible. Because EMCCDs are based on CCD arrays, they 

have the same low dark current (~0.0002 e
-
/s/pixel) without the higher read noise associated with 

fast readouts.  

Unfortunately, CIC becomes significant at high frame rates. CIC is charge created when signal is 

quickly transferred between pixels, and has noise characteristics identical to dark current. 

Therefore, the dark signal associate with EMCCDs must include both dark current and CIC 

(which add linearly). Typical CIC at high frame rates is 0.003 e
-
/pixel/frame in the array, a 10x 

increase in the total dark signal from CCDs (Basden, et al., 2003). Saturation levels in the pixel 

are not as important as saturation levels in the readout circuitry, which is typically on the order of 

1,000,000 e
-
 after multiplication. With gains ~1000, the saturation of the readout is on the order 

of 1,000 e
-
 before multiplication. Without major innovations in clocking patterns, CIC will 
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continue to be a constraining factor for EMCCDs at high frame rates, eclipsing the read noise 

and the dark current noise. 

Recall that photon counting EMCCDs also use multiplication registers to apply a gain to the 

signal in each pixel of the array. However, instead of using the analog output signal to estimate 

the number of photons absorbed, photon counting EMCCDs use a thresholding circuit to 

determine if there were any carriers in each pixel. This approach is similar to the GM-APD 

thresholding and digital output. If the threshold is set correctly, any read noise and CIC in the 

multiplication register can be ignored and the ENF introduced by the multiplication register gain 

is negligible as well. Therefore, the only remaining noise sources are the dark current and CIC in 

the array, which are the same as the state-of-the-art analog-mode EMCCD detectors (Daigle, et 

al., 2012). Slower frame rates can lead to reduced or negligible CIC, though the frame rate must 

be matched to the signal so the number of photons per pixel per frame is on the order of 1-3. 

Signals in excess of a few photons per frame lead to saturation. Generally, the frame rates 

required for this small signal condition are associated with significant CIC. Therefore, photon 

counting EMCCDs also require a step forward in signal clocking to reduce CIC at high frame 

rates. 

6.3 CMOS APS DETECTORS 

CMOS APS detectors have a non-destructive read out system, where the pixel signals can be 

sampled during an exposure without resetting the pixel. CMOS APS devices are newer than 

CCD devices, and as such the state-of-the-art noise levels are slightly higher than in CCDs, but 

still competitive, especially given the advantages of the non-destructive read out. Dark current on 

the order of 0.02 e
-
/s/pixel are common in infrared detectors for IR imaging and spectroscopy 

(one of the main applications), and minimum read noise levels are on the order of 3 e
-
/read (Bai, 

et al., 2004). Like in CCDs, the read noise increases with increasing frame rates, to 10x the 

minimum read noise and higher. 

With improvements in processing and fabrication, the dark current may decrease, though it is 

near a minimum now in terms of the physical processes that govern carrier generation. Read 

noise still has room for improvement, which might be done through advanced clocking 
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innovations or increased data rates and more parallel processing. However, as with CCDs, read 

noise of less than an electron or two is incredibly difficult to achieve during ideal conditions, and 

certainly not at high frame rates. This is a fundamental function of the sampling required for 

low-noise measurements, and so there is little room for improvement. 

6.4 LM-APD 

LM-APDs, specifically the HgCdTe detectors, have two types of dominant noise. The first is 

multiplied dark current, which is analogous to dark counts in GM-APDs. Dark carriers generated 

in the avalanche structure can be multiplied and counted along with photo-generated charge. The 

second dominant source of noise is un-multiplied dark current, which does not enter the 

avalanche region of the device. The dark current is still counted by the readout system, and adds 

uncertainty to the final signal. A long integration with significant un-multiplied dark current and 

few photo-generated carriers results in significant uncertainty in the number of photons 

absorbed. Although read noise is present in LM-APDs due to the traditional readout structure 

and analog output, it is effectively negligible due to the avalanche gain of the detector. 

There is significant improvement to be made in the leakage current of LM-APD devices, hinging 

mostly on device material quality and fabrication capabilities. When the material quality 

increases, the leakage current should decrease significantly. The DCR will also decrease, and the 

noiseless gain can have more of an impact. 

6.5 GM-APD 

Current state-of-the-art silicon detectors have dark current on the order of 8 e-/s at room 

temperature (Jackson, et al., 2002), achieved through various processing and design 

improvements. Efficiency in other GM-APD devices is near 80% (Renker & Lorenz, 2009). 

Although the first-generation devices had significant noise and very low efficiency, a few 

simple, targeted improvements would greatly improve their performance. As alluded to in 

section 3.10, a microlens array would greatly improve PDE by focusing incident photons in the 

center of the pixel. However, re-designing the internal device structure would lead to the most 

significant gains in performance.  
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As designed, the scupper region in Figure 38 mitigates DCR at the expense of efficiency. 

Carriers generated by photons in the absorption region have a significant probability of moving 

to the scupper region. However, the scupper would no longer be necessary if the dark current 

were not so high. The high dark current in these devices is due to a number of factors, including 

damage introduced by thinning the detector. Improving the dark current would eliminate the 

need for the scupper region and allow the efficiency to increase to the levels seen in other GM-

APD devices, near 80% (Renker & Lorenz, 2009). Increasing the quality of the material will also 

lead to a decrease in afterpulsing. Ideally, there should be no traps, and therefore no afterpulsing, 

in a majority of the pixels. 

The DCR in the first-generation devices was also high, even when cooled. This suggests that the 

dominant noise source is not thermally-generated dark current due to the shallow decrease in 

DCR with decreasing temperature. Other noise sources, such as trap-enhanced tunneling current 

and surface defect-generated current, are not temperature-dependent and would keep the noise 

floor high. For the devices presented in section 3, the noise floor seems to be caused by backside 

defects introduced during the thinning process. This conclusion is based on testing of an un-

thinned device. As shown in Figure 79, the noise floor for the un-thinned device is much lower 

than for the thinned device. The DCR at 150 K is three orders of magnitude lower for the un-

thinned device. 
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Figure 79 – This plot shows the median DCR for an un-thinned GM-APD array device and a thinned 

device presented in section 3. The DCR at warmer temperatures (above 175 K) for the un-thinned 

device doubles every 8 K, which is expected for thermally-generated DCR. 
 

