## Giant Magellan Telescope Project Overview and Relevance to LUVIOR



Patrick J. McCarthy GMTO Director

Rebecca A. Bernstein GMT Project Scientist





## **GMT** Founder Institutions





## **Science Goals**



## **Top-Level Science Areas**

- Extra-solar planets
- Stellar Populations and Chemistry
- Galaxy Building
- Black Hole Growth
- Cosmological Physics
- First-Light & Reionization



## **Science Goals**



## What's New?

- Earth-like planets, visible AO...
- 2000+ Exoplanets, TESS in 2018
- Stars with [Fe/H] < -7!
- Black holes with  $M > 10^{10} M_{sun}$  !
- FRBs and other new transients
- JWST 2 years away
- LSST to start in 2020+
- LUVOIR only 20 years away!



## **Community Science Meetings**



#### Keeping the science mission current



## **Community Science Meetings**



Keeping the science mission current



## **Telescope Design Overview**



- Doubly segmented
  - M1 8.4m segments
  - M2 1.1m segments
  - Aplanatic Gregorian configuration
  - M1:M2 segments are conjugate
  - f/0.7 primary
  - f/8 final focus 1.0 mm/arcsec
- Compact structure
- Optimized for stiffness
- High throughput



# **GMT** Primary Mirror Production



Segment #1: Complete. Meets all specifications.

Segment #2: Ready for front surface processing

Segment #3: Rear surface complete.

Segment #4: Casting/cleanout complete.

Segments #5 & #6: Materials purchased.







## GMT Site Development Well Underway

MAGELLAN TELESCOPES

SUPPORT SITE 1 Labs and Workshops

#### GMT SITE Summit Offices

#### SUPPORT SITE 2

PAD 1: 68 Dorm Building

PAD 2: Kitchen, Dining, and Recreation Buildings

- PAD 3: 24 Dorm Building

## **Instrument Mount Locations**





## **Instrument Mount Locations**





## **Instrument Mount Locations**







## First Generation Instrument Status

| Instrument / Mode                  | Capabilities                                     | λ Range,<br>μm | Resolution                          | Field of View                |  |
|------------------------------------|--------------------------------------------------|----------------|-------------------------------------|------------------------------|--|
| <b>G-CLEF</b> / NS, GLAO,<br>NGSAO | Optical High Resolution<br>Spectrograph / PRV    | 0.35 – 0.95    | 19,000 – 108,000                    | 7 x 0.7,1.2" fibers          |  |
| <b>GMTIFS</b> / LTAO,<br>NGSAO     | NIR AO-fed IFS / Imager                          | 0.95 – 2.5     | 5,000 & 10,000                      | 10 / 400 arcsec <sup>2</sup> |  |
| GMACS / NS, GLAO                   | Wide-Field Optical Multi-<br>Object Spectrograph | 0.35 – 0.95    | 1,000 – 6,000<br>(8K with MANIFEST) | 7.5' diameter                |  |
| ComCam / NS, GLAO                  | Optical Imager                                   | 0.34 – 1.0     | 0.06 arcsec/pix                     | 6 x 6 arcmin                 |  |
| <b>GMTNIRS</b> / NGSAO,<br>LTAO    | JHKLM AO-fed High<br>Resolution Spectrograph     | 1.1 – 5.3      | 50,000 / 75,000<br>(JHK / LM)       | 1.2" long-slit               |  |
| MANIFEST / NS, GLAO                | Facility Robotic Fiber Feed                      | 0.36 – 1.0     |                                     | 20' diameter                 |  |

| Current Phase                          | Next Phase         |  |
|----------------------------------------|--------------------|--|
| Final Design                           | Fabrication        |  |
| Preliminary Design                     | Final Design       |  |
| Conceptual Design                      | Preliminary Design |  |
| Silicon Grating Technology Development | Preliminary Design |  |
| Science demonstrator closeout          | Concept Design     |  |



## Natural Seeing Optical (350-950 nm) Spectrographs





#### G-CLEF PI: Andrew Szentgyorgyi, Smithsonian

Stabilized, fiber-fed, dual channel echelle R =  $\lambda/\Delta\lambda$  =19,000 – 35,000 – 108,000 < 50 cm/s per observation

- Exoplanets PRV (<10 cm/s) & chemistry
- Stellar abundances, esp. [Fe/H] < -4
- Dark matter distribution in dwarf galaxies

GMACS PI: Darren DePoy, Texas A&M

Multi-object, dual channel R =  $\lambda/\Delta\lambda$  = 1,000 – 6,000 7.5' diameter FoV spectroscopy / imager

- Stellar evolution & abundances
- ISM & IGM abundances
- Galaxy chemical evolution, Lyα systems

## **AO-Fed Spectrographs**





### GMTIFS

#### **Rob Sharp**

Diffraction-limited yJHK IFU / imager (20.4") R =  $\lambda/\Delta\lambda$  = 5,000 or 10,000 Spaxels: 6, 12, 25, or 50 mas

- Galaxy chemical enrichment history
- First galaxy structure and assembly
- Black hole masses
- IGM at high redshift



#### GMTNIRS

#### Dan Jaffe

Near-diffraction limited JHKLM echelle Full 5 band coverage simultaneously R =  $\lambda/\Delta\lambda$  = 50,000 (JHK) – 75,000 (LM)

- Exoplanet structure and atmospheres
- Star and planet formation
- Composition of stars & nebulae
- Galaxy chemical evolution history



## Future Instruments SuperFIRE & TIGER





TIGER

## Super FIRE

#### **Rob Simcoe**

IR echelle spectrograph 3-channel JHK simultaneous R =  $\lambda/\Delta\lambda \sim 6,000$ 8" slit length

Derives from FIRE on Magellan

#### **Phil Hinz**

Dual channel ExAO imager 1.5-5 µm; 7-14 µm R =  $\lambda/\Delta\lambda \sim 300$ ; Spatial ~ 7 mas / pixel 30" Field of view Contrast: ~10<sup>-6</sup> in L band @ 3  $\lambda$ /D



GMT uses a segmented Adaptive Secondary Mirror with a direct-feed architecture

Builds on success of LBT, Magellan and VLT systems

Low background, 10 mas resolution at 1 micron

#### 4700 actuators



Adaptive Optics with the GMT



Magellan AO system achieves 32% Strehl in the i-band Has reached 40% in R-band (at  $H\alpha$ )!

#### High spatial resolution Exoplanet imaging over a wide range of wavelengths



#### 0.8 microns

4.6 microns



# GMT

#### High spatial resolution Exoplanet imaging over a wide range of wavelengths

GPI, MagAO, and other systems are enabling physical studies of exoplanets

These are forerunners of the ELT AO systems



## The ELTs and LUVOIR



The ELTs are the next generation ground-based observatories Analogous to JWST and LUVOIR in the evolution of space telescopes

The ELTs will reach their zenith in the period between JWST and LUVOIR



## The ELTs and LUVOIR



The ELTs are the next generation ground-based observatories Analogous to JWST and LUVOIR in the evolution of space telescopes

The ELTs will reach their zenith in the period between JWST and LUVOIR

- Characterization of habitable planets
  - Atmospheric chemistry, orbits and masses, direct imaging
- Exploration of Cosmic Dawn
  - Spectroscopy, abundances, dynamics, clustering
- New Discovery Space
  - The unknown!

