

The Thirty Meter Telescope Observing Capabilities and Timeline

Warren Skidmore, TMT System Scientist, Pasadena

August 18, 2016 LUVOIR STDT Face-to-Face GSFC

LUVOIR and ELTs overlap. ELTs have long lifetimes.

TMT Partnership and timescale

Project formed in 2004 – CELT, GSMT, VLOT Q2 2014 – Construction Phase Q2 2018 – Heavy Construction Q4 2026 – Science Operations

Construction activities continue. All major and critical systems are construction ready (FDP or PDP). Aggressive effort to finalise site.

3

Detailed Science Case 2015 by TMT International Science Development Teams

ISSN 1674-4527

天文和天体物理学研究

Thirty Meter Telescope Detailed Science Case: 2015

Research in Astronomy and Astrophysics Cosmolog y International Science Development Teams & TMT Science Advisory Committee Early Universe, Galactic Evolution, SMBHs Stellar Abundances and Evolution Star and planet formation, Exoplanet Characterisation Solar System Surfaces & Atmospheres

Reference: Skidmore et al. 2015, Research In Astronomy and Astrophysics (RAA), Volume 15, Issue 12, Article id. 1945 http://www.tmt.org/sites/default/files/documents/application/pdf/tmt-dsc-2015-release-2015apr29-s2.pdf TMT resolution at 1μm is 7 mas 7 mas = 200m at 5Mkm, 25 km at 5 AU (Jupiter) 0.035 AU at 5 pc (nearby stars) , 0.034 pc at 1 Mpc, 300 pc at z~2.5

Cross partner large programsRemote PI led and queue scheduledSmall programsFlexible schedulingobservations, eavesdropping if needed

Nasmyth Configuration: Full Instrumentation Suite

TMT Planned Instrument Suite

Instrument	Field of	view / slit Spectral resolution	n λ (µm)		Comments
InfraRed Imager and Spectrometer (IRIS)	< 4."4 16".4 > (imagi	0.8-2.5µm 4.5" FOV IF 34" FOV Broad Band II	U 2 mager	.4	MCAO with NFIRAOS 50µ arcsec astrometry
Wide-field Optical spectrometer (WFOS)	40.3' s 576" (0.31-1.0μm 40 ² Imag 200 objects. R up to 10	er 5000		Seeing-Limited (SL)
InfraRed Multislit Spectrometer (IRMS)	2' field deploy	0.95-2.5µm 2' Imager	مم 5-2.	45	MCAO with NFIRAOS
Multi-IFU imaging spectrometer (IRMOS)	3" IFU diame	multiple 3" FOV IFUs	0.8-2.5		MOAO
Mid-IR AO-fed Echelle Spectrometer (MIRES)	3″ slit l 10″ im	8-18μm R [~] 100,000 1 <u>0" Imager</u> 1.2 Fum P~100 IFU	8-18 4.5-28(goal)	MIRAO
Planet Formation Instrument (PFI)	1″ oute angle, workin g a	>10 ⁸ contrast, 1" IWA	1-2.5 1-5 (go	pal)	10 ⁸ contrast 10 ⁹ goal
Near-IR AO-fed Echelle Spectrometer (NIRES)	2" slit I	1-5µm R~100,000 Facility AO fed	1-5		MCAO with NFIRAOS
High-Resolution Optical Spectrometer (HROS)	5" slit len	ngth <u>50000</u> 0.31-1.1μm R up to 50	<u>0.31-1.</u> ,000	0 }(goal)	SL
"Wide"-field AO imager (WIRC)	^{30" im} (0.8-5µm Imager 30" FOV, R~5 to 100	0.8-5.0 0.6-5.0	(goal)	MCAO with 8 NFIRAOS