Silicon on insulator (SOI) fabrication of devices would improve GM-APD performance in three 

ways: decreased damage at the back surface, increased radiation tolerance, and decreased power 

dissipation. Rather than using a mechanical thinning process to thin the wafer before dicing (and 

introducing damage to the back surface), SOI processing allows for a more gentle removal of the 

substrate. This leads to a large decrease in current generation at the back surface. The use of SOI 

processing also has major advantages with respect to radiation effects, as compared to processes 

that use bulk silicon wafers. This is because the volume of the APD absorber layer can be made 

much smaller than that in bulk CMOS, thereby reducing the cross section to radiation and the 

resulting radiation damage.  

SOI-based APD structures would have another advantage for the hybridized detector as a whole, 

as well. Thinner absorber and multiplication regions require less applied voltage to provide the 

electric field required for avalanche breakdown. This would make the devices more compatible 

with low-voltage SOI CMOS circuits, since commercial SOI CMOS readout circuit technologies 
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generally have more limited voltage swings than bulk processes. A low-voltage-optimized APD 

paves the way for scaling to low-voltage CMOS, making many of the SOI technology nodes 

viable for this application, and, therefore, enabling very radiation-hard focal planes.  

Lower volume also has the added advantage of lower DCR, since thermal carrier generation is a 

function of volume, and lower crosstalk probability. When designing GM-APDs, care should be 

taken to keep the volume of the multiplication region as small as possible. Increased volume 

leads to more carriers participating in each avalanche. This increases optical crosstalk between 

pixels, which has been measured in devices that have large multiplication regions. Figure 80 

shows the effect that high optical crosstalk can have on a pixel’s signal (Aull, et al., 2015). A 

smaller multiplier volume means smaller avalanches, which results in less optical crosstalk. 

 

 
Figure 80 – This plot shows avalanche probability vs hold-off time for a GM-APD with high optical 

crosstalk probability. The data is fit with a rate model equation that takes the geometry of the devices 

and the avalanche photon emission spectrum into account (Aull, et al., 2015). 
 

Significant optical crosstalk leads to large groups of pixels firing during a single gate, which 

makes signal estimation nearly impossible. In order to mitigate the effects of a larger 

multiplication area, which must occur if the active area is expanded, optical isolation trenches 

should be added between pixels. 
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7 DETECTOR COMPARISON AND CONCLUSIONS 

Which is the best photon counting detector? To answer that question, all the strengths and 

weaknesses of each detector type should be considered as a whole for various applications. The 

best detector for AO will likely not be the best detector for photon-starved astronomy – not only 

because of different strengths and weaknesses, but because the strengths and weakness of each 

detector changes based on how it is operated. The following sections aim to compare CCDs / 

CMOS APS, EMCCDs, and GM-APDs both generally speaking and under specific conditions. 

LM-APDs are not included in this discussion due to their current limitations. It is unclear 

whether or not the dark current or leakage current can be reduced to make the LM-APD 

competitive at this time. Further, the development of the readout electronics has been stalled as 

of this writing due to the noise levels and ADC saturation triggered by noise alone, even for short 

exposures. At this time, the HgCdTe LM-APD requires further development to make realistic 

prognostications about its future use in photon counting applications. 

Broad comparisons can be made about each detector to establish their unique characteristics, 

including saturation behavior, frame rate limitations, and radiation tolerance. Relative SNR vs 

fluence is a comparison tool that combines a variety of performance characteristics into a 

convenient, single metric. And as discussed previously in section 3.12, different pixel 

architectures are affected differently by radiation damage. 

7.1 RADIATION TOLERANCE 

CCD- and CMOS-based detectors experience increases in dark current after radiation damage 

from two main sources: bulk damage and ionization effects. (Janesick, et al., 1989) The latter 

source is caused by damage at the surface of the devices at the silicon/insulator interface. In GM-

APDs, this type of damage does not affect the DCR because the avalanche initiation probability 

for carriers generated at the surface of the device is effectively zero. The bulk damage is mostly 

comprised of deep-level defects (lattice displacement), which act as generation / recombination 

centers in the material. Carrier generation at deep-level defect sites requires thermal energy, and 
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is very sensitive to changes in temperature – the generated current increases exponentially with 

temperature. 

It is important to note that EMCCDs are more susceptible to radiation damage than traditional 

CCDs (Hadwen, et al., 2004; Smith, et al., 2006; Pool, et al., 2005). This is due to radiation-

induced energy states between the valence and conduction bands near the high field regions of 

the gain register elements. After exposure to 5 krad(Si) in high energy protons, the sum of the 

induced dark current in the output and gain registers is 0.4 e

/gain element/pixel for a nominal 

read rate of 11 MHz at 20 C (Robbins, 2009). 

At 160 K, the increase in DCR after one solar cycle (11 years) was 12.5 e-/s/pix.  In contrast, an 

x-ray detection CCD device on board the ASCA satellite (with similar shielding) experienced an 

increase of 0.8 e-/s/pix/yr, which would extrapolate to an increase of 8.8 e-/s/pix after one solar 

cycle (a rate of increase of 1.8 e-/s/pix/krad(Si), assuming that the measurement window was 

representative of the flux distribution for the entire solar cycle). (Yamashita, et al., 1997) While 

the CCD experiences less radiation damage, the GM-APD is not susceptible to surface-generated 

dark current. This gives it the potential to surpass the CCD’s radiation tolerance with some 

design improvements. In addition to an increase in dark current, however, the CTE for CCD-

based devices decreases significantly after irradiation (Mori, et al., 2013; Janesick, et al., 1991; 

Noeske, et al., 2012). These radiation effects are common to standard CCDs, analog-mode 

EMCCDs, and photon counting EMCCDs since they all utilize the same basic structure and 

operation. It should be noted that increased shielding, such as on the STIS instrument on HST, 

can significantly decrease the radiation dose per year and the radiation-induced dark current 

(Kimble, et al., 2000). 

7.2 CURRENT BEST CANDIDATES 

For an overall comparison of each detector type, a plot of SNR vs fluence is useful. Depending 

on the scenario, the required exposure(s) must be short or long. Transit photometry, adaptive 

optics, and pulsar imaging all require short exposure times, while direct imaging of exoplanets 

requires long integration times.  
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Table 4 shows the characteristic noise values for a 0.1 s exposure for each detector type: CCD, 

CMOS APS, analog-mode EMCCD, photon counting EMCCD, and GM-APD imaging arrays. 

Due to the high frame rate required for short exposures, the read noise for the CCD and CMOS-

APS detectors is high and the readout time is a significant portion of the total 0.1 s wall time, 

reducing the duty cycle. The values shown for the photon counting EMCCD and the GM-APD 

assume that the gate times have been optimized for the fluence range simulated. The probability 

of one or more photon-generated electrons per gate in each detector is 0.797 at a fluence of 

800 photons/pixel/exposure. For the purposes of the following simulations, all detectors are 

assumed to be sensitive in the visible spectrum. 

 
Table 4 – This table shows state-of-the-art performance characteristics for short exposures of 0.1 s 

(requiring pixel rates in the tens of MHz range for moderately-sized CCD- and CMOS-based imagers. 

Parameter CCD 
CMOS  

APS 

Analog-Mode 

 EMCCD 

Photon Counting 

EMCCD 
GM-APD 

Dark Current 

(e-/s/pix) 
0.00021 0.015 0.00021 0.00021 0.027 

CIC 

(e-/pix/frame) 
0 0 0.0025 0.0025 0 

Read Noise 

(e- rms) 
10 10 <<1 <<1 0 

QE 90% 90% 90% 90% 70% 

Duty Cycle 90% 90% 90% 100% 100% 

ADC Saturation 

(1000s e-) 
72 100 1,000 1,000 N/A 

 
Figure 81 shows the simulated SNR for the detectors using the values shown in Table 4. 

Common fluxes for the short exposure applications are marked and labeled (see Table 2 for 

reference). 
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Figure 81 – This plot shows the SNR of various detectors vs fluence. The settings for each detector are 

optimized for the short exposure scenario of 0.1 s wall time per image. The labeled vertical lines show 

reasonable fluence levels for the applications noted. 
 

The long exposure scenario is also an interesting case, and requires different settings for the 

detectors. Table 5 shows the characteristic noise values for a 1000 s exposure for each detector. 

The main distinction between the values in Table 5 and the values in Table 4 is the read noise. In 

a long exposure scenario, the readout time can be much slower while still maintaining high duty 

cycle, which reduces read noise for the CCD and CMOS APS detectors. The GM-APD and 

EMCCD gate times are set to 1 ms, which has an avalanche probability of 0.797 at 

1500 photons/pixel/s. 
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Table 5 – This table shows state-of-the-art performance characteristics for long exposures of 1000 s. 

Parameter CCD 
CMOS  

APS 

Analog-Mode 

 EMCCD 

Photon Counting 

EMCCD 
GM-APD 

Dark Current 

(e-/s/pix) 
0.00021 0.015 0.00021 0.00021 0.027 

CIC 

(e-/pix/frame) 
0 0 0 0 0 

Read Noise 

(e- rms) 
2 3 <<1 <<1 0 

QE 90% 90% 90% 90% 70% 

Duty Cycle 100% 100% 100% 100% 100% 

ADC Saturation 

(1000s e-) 
72 100 1,000 1,000 N/A 

 
Figure 90 shows the simulated SNR for a range of fluence values for each detector, based on the 

values in Table 5. The expected flux for direct imaging of an exoplanet (see Table 2) is shown. 
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Figure 82 – This plot shows the SNR of various detectors vs fluence. The settings for each detector are 

optimized for the long exposure scenario of 1000 s wall time per image. The labeled vertical line shows 

a reasonable fluence level for the applications noted. 
 

The CCD and CMOS detectors have nearly the same performance except for a small change in 

ADC saturation. Their poor performance at low fluence levels in the fast exposure scenario is 

due to the high read noise necessary to read out the array quickly. This disadvantage does not 

apply for long exposures where the read noise decreases significantly. The analog-mode 

EMCCD is limited to 70% of the shot-noise-limited SNR because of the ENF caused by 

uncertainty in the gain. It also saturates more quickly, even though its ADC has a higher 

saturation level than the CCD or CMOS devices, because of the gain. The EMCCD suffers from 

very low duty cycle in the fast exposure scenario due to the maximum pixel readout rate (tens of 

MHz). Additionally, the CIC, which introduces as much noise as an equivalent amount of dark 

current, is high when the pixel readout rate is as high as required here. In the fast exposure 

scenario, the GM-APD clearly dominates at fluence levels between 1 and 100 photons 
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(corresponding to 10-1000 photons/s in this simulation). If tgate were shorter (e.g., if the readout 

electronics were optimized for fast readout), the detector would saturate later and offer 

significant competition to the CCD and CMOS detectors at higher fluence levels. The absence of 

read noise for the GM-APD, even though the dark current is higher, makes it the best candidate 

for fast imaging if the projected performance levels can be met. For long exposures, the higher 

dark current of the GM-APD results poor performance below a total fluence of ~100 photons 

(0.1 photons/s), and it is out-performed by the CCD and CMOS devices between 1,000 and 

100,000 photons (1-100 photons/s). However, if DCR were to improve to the levels of CCD and 

CMOS devices, the GM-APD would out-perform the photon counting EMCCD and the analog-

mode EMCCD at all fluence levels, and the CCD and CMOS devices below 10 photons 

(0.01 photons/s). 

7.2.1 ASTRONOMY APPLICATIONS 

The proposed WFIRST-AFTA mission currently includes a coronagraph instrument. The details 

of this proposed instrument provide a convenient way to compare the performance of two 

detector types for direct imaging applications. For short exposures, CCD and CMOS APS 

sensors are ill-suited due to the high read noise associated with fast readout times. For the short 

exposure scenarios (transit photometry and pulsar imaging), only photon counting EMCCDs and 

GM-APDs are considered. Long exposure scenarios (direct imaging) require sensitive detectors 

with very low noise. The best detector candidates are detectors with zero read noise (photon 

counting), high efficiency, and low dark current. Although analog-mode EMCCDs have low 

dark current and read noise, the ENF in the multiplication register effectively halves the QE, 

making them inferior to photon counting EMCCDs in this application. GM-APD imaging arrays 

are also considered for the long exposure application. 