8

TMT First Light Instrument Suite Part of Observatory Construction

Thirty Meter Telescope

				NAOJ TMT Projec Events	TMT Spectroscopic ETC (under construction) For details of the calculation, please see <u>TMT ETC Reading</u> page.	
Instrument	Field of view / slit	Spectral resolution	λ (µm)	Comr Members Contact Links to IMT IMT Headquarter TMT Canada	Basic parameters of TMT first generation instruments (spectroscopic mode) IRIS MOBIE IRMS Wavelength coverage (µm) 0.8 – 2.4 0.31 + 1.1 0.95 - 2. 500-5000 3000? Spectral resolution R = <i>A</i> /JA 4000 500-5000 3000? 3000?	
InfraRed Imager and Spectrometer (IRIS)	< 4."4 x 2".25 (IFU) 2x2 16.4"x16.4" (imaging)	4000-8000 5-100 (imaging)	0.8 – 2.4	MCAC NFIR/ 50μ a	Paid of Vew 17"2.8 <th 17<="" td=""></th>	
Wide-field Optical spectrometer (WFOS)	40.3' squared (FoV) 576" (Total slit length)	1000-8000	0.31-1.1	Seein (SL) Up tc	Sources Generation AD AD Sources Generation Fibit Source Intervention - Extended = sit widhr spatial length = [0.5] x [1.5] Source execoded Tainet Source Tentory Source borr 2: - Olawy Expected borr 2: - Star [0 down?]	
InfraRed Multislit Spectrometer (IRMS)	2' field w/ 46 deployable slits	<i>R</i> = 4660 @ 0.16" slit	0.95-2.45	MCAC NFIR/	Power law F: x=7:3 = 1.0 (0)/Aunder + 2(03/) = 0.5 Power law F: x=7:3 = 1.0 (0)/Aunder + 2(03/) = 0.5 Power law F: x=100 (0)/Aunder - 0.5 Power law F: x=100 (0)/Aunder - 0.5 Power law F: x=100 (0)/Aunder - 0.5	
Multi-IFO imaging spectrometer (IRMOS)	3 IFUs over >5′ diameter field	2000-10000	0.8-2.5	MOAC	Scale Flux Density by unita: (K12 Jun) (S12 J	
Mid-IR AO-fed Echelle Spectrometer (MIRES)	3' slit leng th 10''' imaging POSS	sible instru	uments w	ithin T	т	
Planet Formation Instrument (PFI)	1' outer working argle, 0.05" INSTR working ar gle	rument ro	admap. A	call fo	or 2 nd	
Near-IR AO-fed Echelle Spectrometer (NIRES)	² slit leng gene	eration ins	struments		e	
High-Resolution Optical Spectrometer (HROS)	5' slit lengh	aseu III ZU	0.31-1.3(goal)	SL		
"Wide"-field AO imager (WIRC)	30" imaging field	5-100	0.8-5.0 0.6-5.0 <mark>(goal)</mark>	MCAO with NFIRAOS	9	

An ELT Instrumentation "Equivalence Table"

Cheat sheets for E-ELT, GMT and TMT capabilities

Type of Instrument	GMT	ТМТ	E-ELT
Near-IR, AO-assisted Imager + IFU	<u>GMTIFS</u>	<u>IRIS</u>	<u>HARMONI</u>
Wide-Field, Optical Multi-Object Spectrometer	<u>GMACS</u>	<u>WFOS</u>	MOSAIC- HMM
Near-IR Multislit Spectrometer	NIRMOS	<u>IRMS</u>	MOSAIC- HMM
Deployable, Multi-IFU Imaging Spectrometer		IRMOS	MOSAIC- HDM
Mid-IR, AO-assisted Echelle Spectrometer		MIRES	<u>METIS</u>
High-Contrast Exoplanet Imager	TIGER	PFI	ELT-PCS
Near-IR, AO-assisted Echelle Spectrometer	GMTNIRS	NIRES	HIRES
High-Resolution Optical Spectrometer	<u>G-CLEF</u>	HROS	HIRES
"Wide"-Field AO-assisted Imager		WIRC/ <u>IRIS</u> (Imager)	<u>MICADO</u>