WFIRST-AFTA uses a coronagraph instrument to block light from the star and directly image 

the orbiting exoplanet. The mission will give the first reflected (visible) light images of the 

planetary systems of nearby stars (NASA, 2014). The 2.4 m aperture provides a total field of 

0.4˚. The coronagraph has an inner working angle of 100 mas, equivalent to 1 AU at 10 pc, and 

an outer working angle of 750 mas. The instrument is designed to image planets that have a 
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planet : star contrast of 5x10
-10

 to 5x10
-8

, focusing on bright stars. The wavelength range of the 

instrument is 400 nm – 1000 nm (NASA, 2014).  

One of the current detector candidates for the WFIRST-AFTA coronagraph instrument is an e2v 

CCD201-20, a photon counting EMCCD with 1k x 1k pixels. The detector has a dark current of 

0.0003 e-/pix/s and CIC of 0.001 e-/pix/frame, and the QE in the V-band (550 nm) is 93%. The 

read noise when operated at modest frame rates is 8 e
-
 rms, which is effectively 0.04 e

-
 rms at a 

gain of 200 (suggested gain value). The gain is provided by 604 multiplication elements in the 

readout register (e2v technologies, Nov. 2011). To evaluate the performance of GM-APDs for a 

mission such as WFIRST-AFTA, the EMCCD described above will be used as a basis of 

comparison. 

One way to evaluate the performance of the EMCCD and GM-APD for exoplanet imaging is to 

compare the SNR of each device across a range of relevant signal levels. The theoretical SNR 

equations for the EMCCD in photon counting mode and the GM-APD are actually the same in 

certain circumstances. The EMCCD must be operated with a detection threshold at least three 

times that of the read noise (in order to avoid significant counts from read noise) and at least 10 

times smaller than the total gain (to avoid lost signal due to high thresholding). The GM-APD 

must be operated with a hold-off time such that the afterpulsing probability is zero. If all of these 

assumptions are true, then Eq. 99 gives the theoretical SNR of both an EMCCD in photon 

counting mode and a GM-APD (see section 2.6.2). 

 

𝑆𝑁𝑅 =
𝜂 ∙ 𝜆𝑝 ∙ 𝑛𝑔𝑎𝑡𝑒𝑠

√
𝑝

(1 − 𝑝)
∙ 𝑛𝑔𝑎𝑡𝑒𝑠

 

where                                      p = 1 − e−(η∙λp+λd) 

Eq. 99 

 
η is the efficiency of the detector (QE for EMCCDs and PDE for GM-APDs), 𝜆𝑝 is the number 

of incident photons per gate, λd is the number of dark current carriers per gate (for an EMCCD, 
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this includes CIC), ngates is the number of gates in the exposure, and p is the avalanche 

probability. 

Table 2 gives the relevant performance parameters for both detectors. The values for the 

EMCCD are taken from the manufacturer (e2v technologies, Nov. 2011) and from projected use 

in the WFIRST-AFTA mission (NASA, 2014). The GM-APD parameter values are based on the 

state-of-the-art performance metrics detailed in Section 3 and the same use as the EMCCD. 

 
Table 6 – Performance parameters for two devices are shown: an e2v CCD201-20 EMCCD in photon-

counting mode and a GM-APD array. 

Parameter (units) EMCCD (PC) GM-APD 

QE / PDE (%) 93 70 

Dark Current (e
-
/pix/s) 0.0003 0.03 

CIC (e
-
/pix/frame) 0.001 0 

Duty Cycle (%) 100 99.98 

Gate Time (ms) 55 55 

Read Noise (e
-
 rms/frame) 0.04 (effective) 0 

 
Figure 83 shows the SNR of the EMCCD and the GM-APD over a range of signal levels. The 

simulated exposure time is 10 hours in the V-band (550 nm), and the signal level is per pixel, not 

per object. Each exposure is made up of 55 ms, and the GM-APD has a hold-off time of 10 μs. 
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Figure 83 – This plot shows the simulated results for an e2v CCD201-20 operated in photon-counting 

mode and a GM-APD array. Relative SNR is the SNR normalized to the shot noise limit. Both detectors 

have the same gate time and exposure settings, but unique efficiency and noise values. The total 

exposure time is 10 hours. 

 
The EMCCD has a wider range of high SNR than the GM-APD does due to its lower dark noise, 

and it also has a higher peak due to its higher efficiency. To illustrate the implications of the 

difference in SNR, Figure 84 shows the wall time required to reach an SNR of 10 for both 

detectors given the settings described above. 
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Figure 84 – This plot shows the wall time required to reach SNR= 10 (top) and the ratio of time 

required for the two detectors (bottom). 

 
While the results in Figure 83 and Figure 84 are useful for comparison, they do not consider the 

imaging or spectroscopy cases, where the light from the object is spread across multiple pixels. 

In an imaging scenario, assuming that the focal spot size is diffraction-limited, Eq. 100 gives the 

angular width (in radians) of the central lobe of the airy disk pattern (between the first dark 

minima). 

 

𝜃 = 2.44
𝜆

𝐷
 Eq. 100 

 
λ is the wavelength of the light and D is the diameter of the aperture. The WFIRST-AFTA 

coronagraph aperture is 2.4 m and the plate scale is 17 mas/pix (NASA, 2014), so the central 

lobe of the diffraction pattern at 550 nm is 115 mas or 6.78 pixels. Alternatively, the full width at 

half maximum (FWHM) can be calculated using Eq. 101. 

 

𝜃 = 1.03
𝜆

𝐷
 Eq. 101 

 
The FWHM is 48.7 mas, or 2.86 pixels, at 550 nm. Figure 85 shows a 1D cross-section of the 

diffraction-limited, airy disk point spread function (PSF). The solid line shows the theoretical 
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function and the dashed line shows the function as sampled by the pixels in the simulated sub-

array. 

 

 
Figure 85 – This plot shows a 1D cut of the simulated PSF for the WFIRST coronagraph instrument. 

The solid line is the theoretical PSF and the dashed line is the PSF as sampled by the detectors 

(17 mas/pix). 
 

Figure 86 shows simulated images of exoplanets with various magnitudes for both the EMCCD 

and the GM-APD. The simulated images assume that the planet is not in a debris field and that 

any remaining diffracted light from the star is not significant. Zodiacal light is assumed to be 

negligible as well. 
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Figure 86 – This plot shows simulated images of exoplanets of varying magnitudes for an EMCCD 

(left) in photon-counting mode and a current state-of-the-art GM-APD (right). The corresponding 

apparent magnitude in the V band for each simulation is noted in the top left corner of each image. 

SNR is calculated for the signal that falls inside of the first dark ring, which includes 37 pixels. The 

value range is constant for each image. 

 

The background noise is notably greater for the GM-APD, which has a total dark noise 

contribution of 0.0017 e
-
/gate compared to the EMCCD’s combined dark current and CIC of 

0.0011 e
-
/gate. While both detectors resolve the first few maxima of the signal for the brightest 

planet (V = 24), the EMCCD does notably better for the faintest planet (V = 30) due to a 

combination of lower dark noise and higher efficiency. 

7.2.2 ADAPTIVE OPTICS 

As discussed in section 2.1.2, AO performance will be evaluated based on a Monte Carlo 

simulation that calculates the SNR of estimate of the centroid location. Because of the nature of 

AO, only short exposure conditions are considered. The CCD, CMOS APS, and analog-mode 

EMCCD are excluded based on read noise levels in the first two, and the ENF in the latter. Only 

the GM-APD and the photon counting EMCCD are simulated. 

Figure 87 shows the results for the GM-APD described in Table 4. The SNR increases with 

increasing signal strength (lower magnitude values) and distance from the center of the 4-pixel 

quad cell. Higher contrast in pixels signals leads to higher SNR. With an SNR threshold of 3, the 
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brightest signal (R=15) is only distinguishable once the centroid is at least 0.3 pixels from the 

center. At R=16.25, it is only distinguishable at 0.6 pixels from the center, and the faintest two 

focal spots do not reach the threshold at all. 

 

 
Figure 87 – This plot shows simulated SNR of the centroid location estimate as a function of distance 

and focal spot magnitude for a current state-of-the-art GM-APD. Exposure time for each measurement 

is 0.1 s.  

 

Figure 88 shows the photon counting EMCCD performance (see Table 4) under the same 

conditions as the GM-APD. For the brightest focal spot, it does not reach the SNR threshold of 3 

until the centroid is 0.38 pixels from the center of the quad cell, and achieves lower SNR across 

all values of magnitude and distance. 
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Figure 88 – This plot shows simulated SNR of the centroid location estimate as a function of distance 

and focal spot magnitude for a current state-of-the-art EMCCD in photon-counting mode. Exposure 

time for each measurement is 0.1 s.  

 

7.3 LONG-TERM BEST CANDIDATES 

The most significant change to detector performance in the long term will be the noise reduction 

achieved in GM-APD detectors. CCD and CMOS APS detectors for UV/Optical applications 

have little room for improvement. Dark current is nearly negligible, even for faint objects, and 

read noise is fundamentally limited by sampling and readout speed. There is some improvement 

to be made in IR detectors and applications, but the dark current noise will always be a function 

of material band gap, regardless of detector implementation. 

Analog-mode EMCCDs are similarly limited in a fundamental way by the ENF in the 

multiplication register. There is no way around the excess noise introduced by the way in which 

gain is applied. And while photon counting EMCCDs use the gain in a way that makes the 

excess noise insignificant to the detection process, the main constraint is currently CIC. CIC has 
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been a problem for a number of years now, and it will only get worse as array sizes increase, 

especially for short exposure scenarios. Unlike dark current, which scales with exposure time, 

CIC is noise applied to each read, effectively increasing the noise per second as the exposure 

time decreases. Without significant strides in CIC mitigation, this will be the limitation of 

EMCCDs. Although CIC may only be on the order of 0.001 e
-
/pixel/read, in gated operation this 

is very large. Consider moderately-long gates of 200 µs, which begin to saturate at 

~800 photons/pix/s. CIC of 0.001 e
-
/pixel/read translates to an equivalent noise source of 

5 e
-
/pix/s. Even for long gates of 1 ms, the CIC is still equivalent to 1 e

-
/pix/s. 

Since the GM-APD has no read noise and no CIC, small improvements in the DCR and 

afterpulsing probability offer significant improvements in overall SNR. 

7.3.1 ASTRONOMY APPLICATIONS 

The first-generation GM-APD array-based detectors demonstrated zero read noise and modest 

afterpulsing at temperatures above 140 K. Radiation-induced dark current was 1.4x higher than 

that of a CCD with the same radiation dose and shielding. However, the devices had high dark 

current and low efficiency. The dark current contribution was 38 e
-
/s/pix, and the PDE was only 

0.3% at its peak. However, the causes of these shortcomings are known, and a second generation 

of devices is currently being tested that have addressed the problems (Figer & Kolb, 2014). 

The state-of-the-art GM-APD performance is roughly equivalent to the EMCCD for fluxes 

greater than 1 photon/s (see Figure 84) when considering the time required to reach an SNR of 

10. While GM-APD performance lags behind EMCCDs for lower signal levels, targeted research 

to reduce the dark current would significantly improve SNR for faint objects. Given the 

limitation of CIC in EMCCDs, GM-APDs with dark current comparable to state-of-the-art CCD 

levels would offer an advantage for low-light-level imaging and spectroscopy. Figure 89 shows 

the theoretical SNR of a GM-APD with various dark current values along with the SNR of a 

state-of-the-art EMCCD. The lowest simulated value is equal to that of an EMCCD 

(0.0003 e
-
/s/pix). Because the EMCCD has CIC noise due to high pixel readout rates, the GM-

APD performance at the lower light levels exceeds that of the EMCCD even with only a modest 

decrease in the dark current to 0.01 e
-
/s/pix. 
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The improvement in SNR shown in Figure 89 is also evident when comparing the time required 

to reach an SNR of 10 for the GM-APD device and the e2v EMCCD (see Figure 90). 