Steps Towards Future Instruments

TMT International Science Development Teams

~215 individuals in 9 teams

- Early Universe, Galaxy Formation and the IGM
- Exoplanets
- Formation of Stars and Planets
- Fundamental Physics and Cosmology
- Milky Way and Nearby Galaxies
- Solar System
- Stars, Stellar Physics and the ISM
- Supermassive Black Holes
- Time Domain Science

TMT International Science Development Teams

- All volunteers (no financial assistance)
 - Annual renewal of membership/calls for new members
- Coordinated by TMT SAC members Tommaso Treu and Mark Dickinson
 - Varying levels of self-organisation up to organising topical conferences
- Activities
 - All input for 2015 Detailed Science Case from ISDTs
 - Proposals for Cross-Partner Key Programs
 - Several dozen proposals for ~15 years of telescope time!
 - Updated science requirements flowdown

• WFIRST/TMT synergies

Summary

- TMT will be a general purpose observatory with all major forms of instrumentation
- Q4 2026 Science operations
 - 1st light instruments under development
 - Work horse capabilities, broad use cases
 - Near IR AO fed IFU, imager and MOS
 - Optical wide field MOS
- ~2.5 yr cadence for new instruments and AO
 - Concepts are actively being developed
 - Decision and development process is defined
 - Flexible on the timescale for LUVOIR overlap
- TMT International Science Development Teams
 - Can provide science input if needed
- CHEATSHEETS TMT, E-ELT and GMT

Backup slides

TMT First Light AO System

Narrow Field IR AO System (NFIRAOS)

- LGS, multi-conjugate AO
- 6 laser guidestar WFSs
- Two Piezostack DMs
- Tip/tilt stage
- Order 60x60 correction
- 800Hz update rate
- Fast (< 5 min) switch between targets with same instrument
- Tip/tilt/focus Infrared NGS WFSs in client instruments IRIS, IRMS
 - Science detector "On Detector Guide Windows"

TMT First-Light Science Instruments on the Telescope

- Ritchey-Chrétien optical design
- 30-m f/1 primary
- 3.1-m convex secondary
- 2.5 m x 3.5 m flat tertiary
- f/15 final focal ratio
- 20' Field of view is 2.62m in diameter
- Science instruments mounted on Nasmyth platforms (fixed gravity vector)

Future Instrumentation Development Plan

Future Instrumentation Development Plan

Diffraction limited observations with AO on TMT

TMT resolution at 1µm (λ /d) is 7 mas, 4 mas pixels 7 mas = 200m at 5Mkm, 25 km at 5 AU (Jupiter) 0.035 AU at 5 pc (nearby stars) , 0.034 pc at 1 Mpc, 300 pc at z~2.5

Future Instruments: Feasibility Studies?

- Feasibility studies for future instruments: Why now?
 - Very strong interest across partnership
 - Updated and/or new instrument concepts
 - Updated technical information required (e.g., cooling requirements)
 - Updated cost and schedule estimates for development budget planning
 - Foster new collaborations and involve new groups into our instrumentation effort important at this critical time for TMT

• A possible plan:

- ~3-4 studies with 1.5 year duration
- Modest cash contributions leveraging larger in-kind contributions
 - MICHI team produced a very impressive feasibility report with NSF ATI funding and Japanese contributions
- Call for proposals in 2017Q1 (see proposed timeline)