A shot-noise-limited detector would reach an SNR of 10 in 10 hours for a fluence of 100 photons 

(0.003 photons/s). The e2v EMCCD in photon-counting mode would require 94.7 hours and a 

GM-APD with the same dark current would require only 16.3 hours. With current state-of-the-art 

dark current, the GM-APD would require 207.8 hours (2.2x the exposure time required for the 

EMCCD), though a GM-APD with a 3x decrease in dark current to 0.01 e
-
/s/pix would require 

85.8 hours – less than the EMCCD. 

 

 
Figure 89 – This plot shows the relative SNR of an e2v EMCCD in photon-counting mode and a 

theoretical GM-APD device with dark current equal to that of the EMCCD. Both detectors have the 

same gate time and exposure time settings. The total exposure time is 10 hours. The 0.03 e
-
/s/pixel 

curve is the current state-of-the-art. 
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A shot-noise-limited detector would reach an SNR of 10 in 10 hours for a fluence of 100 photons 

(0.003 photons/s). The e2v EMCCD in photon-counting mode would require 94.7 hours and a 

GM-APD with the same dark current would require only 16.3 hours. With current state-of-the-art 

dark current, the GM-APD would require 207.8 hours (2.2x the exposure time required for the 

EMCCD), though a GM-APD with a 3x decrease in dark current to 0.01 e
-
/s/pix would require 

85.8 hours – less than the EMCCD. 

Improvements in PDE could bring GM-APD efficiency closer to that of EMCCDs, though 

avalanche initiation probability limits the total efficiency.  

The GM-APD devices also have similar radiation tolerance to existing CCD devices. While the 

ASCA satellite CCD experienced less radiation damage when compared to an equivalent 

simulated environment for the GM-APD, the latter are not susceptible to surface-generated dark 

current. This gives them the potential to surpass the CCD’s radiation tolerance with targeted 

design improvements. Increased shielding, such as on the STIS instrument on HST, can also 

significantly decrease the radiation dose per year and the radiation-induced dark current
 
(Kimble, 

et al., 2000). Another effect of radiation damage on CCD-based devices (including EMCCDs) is 

a decrease in the CTE (Mori, et al., 2013; Janesick, et al., 1991). GM-APDs are not affected by 

CTE, and so are immune to CTE-related decreases in performance. 
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Figure 90 – This plot shows the wall time required to reach SNR= 10 (top) and the ratio of time 

required (bottom) for the e2v EMCCD and the theoretical GM-APD with dark current equal to that of 

the EMCCD. The 0.03 e
-
/s/pixel curve is the current state-of-the-art. 

 

State-of-the-art performances for GM-APDs lag significantly behind that of EMCCDs for low 

fluxes (< 1 photon/s), but are roughly equivalent at higher fluxes, as shown in Figure 83 and 

Figure 84. The only difference in performance at fluxes greater than 1 photon/s is the lower 

efficiency associated with GM-APDs due to non-ideal avalanche initiation probability. However, 

improvements in dark current could increase the performance of the GM-APD at low signal 

levels. If the dark current were improved by an order of magnitude, the performance of the GM-

APD would be higher for fluxes less than 0.1 photons/s, as shown in Figure 90. EMCCDs are 

fundamentally limited by CIC noise, which only increases as the number of pixels increases for 

large-format arrays due to high pixel readout rates. Theoretically, GM-APD devices are less 

limited by fundamental noise sources for extremely low signal levels and may ultimately be the 

better solution with more advanced research. 

In order to grasp how much better the GM-APD would be at faint fluxes with dark current equal 

to that of EMCCDs, the exoplanet imaging scenario is revisited. Assuming the same exposure 

settings and the same objects as Figure 86, Figure 91 shows simulated images with the current 

state-of-the-art EMCCD and a GM-APD with the same dark current (0.0003 e
-
/s/pix). 
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Figure 91 – This plot shows simulated images of exoplanets of varying magnitudes for an EMCCD 

(left) in photon-counting mode and a GM-APD with future projected performance (right). The 

corresponding apparent magnitude in the V band for each simulation is noted in the top left corner of 

each image. SNR is calculated for the signal that falls inside of the first dark ring, which includes 37 

pixels. The value range is constant for each image. 

 

In this scenario, the GM-APD out-performs the EMCCD for every object except the brightest, 

which is dominated by shot noise and determined mainly by efficiency. The faintest object 

(V=30), while not resolvable with an SNR cutoff of 10 on the EMCCD, is resolved on the GM-

APD. 

7.3.2 ADAPTIVE OPTICS 

As with the astronomy imaging applications, the GM-APD will surpass the photon counting 

EMCCD with modest decreases in DCR. While the current state-of-the-art GM-APD out-

performs the photon counting EMCCD by a small margin, it may not be significant enough to 

sway users to change their current systems. With a 10x decrease in the DCR to 0.003 e
-
/s/pixel, 

the GM-APD outpaces the EMCCD, though the improvement in centroid estimation is limited. 

Most of the noise is due to shot noise and the estimation function, and so a decrease in dark 

current does not affect the SNR very much. Figure 92 shows the simulated results for 

measurements taken with an improved GM-APD. The results are nearly indistinguishable from 

the current state-of-the-art case. 
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Figure 92 – This plot shows simulated SNR of the centroid location estimate as a function of distance 

and focal spot magnitude for a future state-of-the-art GM-APD. Exposure time for each measurement 

is 0.1 s.  

 

7.4 FUTURE WORK 

As of March 2015, a second-generation GM-APD device is being delivered to the CfD for 

testing. The device has been fabricated and joined to a ROIC via the Ziptronix
7
 process, which 

aligns and bonds dielectric layers together, matching the metal vias to form vertical connections. 

This reduces parasitic resistance and capacitance associated with bump bonds and back-filling, 

and the detector was fabricated using an SOI process, which should result in a more pristine back 

surface. Fewer defects on the backside of the detector should result in DCR more similar to the 

un-thinned detector shown in Figure 79. 

The new devices are fabricated using the HFF design, which should result in much higher PDE. 

In order to counteract the high crosstalk probability present in the first HFF iteration, a scupper 

                                                 
7
 http://www.ziptronix.com/ 
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circuit was introduced to the device design. A small circular implant is located at the intersection 

of each row and column and biased just below the anode supply voltage when turned on. The 

scupper implant forms a small diode with the backside implant and helps to collect carriers that 

are generated between pixels by the avalanche emission. This comes with a reduction in fill 

factor and therefore efficiency, and so the scupper voltage setting must be balanced to achieve 

the most crosstalk suppression without compromising PDE. 

The devices will undergo the same testing described in section 3, using the same electronics and 

dewar system. Radiation testing is not planned at this time, though it may be included in future 

proposals for space qualification and TRL advancement. The new devices should be more 

radiation hard than the first generation due to the SOI fabrication. 
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Appendix A: LIST OF ACRONYMS AND DEFINITIONS 

Acronym Definition 

ADC Analog-to-Digital Converter 

AO Adaptive Optics 

CCD Charge-Coupled Device 

CDM Code-Division Multiplexing 

CFB Cold Fanout Board 

CfD Center for Detectors 

CIC Clock-Induced Charge 

CMOS APS 
Compensated Metal-Oxide-Semiconductor Active Pixel 

Sensor 

CT-scan Computational Tomography scan 

CTE Charge Transfer Efficiency 

CTI Charge Transfer Inefficiency 

DCR Dark Count Rate 

DDD Displacement Damage Dose 

DN Digital Number 

DRPE Double-Random Phase Encoding 

EBCCD Electron Bombarded CCD 

EBCMOS Electron Bombarded CMOS detector 

EMCCD Electron-Multiplying CCD 

ENF Excess Noise Factor 

ESO European Southern Observatory 

FDM Frequency-Division Multiplexing 

FET Field Effect Transistor 

FWHM Full-Width at Half-Maximum 

GM-APD Geiger-Mode Avalanche PhotoDiode 
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HFF High-Fill-Factor 

HST Hubble Space Telescope 

ICCD Intensified CCD 

IPS IntraPixel Sensitivity 

IR InfraRed 

L2 orbit 2
nd

 Lagrangian orbit point in the Earth-Sun system 

LEO Low Earth Orbit 

LFF Low-Fill-Factor 

LIDAR LIght Detection And Ranging 

LM-APD Linear-Mode Avalanche PhotoDiode 

LPE Liquid Phase Epitaxy 

MCP MicroChannel Plate 

MFF Medium-Fill-Factor 

MGH Massachusetts General Hospital 

MIT LL Massachusetts Institute of Technology Lincoln Laboratory 

MKID Microwave Kinetic Inductance Detector 

MOS capacitor Metal-Oxide-Semiconductor capacitor 

MOVPE Metal-Organic Vapor Phase Epitaxy 

MRI Magnetic Resonance Imaging 

MRS APD Metal-Resistor-Semiconductor Avalanche PhotoDiode 

NASA JPL 
National Aeronautics and Space Administration Jet 

Propulsion Laboratory 

NIEL Non-Ionizing Energy Loss 

NIR Near InfraRed 

PCROIC Photon Counting ROIC 

PCSCT Photon Counting Spectral Computational Tomography 

PDE Photon Detection Efficiency 
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PMT PhotoMultiplier Tube 

PSD Position Sensitive Detector 

PSF Point Spread Function 

QE Quantum Efficiency 

ROIC ReadOut Integrated Circuit 

SNR Signal to Noise Ratio 

SOI Silicon-On-Insulator 

SQUID Superconducting QUantum Interference Device 

SSPM Solid State PhotoMultiplier 

TCSPC Time-Correlated Single Photon Counting 

TDM Time-Division Multiplexing 

TES Transition Edge Sensor 

TID Total Ionizing Dose 

TKID Thermal Kinetic Inductance Detector 

TLS noise Two-Level System noise 

UV UltraViolet 

VLPC Visible Light Photon Counter 

WDB Warm Daughter Board 

WEB Warm Electronics Board 

WFC3 Wide Field Camera 3 (HST) 
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Appendix B: Superconductor-Based Detector Applications 

The energy resolution available in superconductor-based detectors lends itself to many fields, 

particularly spectroscopy in astronomical applications (see section 1.2.1) and in the medical 

field. Biological imaging of tumors
 
(Weissleder, et al., 1999) and the brain

 
(Hillman, 2007) has 

become a popular alternative to radiation-intensive imaging like CT-scans (computational 

tomography scans) and x-ray images. Magnetic resonance images (MRIs) introduce less 

radiation to the patient, but are computationally intensive and the equipment required is large and 

stationary. Near infrared (NIR) tissue imaging can image human tissue up to a few centimeters 

thick, which is sufficient to test for surface tissue cancers affecting the breast or skin. Even brain 

imaging, using some interferometry, shows promising results, especially as a non-invasive and 

low-radiation alternative children and the elderly, or people who are otherwise at risk of 

increased harm from standard tests. 

The medical community also began to see the potential in newer photon counting detectors. CT-

scans use x-rays to distinguish various densities in the human body to build a 3D model (via a 

series of 2D slices) of internal structures. Traditionally, CT detectors consist of silicon devices 

optically coupled to a scintillator (a material that emits photons of lower energy when it absorbs 

a photon of high energy). The silicon devices simply integrate the signal over the length of the 

exposure, which results in the integration of the x-ray energy and no information on the number 

or energies of the original x-rays. There are currently two limitations to the technology: patient 

radiation doses and object contrast. Implementing a photon counting spectral CT (PCSCT) 

system increases the contrast to noise ratio (the figure of merit for CT images) while using the 

same or a fewer number of photons. Higher sensitivity and faster reset times allow lower patient 

doses. And although density-only resolution may be sufficient in certain applications like a 

spectral mammography (Ding & Molloi, 2012), increased energy resolution increases contrast 

when density alone is not enough (Barber, et al., 2009). The addition of energy resolution would 

help doctors distinguish between similar (but crucially different) substances, such as the 

difference between arterial plaque and a stent in a coronary artery. Because x-rays of different 

energies produce a distinct number of electrons in a semiconductor, photon counting detectors 
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with fast resets can be used to measure both the number (by resolving pulses) and energy (by 

resolving pulse height) of the photons collected (Feuerlein, et al., 2008).  