Future Instruments Studies: A Proposed Timeline

		Timelines			
Step	Description	First-light Instruments	2nd Gen Instruments Proposed New Timeline	2nd Gen Instruments Original Timeline	
1	Initial science cases and desired capabilities	<= 2004	2016Q1 - 2016Q4		
2	Call for <u>Feasibility</u> Studies (~\$150K+~1.5 yr / study)	2005Q1 (10 studies; 8 capabilities)	2017Q1 (TBD studies; TBD capabilities)	timeline -> Future instruments 1 and 2	
3	Feasibility Study Phase: ° Expanded science cases and operational concepts ° <u>Instrument</u> designs and their technical readiness ° Schedule and Budget Estimates	2005Q2 - 2006Q1	2017Q3 - 2018Q4	10-year old scientific and technical information)	
4	Feasibility Study Reviews	2006Q1	2019Q1		
5	<u>Revised</u> science cases and <u>instrument</u> concept ranking	2006Q2 - 2006Q3	2019Q2 - 2019Q3	2016Q2 - 2016Q3	
6	Instrument concept selection	2006Q4	2019Q4	2016Q4	
7	Call for <u>Conceptual</u> Design Studies (~\$1M+ ~1.5 yrs / study)	2007Q3	2019Q4	2016Q4	
8	Team selection and formation	2007Q4	2020Q2	2017Q2	
9	Statement of Work and work package development	2007Q4	2020Q3 - 2020Q4	2017Q3 - 2017Q4	
10	Conceptual Design Studies start	2008Q1 (Two studies: WFOS and IRIS)	2021Q1 (Two studies TBD)	2018Q1 (Two studies TBD)	

Science Instrument Status

- IRIS: Preliminary Design Phase started in April 2013 and scheduled for completion in November 2016
- WFOS:
 - Conceptual Design Handover Workshop held in October 2013
 - A 1-year "mini-study" phase with participants from 15 institutes across the TMT partnership was completed in April 2015
 - An "Opto-Mechanical Design and Requirements" (OMDR) phase was initiated in January 2016 and is scheduled for completion in January 2017

• IRMS:

- A 2013 mini-study showed IRMS to be a viable option for TMT +NFIRAOS
- Mini-studies are under discussion
- Future instruments: Call for Feasibility Study proposals in early 2017 under discussion

TMT GMT First Generation Instrument Status

Thirty Meter Telescope

Instrument / Mode	Capabilities	λ Range, μm	Resolution	Field of View
G-CLEF / NS, GLAO, NGSAO	Optical High Resolution Spectrograph / PRV	0.35 – 0.95	19,000 – 108,000	7 x 0.7,1.2" fibers
GMTIFS / LTAO, NGSAO	NIR AO-fed IFS / Imager	0.95 – 2.5	5,000 & 10,000	10 / 400 arcsec ²
GMACS / NS, GLAO	Wide-Field Optical Multi- Object Spectrograph	0.35 – 0.95	1,000 – 6,000 (8K with MANIFEST)	7.5' diameter
ComCam / NS, GLAO	Optical Imager	0.34 – 1.0	0.06 arcsec/pix	6 x 6 arcmin
GMTNIRS / NGSAO, LTAO	JHKLM AO-fed High Resolution Spectrograph	1.1 – 5.3	50,000 / 75,000 (JHK / LM)	1.2" long-slit
MANIFEST / NS, GLAO	Facility Robotic Fiber Feed	0.36 – 1.0		20' diameter

Current Phase	Next Phase
Final Design	Fabrication
Preliminary Design	Final Design
Conceptual Design	Preliminary Design
Silicon Grating Technology Development	Preliminary Design
Science demonstrator closeout	Concept Design

Jacoby - GMT Instrumentation

SPIE — June 30, 2016

Additional information

TMT Instrument – InfraRed Multi-object Spectrograph

IRMS Spectra

Full Y, J, H, K spectra with R ~ 5000 with 160mas (2 pix) slits in central ~1/3 of field

WFOS first light instrument

IRIS Focal Plane: Imager + 2 IFUs + 3 Guide Stars

Galaxy/metallicity evolution High-z dynamics/morphology

IRIS Mounted on NFIRAOS

TM

From Science to Subsystems

From Science to Subsystems

Mid-IR spectroscopy - Solar System

Physics and Chemistry of Cometary Atmospheres – mid-IR requires low PWV and MICHI

CO(2-1) emission and dust continuum from Comet Hale-Bopp at 1'' resolution with with IRAM

Submm+optical = nucleus albedo and size

(Figure 40 - "Science with ALMA" Document)

Detection of parent volatiles in Comet Lee (C/1999 H1) at R=20, 000. TMT/NIRES will allow diffraction-limited observations at R=100,000 over the range 4.5 - 28 μ m

Look for "chemical families" as probes of the Oort Cloud