For semiconductor devices, it is important to note that this type of application would require a 

free-running detection mode, where each incident photon generates a pulse (as opposed to gated 

operation that bins photons inside of a gate). Generally, free-running mode requires control 

electronics with very fast quench and rest times that are triggered by an avalanche, not an 

external clock. However, given the relatively small array sizes currently used (on the order of 

2 x 256), superconductors would also be an option for this application due to their built-in energy 

resolution. Recent advances have decreased the superfluous x-ray photons in a CT exposure by 

inserting a K-edge energy filter between the patient and the x-ray source, making each exposure 

more efficient and less noisy (Shikhaliev, 2012).  

A free-running system would also be necessary for time-correlated single photon counting 

(TCSPC) of fluorescence lifetime imaging. In this imaging scenario, the time of each photon 

arrival is measured for the duration of the fluorescence event, which is generally on the order of 

nanoseconds. The arrival times follow Poisson statistics, where the number of photons at any 

time decreases exponentially from the start of the experiment. At the end of the experiment, the 

total number of photons can be calculated from the arrival time distribution and used to make an 

intensity image, while the arrival time distribution itself is used to calculate the 
1
/e lifetime of the 

fluorescence decay. TCSPC of fluorescence lifetime imaging is used to characterize fluorescent 

materials, whether they occur naturally or are used for medical imaging as fluorescent markers. 

Figure 93 shows an example of the results from a TCSPC fluorescence lifetime imaging 

experiment (Chessel, et al., 2013). 
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Figure 93 – The results of a TCSPC fluorescence lifetime imaging experiment are shown. The 

central image is an intensity map of the fluorescence, while the outer figures show the photon 

arrival time distribution of various regions (Chessel, et al., 2013). 
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Appendix C: TIME-BASED GM-APD APPLICATIONS 

It is important to note that these applications are not compatible with the GM-APD imaging 

arrays presented in this dissertation. Due to the myriad users of GM-APDs that use them for 

time-based measurements, this appendix is included for reference. Brief discussions of the 

applications are provided. 

Time-based applications require circuits that record the time of photon arrival. These detectors 

can be gated or free-running, but they always record the arrival time. Optical communications 

setups require precise timing to distinguish between digital bursts of photons (representing 1s in 

a digital word) and the spaces between them, representing 0s. Another time-based application is 

laser ranging, which syncs the detection cycle of the detector to a pulsed laser. 

Optical Communication 

Communication at telecom wavelengths for deep space and near-Earth applications is essential 

for extra-terrestrial exploration. Difficulties with the technology include the challenge of sending 

a signal over long distances in space (loss of information and flux from diffraction) as well as the 

tradeoff between lower energy signals (long wavelengths) and the detection efficiency of those 

signals. Lower energy photons (IR) travel well through space, but they are generally more 

difficult to detect and the materials required to do so are more expensive. These obstacles are 

compounded by the fact that detectors are often the limiting factor in a communication system’s 

performance, making low noise and high efficiency desirable. Wavelength manipulation via 

waveguides offers a solution by allowing for the use of low-energy signal photons desired for 

space-based telecom with silicon-based detectors. An example of such a system is depicted in 

Figure 94 (Grein, et al., 2010).
 



 

 

 

 

195 

 

 

 

Figure 94 – A wavelength up-converter based on periodically-poled lithium-niobate (PPLN) is 

illustrated (Grein, et al., 2010). 

 

The waveguide (with Periodically-Poled LiNbO3 – PPLN), which is only 48 mm long and 

temperature-stabilized, facilitates the conversion of 1556 nm photons to 713 nm photons using a 

1319 nm pump (the original 1319 nm pump signal is filtered out via a bandpass filter before the 

signal reaches the detector). A silicon GM APD detects the up-converted signal at 713 nm, 

where silicon has high detection efficiency. The system has the potential to reach greater than 

90 % efficiency, and the noise produced from the pump (evidenced in an increase in dark counts) 

was not the limiting noise factor of the system. Detector parameters to consider in such a system 

include the DCR, PDE, and timing jitter (which in this application constrain the data rate) (Grein, 

et al., 2010). 

Another use for photon counting in communications is encryption. Specifically, double-random-

phase encoding (DRPE) for image verification and retrieval is a popular application. By 

controlling and reading the phase value, it can be used as an encryption tool in addition to the 

arrival time spacing (essentially making the encrypted data have a complex value). State of the 

art simulations and theory have shown that photon-limited encrypted distributions have sufficient 

information for decryption, authentication, and signal retrieval. According to the DRPE 

algorithm, an image can be turned into a noisy, complex-valued distribution that does not reveal 

its content when two random phase filters are used in the spatial and Fourier domains. On the 

user end, the image can be decrypted using the decryption key provided (per the random phase 

masks) and taking the inverse Fourier transform. Figure 95 shows two methods for using photon 

counting with encryption (Perez-Cabre, et al., 2012). 
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Figure 95 – Two procedures for combining photon counting imaging with encryption. PhCI 

stands for photon counting imaging and DRPE stands for double-random-phase encryption 

(Perez-Cabre, et al., 2012). 

 

Others have recently used the DRPE for encryption of 3D images, as well. While 3D images are 

more complicated to encrypt in general, due to the extra information that must be transferred, the 

problem is tackled as a series of 2D images that must be reconstructed (Cho & Javidi, 2013).
 

LIDAR 

Another free-running application is LIDAR, which uses photon time of flight information to 

estimate elevation (distance from an airborne imaging system or satellite). A laser pulse is aimed 

at an object or area, and the detector is synced with the laser pulses. The lasers generally output 

short wave (near) IR signals (e.g. 1.06 µm) with a very narrow filter over the detector, ensuring 

that the only photons collected are those originally from the laser (Yuan, et al., 2010). The time-

correlated signals are collected, and the distance the light traveled can be calculated based on the 

speed of light. In some cases, the distance resolution is on the order of centimeters in ideal 

conditions. Figure 96 shows an example of 3D LIDAR imaging (Van Ardt, 2008). In this 

particular image, warmer colors represent objects with more height (close to the aerial detector). 

Scenes imaged using LIDAR generally take advantage of multiple capture perspectives to form a 

point cloud and render a 3D representation of the scene. 
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Figure 96 – A 3D LIDAR image of a portion of the RIT campus is shown (Van Ardt, 2008). 
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